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Application of exponential functions in weighted
residuals method in structural mechanics.
Part 1: axisymmetrical shell problem
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Abstract. Weighted residuals method gained a wide popularity during last years especially due to its application in finite element
methods. Its goal is in approximate satisfaction of the governingfferential equations while boundary conditions are to be fulfilled
exactly. This goal is achieved by the proper choice of the sets of so-called trial (basic) functions which give the residuals. Residuals
are multiplied by weight functions and minimized by integration over the whole area of task. In fact, they determine the peculiarity and
advantages of each particular method. Most popular is the choice of trial and weight (test) function as the trigonometric and polynomial
Sfunctions. In 2D applications so-called “beam functions” are often used, which are solutions of much simpler 1D problems for beam.
In this methodological paper we explore the possibility of using the sets of functions constructed on the consequent exponential func-
tions, which satisfy boundary conditions. The method is investigated on example of very simple 1D axisymmetrical task for shell, where
exact solution exists for any loading. For several examples of distributed or concentrated loading the proposed method is compared
with similar Navier’s method, which is the expansion on trigonometric functions. Also the proper choice of weight functions is carefully
investigated. It is noted, that proposed sets (symmetrical or asymmetrical) of exponential functions has a good perspective in applica-
tion for more complicated problems in structural mechanics.

Keywords: axisymmetrical shell, distributed loading, concentrated force, Navier method, Galerkin method, sets of exponential func-
tions.

Introduction

Consider usual one dimensional differential equa-
tion with a right part:

GO =rx, (1a)

where G(y) — operator with respect to the looking for
function y, f(x) is a right part, which in structural me-

chanics is usually an outer loading. Essence of classical ap-
proach is in finding the sum of arbitrary particular solution
and general solution of homogeneous equation, which con-
sists of several eigenfunctions (their number is equal to the
order of differential equation), and each is factored by un-
known coefficient. They are to be found from boundary
conditions.
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Construction of a particular solution is usually an
easier task, because it always possible to present the right
part as a combination of functions which admit the conven-
ient solution. If this particular solution additionally satis-
fies the boundary conditions, then it can be considered as
an accurate one for the whole problem. In fact, this idea is
the basis of weighted residuals method (WRM). Initially
WRM was applied to approximate analytical treatment of
the problem, when each function was applicable to the
whole geometry. Later WRM along with variational meth-
ods became the common basis for finite element method
[1], which is the most powerful tool for solution of various
technical and scientific tasks.

Historically the first and still the most popular kind
of WRM for treatment of differential equations of mathe-
matical physics is Galerkin method, which in Russian lit-
erature is called as Bubnov-Galerkin method [2]. This is
explained that few years before the famous work of Ga-
lerkin (1915 year), Bubnov in his review of Timoshenko’s
work on stability, where the variational energy principle
was used, noticed its equivalence with expansion of look-
ing for solution by orthogonal functions [2]. The essence
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of Galerkin’s method consists in following [3]. Looking for
approximate solution is presented as a sum of known func-
tions ¢ with unknown coefficients a,, :

y:¢0+§:an.¢k(x), 1<k<N, (1b)
k=l

where ¢, satisfies to known (nonzero) boundary condi-
tions, while all other, so-called trial (basic) functions ¢, ,

satisfy to zeros boundary conditions. Then notion of resid-
uals R of differential equation (1a) is introduced:

N
R=G(pg)+ Y a,G(9,)— f(x)#0 (lc)
k=1

Evidently that goal is in minimization of the residuals. In
Galerkin method this is provided integrally. With this aim
the residuals is consequently multiplied on each basic func-
tion ¢, , integrated over the whole area S and equated to

zero, thus:

j R(x)-4,,(x)dx =0, 1<m<N. (1d)
S

Evidently that the problem is reduced to the system of al-
gebraic equations, the number of which in (1d) corresponds
to the number of unknown coefficients in (1b).

Idea of Galerkin was very fruitful and gave rise to
other variants of WRM. Their difference is that instead of
application of basis functions ¢,,(x) in (1d), quite differ-

ent functions y,, (x) can be used, and (1d) becomes:

jF(x)-wm(x)dxzo, 1<m<N, (le)
S

where y,, (x) are the weight (or test) functions. Thus in

Galerkin method the trial and test functions are the same.
Other variants of WRM are described in fundamental book
of Fletcher [4]. Discern among them the least square
method, LSM, which minimizes the integral from the
square of R(x) . Designate:

G(dy) = o (x). (19)

Then it can be shown [4], that LSM is also reduced to (1¢),
where v, (x) = 0,,(x).

The choice of trial and test functions constituents the
peculiarity and advantages of each particular WRM. As to
general recommendations of Fletcher [4]:

— test functions should pertain to the same family of
functions as the trial ones;

— as trial as test functions should be linear indepen-
dent;

— trial functions and test functions should be first N
elements of the complete system of functions;

— basic functions should exactly satisfy to boundary
(and initial, if applicable) conditions.

These are very general recommendations, so in most
case investigators rely on available experience. The con-
crete appearance of test and trial functions is promoted by
convenience and type of task. The orthogonal systems of
functions are mostly used in textbooks. In some application
there is no border between the different variants of WRM,
because the trial function and operators from them are the
same functions. This takes place when operator contains
even differentials and trial function is chosen as sinus or
cosines. Trigonometric functions and orthogonal polyno-
mials (Legendre, Hermite, Chebyshev) in WRM are used
very often. Yet while appearance of trial functions is sug-
gested by the geometry and operator, the choice of zeros
¢, is a quite a problem, which influences the rate of con-

vergence.

According to reference made in classic book of Ti-
moshenko at el [5] the Navier method is the predecessor of
WRM. In [5] the procedure of solution for simply sup-
ported rectangular plate is given, where the looking for
function for displacement is expanded in Fourier series
with respect to both coordinates. These functions are or-
thogonal, so system of equations (1d) is reduced to inde-
pendent equations with respect to each coefficienta, .

Mention one additional advantage of Navier solution: even
for case of concentrated outer loading when it actually be-
comes the boundary condition, it does not use the zero
function ¢, . This hints that usage of ¢, when some

boundary conditions are non-zeros is not necessary, and
only functions ¢, (x), k=1 can be used, while nonzero

boundary condition can be considered as outer loading,
thus be a part of f(x) in (1a). Also point out two draw-

backs of Navier method (usage of trigonometric functions).
First, cosine and sinus functions usually converge rather
slowly, especially in case of concentrated forces. Second,
they can be used only for specific operators (has only even
differentials) and boundary conditions, when zeros are the
value of derivatives of the same evenness (for example,
value of the function itself and its second derivative).

This work is methodological one, introductory to
more serious problems, and is aimed on the explanation
and extension of WRM capacities on example simple sym-
metrical and antisymmetrical task for simple one dimen-
sional differential equation of 4" order. It has three objec-
tives:

First — to introduce exponential functions, especially
for more complicated case of infinite body, when only de-
caying functions can be wused, i.e. functions

« =exp(—kx/L), x>0 and Lis constant. They have

several advantages. A) Each derivative of them retains the
same function. B) For localized forces and singularities
these functions easily describe them by small number of
terms. With respect to their behavior at x <0, then it is
easy to construct the supplemented function with employ-
ment of conditions of (anti)symmetry.
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Second — to investigate choice and significance of
the test functions w,(x). The first recommendation of

Fletcher about belonging of them to the same family as trial
ones, is not completely clear. What is it, when trial func-
tions are derived from specific family of functions. Here
the cases will be considered when test functions are deriv-
atives from the trial one up to 3" derivatives. Also variant
of LSM will be used too.

Third — to investigate the possibility of omitting
function ¢, , when some conditions are non zeros, but can

be accounted for as a part of outer loading. Here on exam-
ple of concentrated force on the boundary it will be shown
how the trial functions, which give zero force at the bound-
ary, can be successfully used. This simplifies the applica-
tion of WRM and allow to neglect function ¢, , which is

subjective and which do not usually belong to the same
family as trial functions ¢, ,k>1.

Investigations will be performed on example of
known equation for deformation of axisymmetrical shell
(or beam on elastic foundation). It is given in all handbooks
on Strength of Materials, so analytical solution will be only
outlined. For the sake of comparison the results by Navier
method will be given too.

Of course, in structural mechanics WRM now is
mostly used for 2D and 3D problems. Nevertheless, its ap-
plication for beams (one dimensional structures) is still un-
der consideration for more complicated material and load-
ing behavior. Other value of such relatively simple consid-
erations is that they lay basis for advanced analysis for
plates or shells. As example we mention free vibration
beam functions proposed in [ 7], which now are widely used
for plate and shell analysis [8]; spectral element method
[9]; or finite Fourier integral transforms technique, which
initially was suggested to 4th order beam problem [10] and
subsequently was found to be very efficient for plate prob-
lem analysis [11].

Governing equations, accurate solution and
Navier approach

Reducing the axial coordinate x and the scale of
loading, all the governing equation and differential rela-
tionships between different parameters of the task are given

by:
4

w
—+4w=p, (2a)
dx*

dw dy oM

— =y, =M, =, 2b

dx Y dx o ox (25)

where w is the radial displacement, y, —angle of rotation,
M, — bending moment, O, — transverse force and p is

the outer loading. Consider the following tasks.
Symmetrical tasks. Let the constant distributed

loading be applied at the section 0 <x </, so:

0<x</,

elsewhere.

Lys Ga)
= —_ a
=1,
Factor (1 /1 ) integrally equates force, which are applied at

different lengths /, this allows to obtain comparable re-
sults. Two following conditions of symmetry:

Y, (x=0)=w(0)=0, 0,(x=0)=w"0)=0 (3b)
and conditions of decaying at infinity:

Iimw=0
X—>00

(3¢)

are used.
Asymmetrical task. Loading is similar to (3a), but

the multiplier 1//% is used

p=1-(1/1*), 0<x<I (3d)
to provide the equality of the applied integrated bending
moment. The restriction on infinity (3c) is used too. And

the conditions of asymmetry are:

w0)=0, M(x=0)=w"(0)=0. (3e)
Concentrated force in symmetrical task. In spite
that it is special case of (3a), we will single it out sepa-

rately. Take instead of (3a) that:

p(x)=0 (3D
and instead of (3b) the following conditions:
w(0)=0, O (x=0)=w"0)=1. (g

Classical exact solution can be obtained in the fol-
lowing way. The geometry is broken out on two sections:
0<x<!/ and /<x <. On first section the general ho-
mogenous solutions is written (4 unknown constants) and
particular solution (constant 1/ (41 ) ). On second section

only general solution exists which due to restriction on in-
finity (3c) contains only two eigenfunctions with 2 con-
stants. Six unknown constants are found from 2 conditions
of symmetry (3b) and 4 conditions of conjugation between
all 4 parameters (w, y,, M, and Q,) at the border be-
tween 1%tand 2" sections.

Separately write the well known solution for concen-
trated force:

w(x) = 0.25-exp(—x) (cos x +sin x), (4a)
v, =0.5exp(—x)sin x , (4b)

M, =0.5-exp(—x)(sinx—cosx), (4¢)
0, = exp(—x)cosx . (4d)

Classical Navier method. As far as we know this
task is treated by Navier method in first time, where in fact
it assumes application of the cosine and sinus functions for
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approximate solution of (la). For symmetrical task the

loading is expanded by cos X ,
1

thus presents loading in the form:

where L, , is some length;

pm=2mm%? (5a)

n=0 1

where p, are expansion coefficients, for which we get:

po=—[ p()dx=—, n=0;
’ (5b)
Pu J.p(x)cos—dx——smn—nl, >1
L nm L
Then equation (2a) becomes:
d*w
—+4w z P cos = (5¢)

Its particular solution for the displacements w gives the
following series:

an14 nmx

Po——+ S—, (5 d)
4L, o (nn)4 +4r* L
which automatically satisfies (3b).

Analogously for asymmetric loading we apply the
expansion by sinuses, which satisfy to (3e). In similar man-
ner we get:

(5¢)

With respect to condition of decaying at infinity, it
is necessary to take that conditional length of expansion L,

should be bigger than sum of length of loaded section and
theoretical wave-length of eigenfunction (see, for example,
solution (4)). So, it is desirable that:

L>1+(4+6)-1. (59
In general case the influence of the chosen length of
expansion L; should be carefully studied. Thus in Navier

method the conditions at infinity are not used.

Application of decaying exponential functions. For
convenience let’s introduce the following designations for
decaying exponential functions:

Fk(x):exp(—kx/L), 0<x<o, (6a)
where length L is arbitrary and its influence on accuracy
will be analyzed below. The sets of symmetrical functions

®, (x) which satisfy both (3b) and (3¢) are introduced:

O,(x) =0y ol toy Uiy +0y 0, 0<x <o,
D, (—x) =Dy (x), —0o=<x=0.

Conditions (3c) are satisfied automatically due to proper-
ties of (6a). To satisty (3b) we chose a; , as equal to one,

(6b)

and other coefficients express by it, then:
2k(2k+2)
(k+1)(2k+3)’
k(2k+1)
Oy =—"—r.
Rk +3)(k+2)

0o=L oy, =-

(6¢)

Analogously for asymmetrical loading introduce the
following sets:
D () =By o at Br iU isr + B2 lhias 0<x <00,

(6d)
(—x)=-®, (x), —0<x<0,

where coefficients are chosen to satisfy the asymmetry
conditions (3e):

212k +2)
(2k+3)

Bk,o =1, Bk,l ==

Below consider in details the procedure of solution
only to symmetric case. Insert (6b) in left side of differen-
tial equation (2a):

d'®

— 4D, =y (%), (7a)
x

where Q, (x) is function which is defined from (7a). Thus
expression for Q, (x) can be presented as

Q=& ol + &l ki &40l kua s (7b)
where
(k+i )4 +4r} .
ék,i:ak,iL—“ , 0<i<2. (7¢)

Then let’s describe the general procedure of WRM
application. As was noted above the second almost equally
important step is the choice of test functions , . Here the

general hint of Fletcher about the belonging to same family
of functions for both trial and test functions will be dis-
cussed. But what is the same class if all our functions are
constructed from functions I'; (x) ? Evidently we can con-

struct from them the large number of combinations. As for
considered task we already have 5 sets of function, which
were created from I'; (x). Thus as test functions we chose

the following sets: @, (x) for Galerkin method; @ (x) are
sets defining angle of rotation; ®; (x) are expressions for
moments; @} (x) are transverse force functions; €, (x)
are the functions for outer loading.
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Proceed to WRM application. Present the displace-
ment function w as expansion in functions @, (x):

N
w= Zykd)k .
k=1

(8a)

Then from (1c) and (1d) (¢, = 0) we get the following sys-
tem of equation:

o0

N
D10 ,dx = [ p()y,dx, 1<Sm<N. (8b)

n=l1 —o
It can be presented in form:

(8¢)

Yk .(’Ok,m :bm’

where the matrix coefficients o, ,, and free column b,, are

calculated with accounting of symmetry:
O = 2[ Q4 (O, (W), b, =2[ (), (¥)dx. (8d)
0 0

The system (8c) with coefficient (8d) is applicable
to all variants of WRM. Consider procedure of calculation
for loading (3a) on example of first case of choice of test
functions, namely y,, =®,, (Galerkin method). So, for

terms of free column we get:

bm_(xm,O'L _
=== (=T, ()~
oy o, L
(mil)l (l_rm+1 (1))+ (mfZ)l (1_Fm+2 (1)) (86)

Similarly, the expressions for matrix coefficients o, , of

system (8b) also can be written analytically too:

><(E.:m,OFm + am,lrm-#l + %m,ZFm+2 )dx =

2 2
L
= Z ay ;&
-0

f——. 8
pr il "k vivm+ (8D

Consider particular examples calculation for differ-
ent loadings and variants of WRM.

Example of calculation

Let’s demonstrate the efficiency and peculiarities of
application of exponential functions for different loading
with gradual transition to the most complicated case of
concentrated force.

1. Initially consider loading (3a), where / =0.5. On
Fig. 1 the calculated values of: a) displacement; b) mo-
ments, c) distributed outer loading are shown. As it seen
from Fig. 1, a that application of only 4 first terms in ex-
pansion (8a) (at N =4, L=2) gives visual accuracy of
results. This relates to choice of test functions in form: as
v, =0,,as y, =0 and as y, =Q,, . Similar accu-
racy is achieved in Navier method for number of terms
N, =10 and value of length L, =7.

The choice of test functions in form vy, =®/ or

m

y,, =D, (which also belong to the “family” of functions
(6a)) will lead to no results, because the residuals Q,, are

symmetrical, while they are asymmetrical. Integrals of
their product give zero. Thus we do otherwise. We take that
angle of rotation is a symmetric function too, and respec-
tively define its values for the range of negative x. Never-
theless the results of determination of displacement w ac-
cording to above procedure were quite unsatisfactory, and
they are also shown on Fig. 1. This testifies that not each
system of functions, which constructed from the same ini-

O, T tial family of functions, can be used as the test one.
== j(ak,ork ol +ak,2Fk+2)X Y
0
M i

w(x).\ ~ 3 ©) ' P N-15

0.2 N=10 0.1 =t 1.4 N, =40
\ — ot f\ \ i —pts) |

. wer(x ’ Po(X
0.1 A\ Wor(X) 0.0 / 1RC /\ = pa(®) ||
\ - wa(x) /I_ 4 %/ \ — Prav(¥)
- avi) | 0.8
. N Wav(X) / \
] b 4 -01 0.6
N-4 \
IR =
) 02 — Mo(x) 0.2 \
. / Mo(x) 0 \ L
0.5 = Ma(x) o2 ola o8> 1
s / — M| 0.2 d
a b c

Fig. 1. Calculated values of (a) displacement; (b) moments; (¢) outer loading for symmetrical task at length of

loading [ =0.5
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With respect to the graphs for moment (Fig. 1, b),
then at N =4 they differ very little between themselves,
while the best accuracy is attained (at least for point of
maximum at x =0) at y, =®, . Of course increase in
number of terms leads to very noticeable increase in accu-
racy and to coinciding of results. The worst results are for
distributed loading. Navier method gives visual discrepan-
cies even at number of terms equal N, =40, while expo-
nential functions require only 15 terms to give the similar
appearance. In this case, the best accuracy is achieved for
test function taken in form of residuals, i. e. vy, =Q,, .

2. Asymmetrical case. Let’s again assume the length
I =0.5 and investigate the application of 5 sets of function
generated from the same “family” of (6a) as candidates for
the test functions. As before, artificially modify the func-
tions @, and ®) by changing their type of symmetry in
the interval —wo <x<0. Note, that again results for
y,, =®,, or y, =®, were quite unsatisfactory. So we
do not show them on figures, nor will use them later. So,
the choice of test function can also be a crucial step in

WRM application.
Fig. 2 shows four calculated graphs for the displace-

v, =0,, vy, =0" and vy, =Q, as well as obtained
by Navier method. In this case application of even 6 terms
of expansion still gives some visual discrepancies. Here
Galerkin method gives the better results, while the worst
ones are got for functions Q, (i.e. for LSM). Navier
method again requires more terms. With respect to graphs
of moment — the better results are achieved when
v,, =@ (Fig. 2, b). As to reproduction of outer loading,
the best results are got at y,, =€Q, (Fig. 2, ¢).

3. Back to symmetrical case. Let’s decrease the
length of action of outer loading, so take /=0.1 (Fig. 3).
Here it is evident that: first, for better results it is necessary
to apply more terms N in all expansions; and second,
adoption of different test functions may lead to big differ-
ence. As above, note that adoption vy, =®, gives very
good values of displacement, slight worse results for mo-
ment, and worst results for loading. Adoption of function
@ (moments) gives the best results for moments and gen-
erally good results for displacements; while adoption of
Q,, (distributed loading) as the test function v, gives best
results only for outer loading reproduction. Note, that bold
dot on Fig. 4, b shows the exact value of bending moment

ments w obtained due to following test functions:
w(x) A Vo6 M(x) () Vo1
/ \\ N =15 - N, =80
— wo(¥) AT — Pa(x)
0037 W) e s e I Por)
/ \ — - walx) /;' N A - Pﬂ(if())
. —_ a . N —_ al X
o l \\\ e 0.05 A wc(\\/( \ -
\ -0.
l N\ N=6 \
0.01 \ N \ M 3/}5( ) 0.5 \\
. B ‘ — Mo(x) ||
\\.\ 0.10 | / MZ’(X) \.\
N | — - Mo(x) Ny
0 3 I T— o \‘J/ — M:Iav(x) 0 o2 o4 VW08 1
a b c

Fig. 2. Calculated values of (a) displacement; (b) moments; (c) outer loading for asymmetrical task at length of

loading /=0.5

w(x)

M)

p)

N_g 7% N=15
N=15 // \,\\ N ﬂ N,=80
0.20 —wo(x) || 0.0 / = 1 \ — po(x)
i 1 2 4 !
ois \ e ,/ ors \ e
' \\ — w01 / ' \ — Pra®)
0.10 0.2 V=g 0.50
\ i N =15 \
0.05 \ -0.3 I — Moy(x) 0.25
Map(x)
N / - Mo() \ —
0 T~ %47 — Ma(®) 0 1 See= 03
a b c

Fig. 3. Calculated values of: (a) displacement; () moments; (c) outer loading for symmetrical task at length of

loading /= 0.1
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X T M(x B S x) :
w( )'\. N=8 @) RN r . N=15
N =15 0.1 s \ N =150
0.20 —wo() | 7 TN 0.75t — pol) |
\ Wor() o/ 3 \ Por(x)
o1s \ = wa(x) | /// ] 3 4 \ =+ Palx)
' .\ — WxalX) _0.1 — 0.50 < - pNav(x)*
o A 02 7' N=8 025\>\ \
R\ / N =15 ' \\\
0.05 \\ == 03 / —Mo(¥) | R
; Mo(x) 0 =
N o <
. N7 0.4 — Mo(¥) | 0.02 0.94;.&16:,0-.5%’ 0.1
l‘ “ 3 4 ¢ - MNav(x)
x -0.5 ; -0.25
a b c

Fig. 4. Calculated values of: (a) displacement; () moments; (c¢) outer loading for symmetrical task at length of

loading /= 0.01

in point x = 0. At whole Galerkin method is the best choice.
As to Navier method, it requires much more terms to give
the comparable accuracy.

4. Drastically decrease the length of action of outer
loading up to 7/ =0.01. All calculation results are given on
Fig. 4. All mentioned above tendencies are revealed here
again. We only note, that much more terms, especially for
Navier method are now required. Also note that LSM gives
big fluctuations at smaller number of terms N, and its re-
sults are much worse in general, except for outer distrib-
uted loading, which hardly can ever be the goal of calcula-
tion. Note that adoption vy, = ®) gives the better values

of moment, and bold dot on Fig. 4, b is exact value of mo-
ment in point x = 0. In this case Navier method requires a
very big number N, of terms.

5. Let’s analyze the action of concentrated force at
point x = 0, which actually can be considered as the bound-

general recommendations for

test functions in form y,, =Q, (LSM) gives big fluctua-

tion and can not be recommended for cases when outer
loading is significantly localized.

6. Let’s generalize the above results as to their accu-
racy for tasks with different lengths of outer force action.
Determine the minimal number of terms for each method,
which provides the required accuracy of 1% in comparison
with exact analytical solution. They are given in Table 1.
In most cases the goal of calculation is not to look for a
function itself, but rather its derivatives. Here such value is
a bending moment (second derivative). Thus in Table 1 the
required number of terms is given for moments. Evidently
the proposed WRM based on application of exponential
functions has an advantage as compared with Navier
method. This is especially exhibited for case of concen-
trated load, where Navier method requires 300 terms, while

WRM application [4], an addi-
tional trial function ¢, is notused

M(x)

0.1

ary condition. But in contrast to
W(x)\
0.20

here. Only basic sets of function
®, are employed instead for con-

AN

struction of which the boundary

condition @} (x=0)=0 is used. 0.10 \ / -

Results of calculation are shown \ 02 / Nils
N1=40

on Fig. 5. To get the visual corre- 0.05 -0.3 — Ma(¥)

spondence of results now at least \ / Mg(x)

15 terms are needed. The best re- 0 N L7 04 I = Mo(x)

sults for displacement are got for : . ! 4 0.5 _;MN*‘V(X)

Galerkin method, i.e. y, =®,,.
The best results for moment are
achieved at vy, =® choice,

bold dot on Fig. 5, b is exact value
of moment in x = 0. The choice of

b

Fig. 5. Calculated values of: (@) displacement; (b) moments for the action
of concentrated force atx =0
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WRM based on test functions vy, =®, or y,, =®, al-

m

lows for ~20 terms only.

Table 1. Minimal quantity of terms Nui» necessary to pro-
vides 1% accuracy for bending moment

Proposed method,
Exact val I
Length of xactvalue |\ vier test functions in
. for moment WRM
loading method
atx=0 -
@, @,
1=0.5 0.29079 22 8 3
1=0.1 0.45167 42 8 7
[=0.01 0.49502 154 16 13
[—0 0.5 284 23 18

Other boundary conditions. In 2D applications so-
called “beam functions” are very often used which are so-
lutions of much simple 1D problems for beam. So 1D elab-
orated procedures are needed for future more complicated
geometries. Proposed variant of WRM has not only single
advantage over Navier method as to analysis of concen-
trated force. Other evident advantage — its simple adapta-
tion to different boundary conditions. Note that in Navier
method only special combinations of them can be ana-
lyzed. To demonstrate it, consider the action of concen-
trated force on free edge of shell (beam) so the following
boundary conditions are considered:

0(0)=1-8(x=0), M(0)=0,

where 6(x) is Dirac delta function. Similarly to above,

(9a)

construct the set of functions @, (x):

Op(x)=Ay ol + A 1Ty + 24 20 1n, 0<x <00,

Q7 (—x)=D,(x), —0<x<0, (9b)
which satisfy free boundary conditions:
@} (0)=d;(x)=0. %¢)

Take &, o =1, then two other coefficient are related with it:

2k? K’

L W O
G+1)2" T (k42)? Gd)

7%,0 =1, 7‘/(,1 =
The strict solution of this task is given by formula:
w(x) = exp(—x) (% cos x) . (10)

Check the accuracy of our variant of WRM. Note

again that application of Navier method is impossible here.
Another peculiarity of application of WRM is that

@’ (x=0)=0, and this excludes the possibility of adop-
tion of ®” as the test function, because free column in (8d)
becomes equal to zero. As result only two test functions
y, =®, and y, =Q, areconsidered. On Fig. 6 the cor-

responding graphs of displacements and moments are
shown for number of terms N =15, for the sake of com-
parison the exact solution is given too. Galerkin method
provides good accuracy for displacements and moments
even with the number of terms N =5. Application of

y,, =®, at N =15 provides almost perfect accuracy. As
to adoption vy, =Q, , it gives much worse accuracy, as
was noted in above tasks.

W) N=15
0.4\ - Wexaal)
\ == wo(x)
0.3 \ = wa(x)

oil\

0.1
AN
0.0 N e
——2
-0.1
0 1 2 3 4
X
a
M(x)
034X N=15
’ \\ " Mexacd¥)
A == Mo(x)
\ = Mo(x)
0.2 i o
! \L
0.11 \‘\\
f NGy
0.0 e
\
0.1 \
o 1 2 3 4
X
b

Fig. 6. Calculated values of: (a) displacement; (b)
moments at action of concentrated force at free
edge

Conclusions

This work is methodological one, and on example of
wide known 4™ order differential task for axisymmetrical
shell it demonstrates the peculiarities and advantages of ap-
plication of exponential functions in WRM. Special atten-
tion is given to choice of test functions, their justification
and to consideration of action of concentrated force on the
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boundary, while the trial functions satisfy to some zeros
boundary conditions.

1. It is suggested to use special symmetrical or
asymmetrical sets (combinations) of consequent exponen-
tial functions, which satisfy different combinations of zero
boundary conditions. The technique of their determination
is described. As in Navier method the possibility of omit-
ting the number zero function ¢, , which usually chosen to

lesser terms, at least, in tens times as compared with Navier
method.

3. Influence of choice of test functions on the ac-
curacy of method is carefully investigated. It was shown
that application in this capacity of odd derivative of trial
function (even with artificially changed symmetry) gives
very strange results. Attention is needed when outer force
is concentrated one, then trial function should have non

zero values in point of force application. Generally speak-
ing, the best choice of test function is the trial function it-
self (Galerkin method). Yet sometimes choice of test func-
tion as a second derivative of trial one can provide the best
results for a bending moment. LSM sometimes requires too
much terms, and is inferior one as compared with two
above methods.

satisfy non zero boundary condition, is demonstrated. This
simplifies the procedure of application of WRM.

2. Proposed method has noticeable advantage over
Navier method in case of action of concentrated or local-
ized forces. To achieve the similar accuracy it requires
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3acTocyBaHHS eKCIIOHeHUiaJbHUX GyHKIiN B MeTO/1i 3BaKeHUX HeB 30K B CTPYKTYPHil
MeXaHilli Ha MPUKJIAJi 0CeCUHMETPUYHOI 3a/1a4i 000JI0HKHU

I. B. Opunsik, 1O. I1. Baii

Anomauia. Memoo 38asicenux neg 30k Habye WupoKoi NONYIAPHOCI NPOMAOM OCMAHHIX POKi8, 0COOAUBO 3AB8OSAKU 3ACMOCYBAHHIO
8 Memooax CKiHueHux enemenmia. Bin nonseae 8 HabauiCeHOMy GUKOHAHHI OUPepeHyianbHUX PIBHAHb, MO0 AK SPAHUYHT YMOBU MAIOMb
6uUKoHysamucs moyHo. Lla mema Ooocseacmvcs npaguibHUM BUOOPOM MHOJICUH NPOOHUX (bazoeux) yuxyii, Axi Oaloms Hes a3Ku.
Heg si3xu mnodcams na 8a2osi QyHkyii ma Minimizylome, inmeepyiouu no éciti ooaacmi 3aoaui. Muodicuna npobnux i 6acosux ynxyii
BUHAYAE OCOOUBICIE MA Nepesazi KOHCHO20 KOHKpemHo2o memody. Hatibinow nonyiapnum € eubip npobnux i eazoeux Qyuxyitl y
6U2TIA0L MPUSOHOMEMPUUHUX AO0 NOTTHOMIANLHUX (DYHKYIU. Y 0808UMIPHUX 3A0auax 4acmo eUKOPUCOBYIOMbCL MAK 36aHi “0anouHi
Gyukyii’”’, aKi € pinieHHAMU GibU RPOCMUX 00HOBUMIPHUX 3004t O/ OANIKU.

B oaniti memoouuniii po6omi mu 00CIIONCYEMO MOACTUBICMb BUKOPUCIIANHS MHONCUH YHKYIT, NOOYO08AHUX HA NOCTIO0BHUX eKCNO-
HeHYianbHuxX QYHKYIAX, AKI MOYHO 3A008ONbHAIOMb SPAHUYHUM YMO8aM. Memoo docniodceno na npukaadi npocmoi ocecumempuiHoi
3a0aui 06010HKU, MOUHe PileHHs K0T gidome 0151 OYOb-AK020 HABAHMAIICEHHS. [{IA KiTbKOX NpuUKIadié po3nooiieHo2o abo KoHyeH-
MPOBAHO20 HABAHMAIICEHHS 3ANPONOHOBAHUI MEMOO NOPIBHIOEMbCA 3 anano2iuHum memooom Has'e, 6 sxomy uxopucmosyomucs
mpueonomempuuni ynxyii. Taxodic pemenvro 00ciodcyemvbes pasunbHuLl 6Ubip 6a2osux gyuxyii. 3asnawaemvcs, wjo 3anponoHo-
6AHI MHOJICUHU CUMEMPULHUX YU AHIMUCUMEMPULHUX eKCNOHEHYIANbHUX DYHKYIT MAIOMb XOPOULy nepcnekmusy Os 3aCmoCy8aHHs 6
OLIbW CKIAOHUX 3A0a4ax CMPYKMYPHOT MEXAHIKUL.

Kniouogi cnosa: ocecumempuyna 06010HKa, po3nodiiene HABAHMAICEHHS, KOHYenmposana cund, memoo Hag'e, memoo Bybuosa-
Tanvopkina, MHOJMCUHA eKCNOHEHYIANbHUX (QYHKYIL.
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IIpumMeHeHHe IKCIIOHEHUUATBbHBIX (DYHKIMI B MeTO/Ae B3BCLICHHBIX HEBA30K B CTPYKTYPHO
MeXaHHMKe HA IpUMepe 0CeCMMMEeTPUYHOM 321a4M 000JI04YKHU

H. B. Opbinsk, 0. I1. baii

Annomayun. Memoo 636euleHHbIX HEBA30K NPUOOPEI WUPOKYIO NONYAAPHOCHb 8 NOCIEOHUE 200bl, 0COOEHHO O1a200aps NPUMEHEHUIO
8 Memooax KoHeuHvlx anemenmos. OH cocmoum 8 NPUOIUNCEHHOM 8bINOTHEHUU OUDDepeHYUATbHBIX YPAGHEHUN, M020d KAK ePAHUY-
Hble YCa08UsL OONICHBL 8bINOIHAMBCA MOYHO. DMa Yenb 00Cmueaemcs npasuIbHbIM 8b100POM MHOJCECMBa nPooHbix (0a306bix) GyHK-
yuil, komopule oaiom Hessasku. Heesizku ymHodicaiom Ha 6ecogvie YyHKYUU U MUHUMUSUPYIOM, UHIMESPUPYs No 8cell obaacmu 3a0a4u.
Mnodicecmeo npobHbIX U 6ecosbix QyHKYuUll onpedeniem 0CoOOeHHOCHb U NPEUMYWeCBa Kaxtc0020 KOHKpemHnoz2o memooda. Haubonee
NONYIAPHBIM ABNAEMCA 8bIO0P NPOOHBIX U 6€COBLIX PYHKYULL 6 81O MPULOHOMEMPULECKUX UNU NOTUHOMUATLHBIX QYHKYUU. B 06ymep-
HBIX 300a4ax Yacmo UCHOIb3VIOMCA Max Hazvisaemvle "danounvie Qynkyuu", komopule A6IANOMCA peuerusmu 6oiee nPoCmolXx 0OHO-
MepHbIX 3a0ay 014 OANKU.

B oannoii memoouueckoti pabome mvi ucciedyem 803MONCHOCHb UCHONbI0BAHUSL MHOMCECTNE OYHKYULL, NOCMPOEHHBIX HA NOC1e008a-
MENbHBIX IKCHOHEHYUATLHBIX (DYHKYUAX, KOMOPble MOYHO YOOBIEMBOPAIOM PAHUUHBIM YCA08UaAM. Memoo ucciedosan na npumepe
nPOCMOU OCECUMMEMPUYHOU 3a0ayU 000I0UKU, MOYHOE PeuleHe KOMOPOU U36eCMHO O 000U Hacpy3Ku. [ist HECKOIbKUX NPUMEPO8
pacnpeoeneHtoll Ui KOHYeHMpupoBaHHOU HA2PY3KU NPEONIOANCEHHBI MeMOO CPABHUBACMCSL C AHAN02UYHBIM Memooom Hasve, 6 Ko-
MOPOM UCNONL3YIOMCS MpUcoHOMempuyeckue Qyukyuu. Taxoce mujamenbno ucciedyemcs npasuibHblil 66100p 6eco8bix PYHKYUIL.
Ommeyaemcs, 4mo npeodnoHceHHble MHONCECMEA CUMMEMPUUHBIX UL AHMUCUMMEMPUUHBIX IKCNOHEHYUANLHBIX DYHKYUL UMEIOM XO-
POULYI0 NEpCneKmugy O NPUMeHeHUsl 8 Dojlee CLONCHBIX 3a0aAUaX CIMPYKMYPHOU MEXAHUKU.

Knrouesvie cnosa: ocecummempuunas 060104Ka, pacnpeoeneHnds Hazpy3Ka, Konyenmpuposanuas cuna, memoo Hasve, memoo byo6-
Ho6a-I anepkuna, MHONCECME0 IKCNOHEHYUANLHBIX QYHKYUIL.





