THE INFLUENCES OF THE EXPLOSIVES BODY PAPER THICKNESS TO DEGREE OF DEFORMATION OF HOME-MADE BOMB DEFUSE CONTAINER

Ю. М. Сидоренко, Я. О. Мариненко

Abstract


In accordance with regulations of International civil aviation organization, all aircrafts witch transport 30 and more passengers must have special device to defuse home-made explosive bombs. Numerical methods of computer modeling are used for construct that devises more and more. Quantity of these methods depends on adequacy level of created mathematical model to real physical process. In this article questions of design adequacy mathematical model of deforming process of special device body under
inner pressure of home-made bomb explosion are discussed. Mathematical model adequacy is controlled by comparison modeling and experimental results. Computer program "ANSYS/LS-DYNA" was used for mathematical researching. Because of mathematical model have to consist as gas part (detonation product, air) as metal part (defuse home-made explosive bombs devise body) it was based on Lagrange-Euler method of describing behavior of different materials under shock. Expansion of detonation products was
described by JWL equation of state. States of metal defuse home-made explosive bombs devise body and paper bomb body were described by elastic-plastic material model with kinematic hardening plasticity "PLASTIC-KINEMATIC". In order to find values of that model parameters for the paper bomb body spatial experiments were carried out.
Conclusions: Mode of deformation definition method of defuse home-made explosive bombs devise was created. That method bases on adequacy mathematical model which describes home-made bomb explosion process which places inside of devise align.
Increasing of paper bomb body thickness to 16 mm leads to decreasing plastic deformation of outer surface of defuse home-made explosive bombs devise body by straight line low with a coefficient 0,002 1/mm and decreasing level expansion that surface up to 1mm. This decreasing is equal to 20% of maximum level expansion special device body when was exploded inside of than high explosive without paper body

Keywords


explosion; explosive-technical expertise; mathematic modeling explosive process; detonation; TNT; LS-DYNA; homemade explosive device; explosive deformation; explosive crashing; JWL; PLASTIC-KINEMATIC

References


1. ICAO Annex 6. Part 1. Amendment.

2. Kolpakov V.I., Babkin А.V., Ladov S.V., Mikhaylin А.I., Оrlov А.V., Sil`nikov М.V. Chislennaya otsenka effektivnosti deystviya jidkostnyh lokalizatorov vzryva v dvuhmernoy postanovke, Dvoynye tehnologii, 2000, no 2, pp. 5-10.

3. Sil`nikov М.V., Mikhaylyn А.I., Orlov А.V., Sadyrin А.I. Modelirovanie deformatsii jidko-emkostnogo elastichnogo konteynera pri vzryve zaryada VV: Trudy Vtoroy vserossiyskoy nauchno-prakticheskoy konferentsii (Aktualnye problemy zatschity i bezopasnosti). St-Petersburg: NPO SМ, 1999, Vol. II, pp.190–198.

4. Voytenko S.D., Vinglovs`kiy А.О., Sydorenko Yu.М. Eksperymentalni doslidgennya protsessu deformuvannya korpusiv konteyneriv dlya zneshkodgennya samorobnyh vybukhovyh prystroiv, Journal of Mechanical Engineering of NTUU «KPI», 2010, no 58, pp. 147-154.

5. www.ansys.com.

6. http://www.ls-dyna.ru/

7. www.lstc.com

8. LS-DYNA 971. Keyword user's manual. Livermore software technology corporation (LSTC), 2007, Vol. 1, 2206 p.

9. John O. Hallquist. LS-DYNA. Theory manual. Livermore Software Technology Corporation, 2006, March, 680 p.

10. Muyzemnek А.Yu., Bogach А.А. Matematicheskoe modelirovanie protsessov udara i vzryva v programme LS-DYNA (Uchebnoe posobie). Penza: Informatsionno-izdatel`skiy tsenter PGU, 2005, 106 p.

11. Rudakov К.М. Chiselni metody analizu v dynamitsi ta mitsnosti konstruktsiy (Navch. posibnyk). Кyiv: NTUU "КPІ", 2007. 379 p.

12. Аndreev S.G., Babkin Yu.А., Baum F.А. i dr. Fizika vzryva: Pod red. Оrlenko L.P. Мoscow: FIZMATLIT, 2002, Vol.1, 832p.

13. Dobratz B.M., Crawford P.C. LLNL Explosive Handbook [Properties of Chemical Explosives and Explosive Simulants]. Livermore: California, 1985, 541 p.

14. Kolpakov V.I., Ladov S.V., Rubtsov А.А. Matematicheskoe modelirovanie funktsionirovaniya kumulyativnyh zaryadov [Метоd. ukazaniya]. Мoscow: Izd-vо МGТU iм. N.E.Baumana, 1998, 38 p.

15. Dremin А.N., Savrov S.V., Тrofimov V.S., Shvetsov К.К. Detonatsionnye volny v kondensirovanyh sredah. Мoscow: Nauka, 1970, 172 p.

16. Маrochnik staley i splavov: http://www.splav.kharkov.com.

17. Official site ТОV "SPETSMETALLSERVIS": http://s-metall.com.ua.

18. Spravochnik mettalista: http://spmet.vztk.org/mr_kon_leg_38xn3mfa.php.

19. Метаllurgicheskiy portal: http://www.metalpro.ru.

20. Selivanov V.V., Solov`ev V.S., Sysoev N.N. Udarnye i detonatsionnye volny. [Метоdy issledovaniya]. Мoscow: Izd-vo МGU, 1990, 264 p.

21. Orlov B.V., Larman E.K., Malikov V.G. Ustroystvo i proektirovanie stvolov artilleriyskih orudiy. Мoscow: Маshinostroenie, 1976, 432 p.

22. Larman E.К. Кurs аrtillerii. [Osnovaniya ustroystva artilleriyskih orudiy]. Мoscow: VAIA iм. Dzerginskogo, 1956. Vol. 1, 540 p.


GOST Style Citations


1. ICAO Annex 6. Part 1. Amendment.

2. Колпаков В.И., Бабкин А.В., Ладов С.В., Михайлин А.И., Орлов А.В., Сильников М.В. Численная оценка эффективности действия жидкостных локализаторов взрыва в двухмерной постановке // Двойные технологи. – 2000. – №2. – С.5-10.

3. Сильников М.В., Михайлин А.И., Орлов А.В., Садырин А.И. Моделирование деформации жидко-емкостного эластичного контейнера при взрыве заряда ВВ // Актуальные проблемы защиты и безопасности: Труды Второй
всероссийской научно-практической конференции: Том II. – Санкт-Петербург: НПО СМ, 1999.– С.190–198.


4. Войтенко С.Д., Вінгловський А.О., Сидоренко Ю.М. Експериментальні дослідження процесу деформування корпусів контейнерів для знешкодження саморобних вибухових пристроїв // Вісник НТУУ "КПІ". Серія "Машинобудування". – 2010. – №58. – С.147-154.

5. www.ansys.com.

6. http://www.ls-dyna.ru/

7. www.lstc.com

8. LS-DYNA 971. Keyword user's manual. Livermore software technology corporation (LSTC), 2007. – Volume 1. – 2206p.

9. John O. Hallquist. LS-DYNA. Theory manual. Livermore Software Technology Corporation. March, 2006. – 680p.

10. Математическое моделирование процессов удара и взрыва в программе LS-DYNA: учебное пособие / А.Ю. Муйземнек, А.А. Богач – Пенза: Информационно-издательский центр ПГУ, 2005. – 106 с.

11. Рудаков К.М. Чисельні методи аналізу в динаміці та міцності конструкцій: Навч. посібник. – К.: НТУУ "КПІ", 2007. – 379 с.: іл.

12. Физика взрыва / С.Г. Андреев, Ю.А. Бабкин, Ф.А. Баум и др. / Под ред. Орленко Л.П. – Изд. 3-е, перераб. – М.: ФИЗМАТЛИТ, 2002. – в 2 т. Т.1. – 832 с.

13. LLNL Explosive Handbook. Properties of Chemical Explosives and Explosive Simulants / B.M. Dobratz., P.C. Crawford. – Livermore. – California, 1985. – 541 p. 

14. Колпаков В.И., Ладов С.В., Рубцов А.А. Математическое моделирование функционирования кумулятивных зарядов: Метод. указания. – М.: Изд-во МГТУ им. Н.Э.Баумана, 1998. – 38 с., ил.

15. Дремин А.Н., Савров С.В., Трофимов В.С., Шведов К.К. Детонационные волны в конденсированных средах. – М.: Наука, 1970. – 172с.

16. Марочник сталей и сплавов: http://www.splav.kharkov.com.

17. Офіційний сайт ТОВ "СПЕЦМЕТАЛЛСЕРВИС".: http://s-metall.com.ua.

18. Справочник металлиста: http://spmet.vztk.org/mr_kon_leg_38xn3mfa.php.

19. Металлургический портал: http://www.metalpro.ru.

20. Селиванов В.В., Соловьев В.С., Сысоев Н.Н. Ударные и детонационные волны. Методы исследования. - М.: Изд-во МГУ, 1990. – 264с. 

21. Орлов Б.В., Ларман Э.К., Маликов В.Г. Устройство и проектирование стволов артиллерийских орудий. – М.: Машиностроение, 1976. – 432с.

22. Ларман Э.К. Курс артиллерии. Том 1. Основания устройства артиллерийских орудий. – М.: ВАИА им. Дзержинского, 1956. – 540с.





DOI: http://dx.doi.org/10.20535/2305-9001.2012.65.33936

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Mechanics and Advanced Technologies