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Forming of plates and disks samples from
austenitic stainless steel, manganese carbon steel
and low carbon steel using laser heating
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Abstract. The aim of research was investigate possibility and specific of laser forming of austenitic stainless steel and manganese
carbon steel, make results comparison between specimens treated by pressure and laser formed specimens. In this research the
mechanisms of laser forming were analyzed. Thermal gradient mechanism (TGM) is the most suitable and the most effective. The
recommendation of treatment condition based on results of experimental investigation presented in this paper. The value of deformation
was proportional to the number of scans and inversely proportional to the scanning speed for both carbon and stainless steel specimens.
While treating carbon steel the effect of ‘post deformation’ can occur, it does can have the direction, which matches with the direction
of main deformation or can be opposite. This effect can be explained by polymorphic transformation which occurs in carbon steels
during heating-cooling cycle. Stability of laser formed designs was under investigation. Was found, that during laser forming of discs,
to achieve uniform deformation, should use uniform heating conditions created by closed circuit heating area.
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1. Introduction

Traditional methods of metal treatment by using pressing or bending equipment faces a number of problems while
forming a product made from alloys, which can be hard to form, brittle, elastic materials. Moreover, treatment of materials
with high thickness requires heavy-duty large equipment that causes the uprising of energy and economic costs. In
addition, the phenomenon of opposite effect can appear that causes the degradation of precision, possible thinning of the
material in the treatment area and insufficient resistance to bending. Some complications can occur while treating large
specimens and while forming shelves less than 6 mm.

For the avoidance of previously referred problems the ways of heat-deformation forming (HDF) were discovered,
that causes the material deformation by local linear heat. HDF can be presented by high-frequency inductive heating,
welding arc heating, flame torch heat. Nevertheless, all of the ways of HDF had their disadvantages, caused with
difficulties when trying to calculate the amount of thermal energy and the area of its use to perform the needed form, and
there were difficulties with the repetitive rate of the process. In particular, the use of the previous thermal energy sources
cannot be controlled with high precision, hard to be positioned and causes the surface melting of the specimen. In return,
laser beam as thermal energy source is clearly defined, easily dispensed and positioned; moreover, it is easy to automate
the process of laser treatment, and can be modeled by finite elements method [1]. Laser forming (LF) is very flexible and
easy to reset for the new product line, and does not require tools with high cost. The brittle materials, materials with high
rigidity and high strength (including high strength aluminum alloy [2]) can be formed by laser irradiation. LF also useful
for modification of bent angle of mechanically formed steel sheets [3].

2. Mechanisms of laser forming

Scientists allocates different mechanisms of laser forming depending on the conditions of exposure, material
properties and parameters of laser beam: temperature gradient mechanism (TGM) [4, 5, 6]; the buckling mechanism (BM)
[5, 7, 8]; the upsetting mechanism (UM) [4, 7]; the polymorph transformation mechanism (PTM) [5, 9, 10].

Temperature gradient mechanism.

TGM is the most studied mechanism of laser forming. In general, it can be described as follows: during high speed
heating of the sheet surface by laser beam the upper layers are intensively heated while, the bottom remains cold (because
of the locality of the process) and gradually heated by the mechanism of thermal conductivity, causing a sharp drop in
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temperature (temperature gradient) in thickness of the sample, that leads to different thermal expansion of various layers
of material, and causes the formation of the sheet.

Buckling mechanism.

If you change the process parameter it is possible to access the buckling mechanism. Usually in case of BM
diameter of the laser beam is much bigger than the sheet thickness. Diameter is about ten thicknesses unlike in TGM,
where the diameter is commensurate with the thickness of the sheet. So BM has no sharp drops in temperature in thickness
of the sample. When thermal compression stresses developing in the sheet that leads to thermoelastic stresses, which in
turn leads to thermo-elastic buckling of the material.

Upsetting mechanism.

The parameters of the process are similar to the BM but irradiated area is much smaller than the thickness of the
sheet. Due to the almost uniform heating and limitation of thermal expansion of the material surrounding metal sheet
compressed by almost constant stresses along the thickness, which causes the reduction of the length and increasing its
thickness.

Polymorph transformation mechanism.

Another forming mechanism can be occurred while treating the materials that during heating and cooling exposed
to polymorph transformations. PTM is the mechanism caused by local changes in the volume of the material during the
transformation.

3. Experimental set up

100x50 mm sheet manganese steel 65I" (1566) and stainless steel 12X18H10T (AISI 304) with thickness variety
from 0.5 mm to 1.5 mm and circular low-carbon st.3 with diameter 100 mm and same thickness range specimens were
used during the research. Surface of the specimen was covered with zinc oxide. The specimens were mounted in bracket
clamp. At a distance of 10 mm from the place of consolidation lied the trajectory of the solid-state YAG laser with diode
pumping (cw mode) beam. Movement indicator was placed at the distance of 10 mm from the edge of the sample, fig.1.
Movement was calculated and mathematically determined value of deformation was given as bending angle (degrees).

a b
Fig. 1. Experimental set up scheme: a — plate (1 — specimen, 2 — holder, 3 — laser beam, 4 — movement indicator);
b — disk (1 — specimen, 2 — stand, 3 — retainer, 4 — laser beam, 5 - lens)

4. Results

Generally, the value of absolute deformation was proportional to the number of scans and inversely proportional
to the scanning speed for both carbon and stainless steel specimens. But when trying to treat carbon steel the effect of
‘post deformation’ occurs [11, 12], which can have the same direction as main deformation or opposite to it. This effect
is caused by polymorph transformation inside the material. Moreover, attempting to increase the beam diameter or scan
speed the effect becomes more pronounced, and direction of the effect becomes opposite to the main deformation that
decreases the main bending angle. At some point the magnitude of ‘post deformation’ becomes commensurate with main
deformation that leads to the end of the forming process.

While using TGM on carbon steel specimens polymorph transformations decreases overall effectiveness of the
mechanism. To assess the level of impact on general performance of laser forming two specimens were simultaneously
irradiated: manganese steel 651" and stainless steel 12X18H10T. Magnitudes of absolute and relative deformations were
much smaller for carbon steel specimen than stainless steel. In particular, in case of 34 scans with output power of 0.8
kW, scan speed 1.2 m/min, beam diameter 3 mm bend angle on stainless steel specimen was equal to 90° while for the
carbon steel specimen this value was around 30°.

In case of stainless steel specimens, treatment with thickness more than 1.2 mm and scan speed around 4.5 m/min
the effect of ‘back strain’ occurs, that has the direction opposite to the main deformation and that is prior to it. ‘Back
strain’ is caused by initial thermal extension of the upper layers and concedes to the main deformation on cooling stage.
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Specimens of carbon steel had both ‘back strain’ and ‘post deformation’ effects with the direction opposite to main
deformation. The appearance of these effects is caused by uprising the scan speed that decreases the energetic contribution
and lowers the intensity of heat treatment zones. These reasons enables free flows of the local volume extension and
polymorph transformations. Obviously, that lower scan speeds limits the extension by cold neighboring material regions.
Herewith, it also causes the increase the rate of heating and cooling of treated zone, which has the influences on polymorph
transformation and leads to the creation of significant amount of residual austenite.

Conducting a series of experimental studies made it possible to identify the range of modes with the most predicted
results of laser forming for specimens with different thickness range (fig. 2).
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Fig. 2. Laser beam scan speed spectrum for achievement of 90° bend angle for 12X18H10T (a) and 65I" (b) steel specimens
with the thickness S 0.5;1.0;1.5 mm; output power 1 kW and beam diameter 4 mm

In case of low scan speed (around 1.5 m/min) surface melting occurs what is undesirable during the laser forming.
Negative character of melting confirmed by R. Siqueira and all [2]. Increasing the scan speed annihilates surface melting
and allows proceeding the controlled forming. Further increase of speed upraises the effectiveness of the process
(decreases the number of scans needed to perform 90° bending angle). This uprising with the increase of speed continues
to the optimal point after which the effectiveness begins to fall (increases the number of scans needed to perform 90°
bending angle), but overall process remains fully controlled. The fall continues to the moment when forming 90° becomes
not possible.

The area of predicted forming has a quite wide range, allowing smoothly varied modes of processing.

It should be noted that laser formed designs had higher resistance to power loads in comparison to the specimens
formed by the ways of plastic forming; and do not inferior in resistance to thermal loads. Detailed studies of the power
and thermal resistance are covered in work [13]. Moreover, laser forming allows the processing the materials that would
be destroyed while using high pressure forming (fig. 3).

While using straight-line trajectory irradiations predetermined angle can be achieved (fig. 3c¢), the trajectory of
each next scan was the same as for the previous one.

Parallel or cross-lined paths of irradiation allows getting the items of complex spatial configurations (fig. 4).

a b c
Fig. 3. Manganese steel 65I" specimens with 1.5 mm thickness formed with high-pressure
equipment (a) and using laser forming method (b); different steel specimens formed by laser heat (c)
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Fig. 4. Specimens formed by laser heat

Forming with irradiating for curved trajectories were studied in case of low carbon steel disks [14], resulting in
the following. The irradiation of disks in the vicinity of the center hole and the middle of the range (fig. 5a), with scan
speed 3 m/min, bam diameter 4 mm, output power 0.8 kW, caused not uniform deformation. Specimens acquired ‘saddle’
form that was caused due to redistribution of stresses, which appeared as a result of serial bypass circle of the laser beam.
In case of the trajectory that was located at a distance of 10 mm from the outer edge another result was achieved.
Distribution of the stresses was uniform and the segment of the sphere was received (fig. 5b).

The irradiation pattern of concentric circles, starting from the center, caused a complex spatial form with
alternating concave and convex areas.

Getting the exposure on the diameter of the largest circle changes the final result and causes same ‘saddle’ form
same as the treatment by spiral trajectory no matter of the direction, from the edge to the center or vice versa. So, can be
noted that in most of the described cases a uniform stress distribution was not achieved, so the result of the forming
process was not uniform as well. This was due to the fact that the exposure of the sample was made by moving heat source
for a closed circle trajectory. Heating up one area on the sample caused the creation of thermal deformation background
on non-treated areas, treatment conditions of each next area were different from the previous ones.

a b c

Fig. 5. Disks laser forming: a — in the middle of the diameter of the disk, b — at a distance 10 mm from the outer edge,
¢ — concentric circles from the center to periphery

To address this uneven effect, the sample was rotated at a frequency of 11 000 rpm, that allowed approximate
uniform heating conditions in a closed circuit, fig. 6.

Fig. 6. Disk treatment during its rotation with the frequency 11000 rpm
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In this case, the speed of the focus area on the surface (provided that the axis of the bam is 96 mm in diameter)
reaches 3315.84 m/min. Exposure of each point of the trajectory poses (beam diameter of 3mm) 0.54*10° s, next
irradiation will occur in 5.4*107 s. As a value of the energy contribution conveniently managed through the definition of
exposure time.

Under these p processing conditions, regardless of the trajectory of the passage, specimens were formed uniformly
and the segments of the sphere were formed. Considering this, it can be noted that the treatment under conditions of
simultaneous uniform heating enables more stable and more predictable results than gradual bypassing contour.

5. Conclusions

o All of the forming mechanisms were analyzed, the most efficient and manageable mechanism of laser forming
is temperature gradient mechanism.

e For all types of treated metals magnitude of deformation was proportional to the number of passes and inversely
proportional to the processing speed. For metals, which are inherent to the polymorph transformation deformation level
is in two or more times lower, depending on the material properties. For these materials there is a purposeful number of
passes that provide the maximum deformation for these conditions.

e For maximum performance it is necessary to carry out the forming process with the maximum output power,
minimum beam diameter and optimal scanning speed; to achieve highest accuracy the process needs to be done with high
velocity of the relative motion, increasing the number of cycles of exposure.

e Laser forming of the disks should be done with uniform heating for achieving uniform stress distribution.

BuxkopucraHHs J1a3epHOro HaArpiBaHHs AJis1 (POPMOYTBOPEHHS IJIACTHH Ta
JAHUCKIB 3 HEPKABIIOY0I CTAJIi ayCTEHITHOr0 KJIACy Ta MAPraHUeBUCTOl
ByIJIeleBOI cTaJi

O.[4. Karask, A.M. Jlyraii, O.0. I'onuapyk, JI.®. I'oji0BK0

Anomauia. Memoio danoi pobomu Oyn0 suguents ocobaugoCcmen 1a3epHo20 HOPMOYMBEOPEHHS HEPICABIIOUUX CMaell ayCMeHImHO20
Kaacy ma mapeanyesucmux gyeneyegux cmaneil. s 0ocsacHenHA Memu, 6 OaHill cmammi NPOaHaNi306aHO MeXAHi3MU 1a3epHO20
opmoymeopenns, 8i03HaueHo HallBUUWLY NPOOYKMUBHICING MeXaHizmy epadienmy memnepamyp. Taxooic, Ha OCHO8I pe3ynrvmamis cepii
EKCNEePUMEHMANLHUX OOCHIONCEeHb, OYIU 6CMAHOBNEH] 00aCmi NPocHO308aH020 deopmysanns cmaneil 3aznavenux kiacie. Cnio
3a3navumu, wo npoyec PopmysanHs gyeneyesux cmaiell, Mas negHi 0coOIUB0CHI NOPIGHAHO 3 POPMYBAHHAM HEPIHCABIIOUUX cmanell
aycmeHimHo20 Kiacy, 8 CUILy NPOMIKAHHSL 6 NEPUIUX NOTIMOPQHUX nepemeopeHb npu WEUOKICHOMY HAZPIGAHHI ma 0xon00cenni. Lfi
0C00OUBOCIT NPOAGTANUCA Hepe3 sAsuuje «nocmoegopmayiiy, KOAU RNICAsL OCHOBHO2O OepopmysanHs 6 Npoyeci 0XO0A00CEeHHs.
8i00Y8aN0CA HacmKose sMeHuleHHsA 00CASHYMo20 Kyma 3eunanis. Ilpu yomy, 0ocriodcenns npogoouUnUcs Ha 3paskax pisHoi mosuunu,
sokpema, 0.5, 1.0, 1.5 mm. Oxpim moeo, 6 cmammi NpeoCMasNieHo O0COOMUBOCHI JIA3ePHO20 (HOPMOYMEOPEHHs OUCKIE 3
HU3bKOBY2leyegux cmanei. Bcmanosneno, wjo 01 00csacHeHHs PIBHOMIPHO20 Oeopmy6anHs HeoOXIOHO 3aCmoco8y8amu pi6HOMIpHe
HA2PI6anHs 3a PAXyHOK KiNbYeeo2o Menioeo2o 0icepeid.

Knrouosi crosa: nasepue gpopmoymeopennsi, aucmosuil mamepian, degpopmayis, 3anumKo8i HanPYHCeHHsL.

Hcnoan3oBanue JiazepHOro Harpesa 1Jist popmMooOpa3oBaHus NJIACTHH U ANCKOB U3
Hep KaBeIIel CTAIH AYCTEHUTHOI0 KJIACCA 1 MAPTraHLUEBUCTOM YyIJIepOaNCTON CTAIN

AJ. Karasik, A.H. JIytaii, A.A. I'onuapyk, JI.®. I'o10BKO

Anomauusn. Ilenvio oannoti pabomvl s61s1emcs uzyyenue 0Co6eHHOCMel 1a3epPHO20 GopMOOOPA306ANUS HEPICABEIOWUX Cmaell
AYCMEHUMHO20 KNACCA U MAPSAHYOBUCTIBIX YeNePOOUCHIbIX cmanell. AHAnu3 MexaHusmos opmoo6paso8anus CEUIEmerbCmseyent, Ymo
Haubonee NPOOYKMUSHBIM AGIAEMCS MeXaHusm epaouenma memnepamyp. HMcnonesys ycnosus o00pabomku, npu KOMOPHIX
Deanu308bl8aics IMOm MexaHUusM, ObLI0 NPOBEOEHO CePUt0 IKCHEPUMEHMANHBIX UCCI008AHUL, KOMOPAs NO360JULA ONPEdeTUnts
30HbL NPOSHOZUPYEMO20 (POPMOOOpa306anus 6e3 onnasienus nosepxnocmu oopasyos. Kpome mozo, 6vino onpedeneno, umo npu
Gopmuposanuu yerepooucmuix cmaieti, Habnoodaemces 3¢pgpexm «nocmoepopmayuuy. «I[locmoegopmayusny nabmooaemces na smane
OXAAANCOEHUsl 3d20MOBKY NOCAe 0ONYYeHUsl U HANPAGieHd OHd, NPeUMYWeCmEeHHO, NPOMUBONON0ICHO OCHOBHOU deopmayuu, yem
YMeHbuaem npou3soOUmMenIbHOCmy Qopmuposanus. Imo seieHue 00BACHAEMCA NPOMEKAHUEM NOTUMOPHHBIX npeepawenuil 6
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pe3yibmame CKOpOCHHO20 Hazpesa u oxaaxcoenus. Taxce 6 dannol pabome npedcmasieHo pe3yiomamsl POPMUPOSaAHUs OUCKOS U3
HusKkoyenepooucmelx cmaneil. Ilpu uem, opmupoganue OuUcko8 nposoounoCs No 3aMKHYMbIM KPUBOTUHEUHBIM MPAEKMOPUIM, C
npumMeHeHueM Mmo4euHo20 U pacnpedeieHHo20 Men106020 UCHOYHUKA.

Knrouesvie crnosa: nazepnoe popmoodpaszosanue, mucmosou mamepuarn, oegpopmayusi, cpaouennm memnepamyp.
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