Damage of structural materials at low cycle loading conditions

Authors

  • V. Koval Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine

DOI:

https://doi.org/10.20535/2521-1943.2017.80.111864

Keywords:

damage, low-cycle fatigue, healing parameter, durability

Abstract

The present work is focused on experimental study of the kinetics of damage accumulation in aircraft alloy D16T and steel 15HSND for symmetric cycle (stress-controlled test). The evaluation of the material damage on the basis of an analysis of the elasticity modulus variation for different values of the loading cycle amplitudes was carried out. Experimental damage accumulation curves were obtained. The "healing parameter" for given loading regime of the materials under study was determined. This parameter can be used for an approximate estimation of the total damage value for the full loading cycle. The concept of initial and critical damage parameter is considered and analytical dependencies for their determination were presented. A method for durability calculation, based on the results of the carried out studies, was proposed. The error of this method in relation to the experimental data was estimated.

References

  1. Gusenkov, A.P. (1979), Prochnost' pri izotermicheskom i neizotermicheskom malotsiklovom nagruzhenii, Nauka, Moscow, Russia.
  2. Makhutov, N.A. (1981), Deformatsionnye kriterii razrusheniya i raschet elementov konstruktsii na prochnost', Mashinostroenie, Moscow, Russia.
  3. Romanov, A.N. (1988), Razrushenie pri malotsiklovom nagruzhenii, Nauka, Moscow, Russia.
  4. Gokhfel'd, D.A. and Sadakov, O.S. (1984), Plastichnost' i polzuchest' elementov konstruktsii pri povtornykh nagruzheniyakh, Mashinostroenie, Moscow, Russia.
  5. Frolov, K.V. (ed) (1987), Problemy prochnosti, dolgovechnosti i nadezhnosti produktsii mashinostroeniya. Raschety prochnosti elementov konstruktsii pri malotsiklovom nagruzhenii. Moscow, Russia.
  6. Makhutov, N.A., Vorob'ev, A.Z. and Gadenin, M.M. (1983), Prochnost' konstruktsii pri malotsiklovom nagruzhenii, Nauka, Moscow, Russia.
  7. Rabotnov, Y.N. (1966), Polzuchest' elementov konstruktsii, Nauka, Moscow, Russia.
  8. Kachanov, L.M. (1986), Introduction to continuum damage mechanics, Kluwer academic publishers, Bruukline, USA.
  9. Khan, S., Wilde, F., Beckmann, F. and Mosler, J. (2012), Low cycle fatigue damage mechanism of the lightweight alloy AL2024, Int. J. of Fatigue, vol. 38, pp. 92-99, DOI: https://doi.org/10.1016/j.ijfatigue.2011.11.009
  10. Bonora, N. and Pirondi, A. (2003), Modeling ductile damage under fully reversed cycling, Computational Materials Science, vol. 16, pp. 129-141.
  11. Mashayekhi, M., Ziaei-Rad, S., Parvizian, J., Niklewicz, J. and Hadavinia, H. (2007), Ductile crack growth based on damage criterion: experimental and numerical studies, Mechanics of materials, vol. 39, pp. 623-636.
  12. Tang, C.Y., Shen, W., Peng, L.H. and Lee, T.C. (2002), Characterization of isotropic damage using double scalar variables, International Journal of Damage Mechanics, vol. 11, pp. 3-25.
  13. Bonora, N. and Newaz, G.M. (1998), Low cycle fatigue life estimation for ductile metals using a nonlinear continuum damage mechanics model, Int J Solids Struct, vol. 16, pp.1881-1894.
  14. Berezin, A.V. and Kozinkina, A.I. (2002), Fizicheskie modeli i metody otsenki nakopleniya povrezhdenii v tverdykh telakh, Problemy mashinostroeniya i nadezhnosti mashin, vol. 3, pp. 115-121.
  15. Bonora, N., Ruggiero, A, Esposito, L., Gentile, D. (2006), CDM modeling of ductile failure in ferritic steels: assessment of the geometry transferability of model parameters, Int. J. of Plasticity, vol. 22, pp. 2015-2047.
  16. Tymoshenko, O.V., Koval, V.V. and Kravchuk, R.V. (2011), Vplyv vydu napruzhenoho stanu na krytychne znachennia poshkodzhuvanosti dlia konstruktsiinykh materialiv pry pruzhno-plastychnomu deformuvanni, Vestnik Nacional'nogo tehnicheskogo universiteta “Kievskij politehnicheskij institute”. Serija mashinostroenie, vol. 63, pp. 103-107.
  17. Grabovskii, A.P., Timoshenko, A.V., Khalimon, A.P. (2005), O kinetike deformatsionnogo nakopleniya povrezhdenii v konstruktsionnykh materialakh pri peremennom deformirovanii, Progressivnye tekhnologii i sistemy mashinostroeniya. Mezhdunarodnyi sbornik nauchnykh trudov. , vol. 30, pp.75-80.
  18. Lemaitre, J., Desmorat, R., (2005), Engineering Damage Mechanics. Ductile, Creep, Fatigue and Brittle Failures, Springer-Verlag, Berlin, Heidelberg, DOI: https://doi.org/10.1007/b138882

Published

2017-10-26

How to Cite

[1]
V. Koval, “Damage of structural materials at low cycle loading conditions”, Mech. Adv. Technol., no. 2(80), pp. 52–58, Oct. 2017.

Issue

Section

Original study