DOI: https://doi.org/10.20535/2521-1943.2017.80.111878

Performance increase of ultrasound liquid sprayers

А. Zilinskyi, V. Fesich, О. Luhovskyi, А. Lavrynenkov

Abstract


The paper disolved to a problem of creation of ultrasonic resonance systems for realization of ultrasonic sputtering method in a thin layer. The physical model of such a spray method is considered in detail and the possibilities of increasing the productivity of such sprayers are shown while maintaining the high quality of the resulting aerosol. The method of calculating the geometric sizes of the acoustic resonant system of an ultrasonic spray with a tubular vibrator is proposed. The results of the simulation and experimental research of the ultrasonic sprayer, which confirm the accuracy of the proposed method for engineering calculations, are presented. The way of further possible increase of productivity of the ultrasonic spray with a tubular vibrator excited on the basic radial vibration mode is shown.

Keywords


ultrasonic resonance system; method of calculation of oscillatory systems; Fine aerosol; Tubular vibrator; Piezoelectric drive for longitudinal displacements.

References


Pazhi D.G. and Galustov V.S. (1984), Osnovy tekhniki raspyleniya zhidkostei [Bases liquid spraying technique], Khimiya, Moskow, Russia.

Khmelev V.N., Shalunov A.V. and Shalunova A.V. (2010), Ul'trazvukovoe raspylenie zhidkostei: monografiya [Ultrasonic Sputtering of Liquids: monograph], Alt. gos. tekhn. un-ta, Biisk, Russia.

Eknadiosyants O.K. (1970), Fizicheskie osnovy ul'trazvukovoi tekhnologii [Physical basis of ultrasound technology], in Rozenberg L.D. (ed.), Nauka, Moskow, Russia.

Lugovskoi O.F. and Chukhraev N.V. (2007), Ul'trazvukovaya kavitatsiya v sovremennykh tekhnologiyakh: monografiya [Ultrasonic cavitation in modern technologies: monograph], Kiev, Ukraine.

Avvaru, B., Patil, M., Gogate, P. and Pandit, A. (2006). Ultrasonic atomization: Effect of liquid phase properties. Ultrasonics, 44(2), pp.146-158.

Juan A., Gallego Juarez and Karl F. Graff (2014), Power Ultrasonics: Applications of High-intersity Ultrasound. Elsevir, pp. 1166.

Barba, A., d’Amore, M., Cascone, S., Lamberti, G. and Titomanlio, G. (2009). Intensification of biopolymeric microparticles production by ultrasonic assisted atomization. Chemical Engineering and Processing: Process Intensification, 48(10), pp.1477-1483.

Bittner, B. and Kissel, T. (1999). Ultrasonic atomization for spray drying: a versatile technique for the preparation of protein loaded biodegradable microspheres. Journal of Microencapsulation, 16(3), pp.325-341.

Dalmoro, A., Barba, A., Lamberti, G. and d’Amore, M. (2012). Intensifying the microencapsulation process: Ultrasonic atomization as an innovative approach. European Journal of Pharmaceutics and Biopharmaceutics, 80(3), pp.471-477.

Freitas, S., Merkle, H. and Gander, B. (2004). Ultrasonic atomisation into reduced pressure atmosphere—envisaging aseptic spray-drying for microencapsulation. Journal of Controlled Release, 95(2), pp.185-195.

Lyashok A.V. (2012), "The method of calculation ultrasonic disperser for spraying a thin layer", Vibration in engineering and technology, vol. 1(65), pp. 15-20.

Shalunov A.V. and Khmelev V.N. (2005), "Ultrasonic nebulizer of viscous liquids", Sovremennye problemy radioelektroniki [Modern problems of radio electronics], Krasnoyarsk, Russia, pp. 426-429.

Cheng L. and Cross W.G. (1975), Production of Single Liquid Drops of controlled Size and Velosity, Rev. Sci. Instrum, vol. 46, № 3, pp. 263 – 265.

Charuau, J., Tierce, P. and Birocheau, M. (1994). 16.P.11 The ultrasonic generation of droplets for the production of submicron size particles. Journal of Aerosol Science, 25, pp.233-234.

Rajan, R. and Pandit, A. (2001). Correlations to predict droplet size in ultrasonic atomisation. Ultrasonics, 39(4), pp.235-255.

Lugovskoi A.F., Chornyi V.I., Chukhraev N.V. and Movchanyuk A.V. (2000), “Vozmozhnosti polucheniya melkodispersnogo aerozolya v meditsinskikh ingalyatorakh”, Journal of mechanical engineering, vol. 38, pp. 163-168.

Khmelev V.N., Slivin A.N., Barsukov R.V., Tsyganok S.N. and Shalunov A.V. (2006), Controlling the process of ultrasonic spraying of viscous liquids, Izvestija Tulskogo gosudarstvennogo universiteta, vol. 8, pp. 12-19.

Liashok A.V. and Luhovskyi O.F. (2011), Ultrasonic liquid spraying in mechatronic systems of artificial microclimate, Industrial hydraulics and pneumatics, vol. 4(34), pp. 20-25.

Rajan, R. and Pandit, A. (2001). Correlations to predict droplet size in ultrasonic atomisation. Ultrasonics, 39(4), pp.235-255.

Marchuk L.V., Prokopenko G.V., Lugovskoi A.F. and Grishko I.A. (2010), Inactivation of microorganisms in a high intensity ultrasound field, Naukovi pratsi Donetskoho natsionalnoho tekhnichnoho universytetu. Seriia: Hirnycho-elektromekhanichna [Scientific works of Donetsk National Technical University. Series: Mining and Electromechanical], vol. 22(195), pp. 195-206.

Dobre, M. and Bolle, L. (2002). Practical design of ultrasonic spray devices: experimental testing of several atomizer geometries. Experimental Thermal and Fluid Science, 26(2-4), pp.205-211.

Kumabe D. (1985), Vibrating cutting, in Maslennikova L. (tr.), Portnova I.I. (ed.), Belova V.V. (ed.), Mashinostroenie, Moskow, Russia.

Timoshenko S.P., Yang D.Kh., Uiver U. (1985), Fluctuations in Engineering, in Korneichuka L.G. (tr.), Grigolyuka E.I. (ed.), Mashinostroenie, Moskow, Russia.


GOST Style Citations


  1. Пажи Д.Г. Основы техники распыления жидкостей / Д.Г. Пажи, В.С. Галустов. – М.: Химия, 1984. – 256 с.
  2. Хмелев В.Н. Ультразвуковое распыление жидкостей: монография / В.Н. Хмелев, А.В. Шалунов, А.В. Шалунова. – Бийск: Изд-во Алт. гос. техн. ун-та, 2010. – 250 с.
  3. Экнадиосянц О.К. Получение аэрозолей / О.К. Экнадиосянц. – В кн.: Физические основы ультразвуковой технологии. Под ред. Л.Д. Розенберга. – М.: Наука, 1970. – С. 337 – 395.
  4. Луговской А.Ф. Ультразвуковая кавитация в современных технологиях: монография / А.Ф. Луговской, Н.В. Чухраев. – К. 2007. – 244 с. – ISBN 966-594-927-6.
  5. Avvaru, B., Gogate, P.R., Patil, M.N., Pandit, AB., 2006. Ultrasonic atomization: effect ofliq­ uid phase properties. Ultrasonics 44 (2), 146-158. http://dx.doi.org/10.1016/j. ultras.2005.09.003
  6. Juan A. Gallego – Juarez, Karl F. Graff. Power Ultrasonics: Applications of High-intersity Ultrasound. Elsevir, 2014, 1166
  7. Barba, A.A, D'Amore, M., Cascone, S., Lamberti, G., Titorn.anlio, G., 2009. Intensification of biopolymeric microparticles production by ultrasonic assisted atomization. Chem. Eng. Proc. 48, 1475--1481.  http://dx.doi.org/10.1016/j.cep.2009.08.004
  8. Bittner, B., Kissel, T., 1999. Ultrasonic atomization for spray drying:a versatile technique for the preparation of protein loaded biodegradable microspheres. J Microencapsulation 16 (3), 325--341. http:l/dx.doi.org/10.1080/026520499289059.
  9. Dalmoro, A., Barba, AA., Lamberti, G., d'Amore, M., 2012. Intensifying the microencapsulation process: ultrasonic atomization as an innovative approach. Eur. J. Phann. Biophann. 80, 471- 477. http://dx.doi.org/10.1016/j.ejpb.2012.01.006
  10. Forde, G., Coomes, A., Gillam, Freitas, S., Merkle, H., Gander, B.. 2004. Ultrasonic atomisation into reduced pressure atmosphere – envisaging aseptic spray – drying for microencapsulation. J. Control. Release 95, 185-195. http://dx.doi.org/10.1016/j.jconrel.2003.11.005
  11. Ляшок А.В. Методика розрахунку ультразвукового диспергатора для розпилення в тонкому шарі / А.В. Ляшок // Всеукраїнський науково-технічний журнал «Вібрації в техніці та технологіях».– Вінниця, 2012. – Вип. 1(65). – C. 15 – 20.
  12. Шалунов, А.В. Ультразвуковой распылитель вязких жидкостей / А.В. Шалунов, В.Н. Хмелев // Современные проблемы радиоэлектроники. – Красноярск, ИПЦ КГТУ, 2005. – С. 426 – 429.
  13. Cheng L. Production of Single Liquid Drops of controlled Size and Velosity. / L. Cheng, W.G. Cross // Rev. Sci. Instrum. – 1975 – V. 46 № 3. – Р. 263 – 265.
  14. Charuau J. The ultrasonic generation of droplets for the production of submicron size particles / J. Charuau, P. Tierce, M.Birocheau // J. Aerozol Sci.– 1994.– 25, Suppl. 1.– P. 232–234.
  15. Rajan R. Correlations to predict droplet size in ultrasonic atomisation / R. Rajan, A.B. Pandit // Ultrasonics.– 2001.– 39, N 4.– P. 235 – 255.
  16. Луговской А.Ф. Возможности получения мелкодисперсного аэрозоля в медицинских ингаляторах /А.Ф. Луговской, В.И. Чорный, Н.В. Чухраев А.В. Мовчанюк  // Вестник Национального технического универсистета Украины „КПИ”. Серия машиностроение. – Киев, – 2000. – Вып.38. – С. 163–168.
  17. Хмелев В.Н. Управление процессом ультразвукового распыления вязких жидкостей / В.Н. Хмелев, А.Н. Сливин, Р.В. Барсуков, С.Н. Цыганок, А.В. Шалунов // Известия Тульского государственного университета. – Тула, ТулГУ, 2006. – №. 8. – С. 12 – 19.
  18. Ляшок А.В. Ультразвукове розпилення рідини у мехатронних системах штучного мікроклімату / А.В. Ляшок, О.Ф. Луговський // Всеукраїнський науково-технічний журнал «Промислова гідравліка і пневматика» – Вінниця, 2011. – №4 (34)’2011. – С. 20 – 25
  19. Rajan, R., Pandit, A.B., 2001. Correlations to predict droplet size in ultrasonic atomization. Ultrasonics 39, 235--255. http://dx.doi.org/10.1016/S0041-624X(01)00054-3
  20. Марчук Л.В. Инактивация микроорганизмов в ультразвуковом поле высокой интенсивности / Л.В. Марчук, Г.В. Прокопенко, А.Ф. Луговской, И.А. Гришко // Наукові праці Донецького національного технічного університету. Серія: Гірничо-електромеханічна. – Донецьк, 2010. – Вип. 22(195). – С. 195 – 206.
  21. Dobre, M., Bolle, L., 2002. Practical design of ultrasonic spray devices: experimental testing of several atomizer geometries. Exp. Thermal Fluid Sci. 26, 205-211. http://dx.doi.org/10.1016/S0894-1777(02)00128-0
  22. Кумабэ Д. Вибрационное резание / Пер. с яп. Л.Масленникова / Под ред. И.И.Портнова, В.В.Белова.- М.: Машиностроение, 1985.- 424 с.
  23. Тимошенко С.П., Янг Д.Х., Уивер У. Колебания в инженерном деле / Пер. с англ. Л.Г Корнейчука / Под ред. Э.И.Григолюка.- М.: Машиностроение, 1985.- 424 с.