INFLUENCE OF TEMPERATURE DEFORMATIONS HYDROSTATIC SUPPORTS ON THE OUTPUT ACCURACY RATES OF SPINDLE KNOT

Д Ю Федориненко, С П Сапон, С В Бойко

Abstract


Purpose of work is study the influence of temperature deformations of hydrostatic spindle supports on output accuracy rates of turning machine spindle knot. Design/methodology/approach. To assess the accuracy rates spindle knot uses integrated indexes: the trajectory of spatial movement axis spindle and accuracy of samples processed. Assessment of the impact of temperature deformations spindle support surfaces on the value of lubricating layer between the conjugate bearing surfaces by using CAE system CosmosWorks. Order to receive a trajectories of rotation displacement Δx, Δy spindle measured non-contact method using laser triangulation sensors. Measuring the roundness of the processed surfaces of samples was performed on roundness meter model 289. Findings. With increasing temperature and decrease in oil pressure in the hydrostatic spindle supports increasing displacement of the center spindle trajectory relative to its starting position and increasing deviation from roundness of machined surfaces of the samples. When machining a decrease spindle axis deviation, due to opposition from the temperature displacement power cut. Influence of temperature on oil mean square deviation of trajectories spindle negligible. With increasing pressure to 3MPa increase the oil temperature of hydrostatic support on precision mold machined surfaces are not affected. Originality/value. Identified patterns are essential to reducing of the influence thermal deformation on the accuracy of processing. Prediction of the value and character changes thermal deformation of the machine tool is an effective way to improve the accuracy machining.

Keywords


spindle knot; precision; hydrostatic support; thermal deformation; the trajectory; roundness; pressure; temperature.

References


Bushuev V.V. Sabirov F.S. Vestnik MGTU Stankin, 2010. № 1. рр. 24–30.

Zhu Rui., Dai Shijie, Zhu Yonglu, Wu Xinye, Guo Yinbiao. Thermal error analysis and error prediction modeling on a machine tool. Proceedings of the 2008 IEEE IEEM. р. 2056-2060.

Push A.V. Shpindel'nye uzly: Kachestvo i nadezhnost'. [Spindle knots: quality and reliability]. Moscow: Mashinostroenie, 1992, 228p.

Igor Sevostianov. On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity. Mechanics of Materials 45 (2011) pp.20–33.

Jurkevich V.V. Ustrojstvo kompensacii teplovyh i silovyh pogreshnostej tokarnogo stanka [The device offset heat and power errors of turning machine] Patent Rossijskoj federacii no 2438830 A. 10.01.2012.

Fedorinenko D.Y., Sapon S.P. Naukovі notatki. Mіzhvuzіvs'kij zbіrnik. [Scientific notes. Interuniversity collection]. 2011. Ed. 31 рр. 396−402.

Strutins'kij V.B., Fedorinenko D.Y. Statistichna dinamіka shpindel'nih vuzlіv na gіdrostatichnih oporah [Statistical dynamics of spindle units for hydrostatic supports]. Nіzhin: "Aspekt-Polіgraf", 2011, 464p.

Bushuev V.V. Gidrostaticheskaja smazka v stankah [Hydrostatic lubrication in machine tools]. Moscow: Mashinostroenie, 1989, 176p.

Trianguljacionnye lazernye datchiki. Serija RF603. Rukovodstvo po jekspluatacii. Minsk: «RIFTEK», 2011, 46р.

Stepnov M.N. Statisticheskie metody obrabotki rezul'tatov mehanicheskih ispytanij: Spravochnik. [Statistical methods for processing the results of mechanical testing]. Moscow: Mashinostroenie, 1985, 232p.


GOST Style Citations


1. Бушуев В.В. Направления развития мирового станкостроения/ В.В.Бушуев, Ф.С.Сабиров // Вестник МГТУ Станкин, 2010. № 1. с. 24–30.


2. Zhu Rui. Thermal error analysis and error prediction modeling on a machine tool./Zhu Rui, Dai Shijie, Zhu Yonglu, Wu Xinye, Guo Yinbiao// Proceedings of the 2008 IEEE IEEM. р. 2056-2060.


3. Пуш А.В. Шпиндельные узлы: Качество и надежность./ А.В.Пуш – М.: Машиностроение, 1992. – 228 с.


4. Igor Sevostianov. On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity. Mechanics of Materials 45 (2011) 20–33.


5. Пат. 2438830 Российская федерация, МПК B23B25/06. Устройство компенсации тепловых и силовых погрешностей токарного станка/ Юркевич В.В.; заявитель и патентообладатель ФГБОУ ВПО МГТУ "СТАНКИН". – № 2010132735/02, заяв. 05.08.2010; опубл. 10.01.2012, Бюл. №1. – 8 с.


6. Федориненко Д.Ю. Вплив експлуатаційних параметрів на характеристики гідростатичних опор шпинделя/ Д.Ю. Федориненко, С.П. Сапон // Наукові нотатки. Міжвузівський збірник. – 2011. − Вип. 31. − С. 396−402.


7. Струтинський В.Б. Статистична динаміка шпиндельних вузлів на гідростатичних опорах / В.Б.Струтинський, Д.Ю.Федориненко. – Ніжин: "Аспект-Поліграф", 2011. – 464 с.


8. Бушуев В.В. Гидростатическая смазка в станках / В.В. Бушуев — М.: Машиностроение, 1989. — 176 с.


9. Триангуляционные лазерные датчики. Серия РФ603. Руководство по эксплуатации. − Мн.: ООО «РИФТЭК», 2011. – 46 с.


10. Степнов М.Н. Статистические методы обработки результатов механических испытаний: Справочник./ М.Н.Степнов. − М.: Машиностроение, 1985. − 232 с.





DOI: http://dx.doi.org/10.20535/2305-9001.2013.68.33979

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Mechanics and Advanced Technologies