DOI: https://doi.org/10.20535/2305-9001.2012.66.38892

INFLUENCE OF RHEOLOGICAL FEATURES OF BEHAVIOUR OF THE POROUS DAMAGED MATERIALS ON THEIR INDENTATION PROCESS

М. Б. Штерн, А. В. Кузьмов

Abstract


The purpose of this work was research of the main features of behavior of the porous and damaged powder based materials at indentation process. The mechanical behavior of such materials is characterized by a loosening at purely shift tension and asymmetry of a response to stretching and compression.

The rheological model of plasticity of porous materials with imperfect interpartial contacts which was earlier proposed one of authors is considered. Based on such theory of plasticity for porous media with distributed damages using finite element computer simulation the deformed state near spherical and conical indenter for different mechanical properties of indented material and different  friction conditions between indenter and porous body has been studied.

Porosity distribution near indenter depending on properties of porous body and friction conditions between indenter and porous body has been analyzed. Load profiles as a function of dilatancy tendency and contact friction has been shown. Development of bulk around indenter and its shape has been investigated

Keywords


indentation; plasticity of compressible continuum; spherical indenter; dilatancy

References


1. Hertz H. Gesammelte Werke, т. 1, стр. 179-195, 1895.

2. Lur'e A.I. Prostranstvennye zadachi teorii uprugosti. M.: GTTI, 1955. 408 p.

3. Sneddon I.N. The relationship between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Engin. Sci. 1965. V. 3. No 1. P. 47-57

4. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992. V. 7. No 6. P. 1564-1583

5. Oliver W.C., Pharr G.M. Measurment of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004. V. 19. No 1. P. 3-20

6. Field J.S., Swain M.W. A Simple Predictive Model for Spherical Indentation. J. Mater. Res. 1993. V. 8. P. 297-306

7. Field J.S., Swain M.W. Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 1995. V. 10. No 1. P. 101-112

8. Galanov B.A., Grigor'ev O.N., Mil'man Ju.V., Ragozin I.P. Opredelenie tverdosti i modulja Junga po glubine vnedrenija piramidal'nogo indentora. Problemy prochnosti. 1983. No 11. S. 93-96.

9. Milman Yu.V., Galanov B.A., Chugunova S.I. Plasticity characteristic obtained through hardness measurement. Overview 107. Acta Metall. Mater. 1993. V. 41. No 9. P. 2523-2532

10. Галанов Б.А., Мильман Ю.В., Чугунова С.И., Гончарова И.В. Исследование механических свойств высокотвердых материалов методом индентирования. Сверхтвердые материалы. 1999. No 3. С. 25-38.

11. KogutL., KomvopoulusR. Analysisofthesphericflindentationcycleforelastic-perfectlyplasticsolid.J. Mater. Res. 2004. V. 19. No 12. P. 3641-3653

12. Dub S., Novikov N. Milman Y. The transition from elastic to plastic behavior in an Al-Cu-Fe quasicrystal studied be cyclic nanoindentation. Phil. Mag. 2002. V. 82. P. 2161-2172

13. Antunes J.M., Fernandes J.V., Menezes L.F. A new approach for reverse analyses in depth-sensing indentation using numerical simulation. Acta Mater. 2007. V. 55. P. 69-81

14. Ma D., Ong C.V., Wong S.F., He J.J. New method for determining Young`s modulus by non-ideally sharp indentation. J. Mater. Res. 2005. V. 20. P. 1498-1506

15. Venckatesh T.A., Van Vliet K.J., Gianncoponlos A.E., Suresh S. Determination of elasto-plastic properties de instrumented sharp indentation: guidelines for property extraction. Scripta. Mater. 2000. V. 42. No 9. P. 833-839

16. Li M., Chen W.M., Liang N.-G., Wang L.D. A numerical study of indentation using indenters of different geometry. J. Mater. Res. 2004. V. 19. No 1. P. 73-78

17. Sreeranganathan A., Golhale A., Tamirisakandala S. Determination of local constitutive properties of titanium alloy matrix in boron-modified titanium alloy using spherical indentations. Scripta. Mater. 2008. V. 58. No 1. P. 114-117

18. Skorohod V.V., Reologicheskie osnovy teorii spekanija. –Kiev, Nauk. Dumka, 1972. – 151 p.

19. Shtern M.B. Razvitie teorii pressovanija poroshkov i teorii plastichnosti poristyh tel. Poroshkovaja metallurgija No9 – 1992


GOST Style Citations


1.            Hertz H. Gesammelte Werke, т. 1, стр. 179-195, 1895.

 

2.            Лурье А.И.  Пространственные задачи теории упругости. М.: ГТТИ, 1955. 408 с.

 

3.            Sneddon I.N. The relationship between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile // Int. J. Engin. Sci. 1965. V. 3. № 1. P. 47-57

 

4.            Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments // J. Mater. Res. 1992.  V. 7. № 6. P. 1564-1583

 

5.            Oliver W.C., Pharr G.M. Measurment of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology // J. Mater. Res. 2004.  V. 19. № 1. P. 3-20

 

6.            Field J.S., Swain M.W. A Simple Predictive Model for Spherical Indentation // J. Mater. Res. 1993.  V. 8.  P. 297-306

 

7.            Field J.S., Swain M.W. Determining the mechanical properties of small volumes of material from submicrometer spherical indentations // J. Mater. Res. 1995.  V. 10. № 1.  P. 101-112

 

8.            Галанов Б.А., Григорьев О.Н., Мильман Ю.В., Рагозин И.П. Определение твердости и модуля Юнга по глубине внедрения пирамидального индентора // Проблемы прочности. 1983. № 11. С. 93-96.

 

9.            Milman Yu.V., Galanov B.A., Chugunova S.I. Plasticity characteristic obtained through hardness measurement. Overview 107 // Acta Metall. Mater. 1993. V. 41. № 9.  P. 2523-2532

 

10.         Галанов Б.А., Мильман Ю.В., Чугунова С.И., Гончарова И.В. Исследование механических свойств высокотвердых материалов методом индентирования // Сверхтвердые материалы. 1999. № 3. С. 25-38.

 

11.         Kogut L., Komvopoulus R. Analysis of the sphericfl indentation cycle for elastic-perfectly plastic solid // J. Mater. Res. 2004. V. 19. № 12. P. 3641-3653

 

12.         Dub S., Novikov N. Milman Y. The transition from elastic to plastic behavior in an Al-Cu-Fe quasicrystal studied be cyclic nanoindentation // Phil. Mag. 2002. V. 82. P. 2161-2172

 

13.         Antunes J.M., Fernandes J.V., Menezes L.F. A new approach for reverse analyses in depth-sensing indentation using numerical simulation // Acta  Mater. 2007. V. 55.  P. 69-81

 

14.         Ma D., Ong C.V., Wong S.F., He J.J. New method for determining Young`s modulus by non-ideally sharp indentation// J. Mater. Res. 2005.  V. 20.  P. 1498-1506

 

15.         Venckatesh T.A., Van Vliet K.J., Gianncoponlos A.E., Suresh S. Determination of elasto-plastic properties de instrumented sharp indentation: guidelines for property extraction // Scripta. Mater. 2000. V. 42. № 9.  P. 833-839

 

16.         Li M., Chen W.M., Liang N.-G., Wang L.D. A numerical study of indentation using indenters of different geometry // J. Mater. Res. 2004.  V. 19. № 1.  P. 73-78

 

17.         Sreeranganathan A., Golhale A., Tamirisakandala S. Determination of local constitutive properties of titanium alloy matrix in boron-modified titanium alloy using spherical indentations // Scripta. Mater. 2008. V. 58. № 1.  P. 114-117

 

18.         В.В. Скороход, Реологические основы теории спекания. –Киев, Наук. Думка, 1972. – 151 с.

 

19.         Штерн М.Б. Развитие теории прессования порошков и теории пластичности пористых тел //Порошковая металлургия  №9 – 1992





Copyright (c) 2020 Journal of Mechanical Engineering NTUU "Kyiv Polytechnic Institute"