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Abstract. Weighted residuals method gained a wide popularity during last years especially due to its application in finite element 
methods. Its goal is in approximate satisfaction of the governingfferential equations while boundary conditions are to be fulfilled 
exactly. This goal is achieved by the proper choice of the sets of so-called trial (basic) functions which give the residuals. Residuals 
are multiplied by weight functions and minimized by integration over the whole area of task. In fact, they determine the peculiarity and 
advantages of each particular method. Most popular is the choice of trial and weight (test) function as the trigonometric and polynomial 
functions. In 2D applications so-called “beam functions” are often used, which are solutions of much simpler 1D problems for beam.  
In this methodological paper we explore the possibility of using the sets of functions constructed on the consequent exponential func-
tions, which satisfy boundary conditions. The method is investigated on example of very simple 1D axisymmetrical task for shell, where 
exact solution exists for any loading. For several examples of distributed or concentrated loading the proposed method is compared 
with similar Navier’s method, which is the expansion on trigonometric functions. Also the proper choice of weight functions is carefully 
investigated. It is noted, that proposed sets (symmetrical or asymmetrical) of exponential functions has a good perspective in applica-
tion for more complicated problems in structural mechanics. 

Keywords: axisymmetrical shell, distributed loading, concentrated force, Navier method, Galerkin method, sets of exponential func-
tions.

Introduction 

Consider usual one dimensional differential equa-
tion with a right part:  

( ) ( )G y f x ,  (1a) 

where ( )G y  – operator with respect to the looking for 

function y , ( )f x  is a right part, which in structural me-

chanics is usually an outer loading. Essence of classical ap-
proach is in finding the sum of arbitrary particular solution 
and general solution of homogeneous equation, which con-
sists of several eigenfunctions (their number is equal to the 
order of differential equation), and each is factored by un-
known coefficient. They are to be found from boundary 
conditions. 

Construction of a particular solution is usually an 
easier task, because it always possible to present the right 
part as a combination of functions which admit the conven-
ient solution. If this particular solution additionally satis-
fies the boundary conditions, then it can be considered as 
an accurate one for the whole problem. In fact, this idea is 
the basis of weighted residuals method (WRM). Initially 
WRM was applied to approximate analytical treatment of 
the problem, when each function was applicable to the 
whole geometry. Later WRM along with variational meth-
ods became the common basis for finite element method 
[1], which is the most powerful tool for solution of various 
technical and scientific tasks. 

Historically the first and still the most popular kind 
of WRM for treatment of differential equations of mathe-
matical physics is Galerkin method, which in Russian lit-
erature is called as Bubnov-Galerkin method [2]. This is 
explained that few years before the famous work of Ga-
lerkin (1915 year), Bubnov in his review of Timoshenko’s 
work on stability, where the variational energy principle 
was used, noticed its equivalence with expansion of look-
ing for solution by orthogonal functions [2]. The essence 
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of Galerkin’s method consists in following [3]. Looking for 
approximate solution is presented as a sum of known func-
tions   with unknown coefficients na :  

0
1

( )
N

n k
k

y a x


    ,     1 k N  ,  (1b) 

where 0  satisfies to known (nonzero) boundary condi-

tions, while all other, so-called trial (basic) functions k , 

satisfy to zeros boundary conditions. Then notion of resid-
uals R  of differential equation (1a) is introduced: 

0
1

( ) ( ) ( ) 0
N

k n
k

R G a G f x


        (1c) 

Evidently that goal is in minimization of the residuals. In 
Galerkin method this is provided integrally. With this aim 
the residuals is consequently multiplied on each basic func-
tion k , integrated over the whole area S  and equated to 

zero, thus: 

( ) ( ) 0,     1 .m
S

R x x dx m N       (1d) 

Evidently that the problem is reduced to the system of al-
gebraic equations, the number of which in (1d) corresponds 
to the number of unknown coefficients in (1b).  

Idea of Galerkin was very fruitful and gave rise to 
other variants of WRM. Their difference is that instead of 
application of basis functions ( )m x  in (1d), quite differ-

ent functions ( )m x  can be used, and (1d) becomes:  

( ) ( ) 0,   1m
S

F x x dx m N    , (1e) 

where ( )m x  are the weight (or test) functions. Thus in 

Galerkin method the trial and test functions are the same. 
Other variants of WRM are described in fundamental book 
of Fletcher [4]. Discern among them the least square 
method, LSM, which minimizes the integral from the 
square of ( )R x . Designate: 

( ) ( )k kG x   .  (1f) 

Then it can be shown [4], that LSM is also reduced to (1e), 
where ( ) ( )m mx x   . 

The choice of trial and test functions constituents the 
peculiarity and advantages of each particular WRM. As to 
general recommendations of Fletcher [4]:  

‒ test functions should pertain to the same family of 
functions as the trial ones;  

‒ as trial as test functions should be linear indepen-
dent; 

‒ trial functions and test functions should be first N
elements of the complete system of functions; 

‒ basic functions should exactly satisfy to boundary 
(and initial, if applicable) conditions. 

These are very general recommendations, so in most 
case investigators rely on available experience. The con-
crete appearance of test and trial functions is promoted by 
convenience and type of task. The orthogonal systems of 
functions are mostly used in textbooks. In some application 
there is no border between the different variants of WRM, 
because the trial function and operators from them are the 
same functions. This takes place when operator contains 
even differentials and trial function is chosen as sinus or 
cosines. Trigonometric functions and orthogonal polyno-
mials (Legendre, Hermite, Chebyshev) in WRM are used 
very often. Yet while appearance of trial functions is sug-
gested by the geometry and operator, the choice of zeros 

0  is a quite a problem, which influences the rate of con-

vergence.  
According to reference made in classic book of Ti-

moshenko at el [5] the Navier method is the predecessor of 
WRM. In [5] the procedure of solution for simply sup-
ported rectangular plate is given, where the looking for 
function for displacement is expanded in Fourier series 
with respect to both coordinates. These functions are or-
thogonal, so system of equations (1d) is reduced to inde-
pendent equations with respect to each coefficient ka . 

Mention one additional advantage of Navier solution: even 
for case of concentrated outer loading when it actually be-
comes the boundary condition, it does not use the zero 
function 0 . This hints that usage of 0  when some 

boundary conditions are non-zeros is not necessary, and 
only functions ( ), 1k x k   can be used, while nonzero 

boundary condition can be considered as outer loading, 
thus be a part of ( )f x  in (1a). Also point out two draw-

backs of Navier method (usage of trigonometric functions). 
First, cosine and sinus functions usually converge rather 
slowly, especially in case of concentrated forces. Second, 
they can be used only for specific operators (has only even 
differentials) and boundary conditions, when zeros are the 
value of derivatives of the same evenness (for example, 
value of the function itself and its second derivative).  

This work is methodological one, introductory to 
more serious problems, and is aimed on the explanation 
and extension of WRM capacities on example simple sym-
metrical and antisymmetrical task for simple one dimen-
sional differential equation of 4th order. It has three objec-
tives: 

First – to introduce exponential functions, especially 
for more complicated case of infinite body, when only de-
caying functions can be used, i. e. functions 

exp( / )k kx L   , 0x   and L is constant. They have 

several advantages. A) Each derivative of them retains the 
same function. B) For localized forces and singularities 
these functions easily describe them by small number of 
terms. With respect to their behavior at 0x  , then it is 
easy to construct the supplemented function with employ-
ment of conditions of (anti)symmetry. 
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Second ‒ to investigate choice and significance of 
the test functions ( )k x . The first recommendation of 

Fletcher about belonging of them to the same family as trial 
ones, is not completely clear. What is it, when trial func-
tions are derived from specific family of functions. Here 
the cases will be considered when test functions are deriv-
atives from the trial one up to 3rd derivatives. Also variant 
of LSM will be used too.  

Third – to investigate the possibility of omitting 
function 0 , when some conditions are non zeros, but can 

be accounted for as a part of outer loading. Here on exam-
ple of concentrated force on the boundary it will be shown 
how the trial functions, which give zero force at the bound-
ary, can be successfully used. This simplifies the applica-
tion of WRM and allow to neglect function 0 , which is 

subjective and which do not usually belong to the same 
family as trial functions , 1k k  .  

Investigations will be performed on example of 
known equation for deformation of axisymmetrical shell 
(or beam on elastic foundation). It is given in all handbooks 
on Strength of Materials, so analytical solution will be only 
outlined. For the sake of comparison the results by Navier 
method will be given too. 

Of course, in structural mechanics WRM now is 
mostly used for 2D and 3D problems. Nevertheless, its ap-
plication for beams (one dimensional structures) is still un-
der consideration for more complicated material and load-
ing behavior. Other value of such relatively simple consid-
erations is that they lay basis for advanced analysis for 
plates or shells. As example we mention free vibration 
beam functions proposed in [7], which now are widely used 
for plate and shell analysis [8]; spectral element method 
[9]; or finite Fourier integral transforms technique, which 
initially was suggested to 4th order beam problem [10] and 
subsequently was found to be very efficient for plate prob-
lem analysis [11]. 

Governing equations, accurate solution and 
Navier approach 

Reducing the axial coordinate x  and the scale of 
loading, all the governing equation and differential rela-
tionships between different parameters of the task are given 
by:  

4

4
4

d w
w p

dx
  ,  (2a) 

x
dw

dx
  ,   x

x
d

M
dx


 ,     x

x
M

Q
x





,  (2b)  

where w  is the radial displacement, x  – angle of rotation, 

xM  – bending moment, xQ  – transverse force and p  is 

the outer loading. Consider the following tasks.  
Symmetrical tasks. Let the constant distributed 

loading be applied at the section 0 x l  , so:  

1, 0 ,1

0, .

x l
p

elsewherel

 
 


(3a) 

Factor  1/ l  integrally equates force, which are applied at 

different lengths l , this allows to obtain comparable re-
sults. Two following conditions of symmetry: 

  ( 0) (0) 0x x w    ,    ( 0) (0) 0xQ x w     (3b) 

and conditions of decaying at infinity:  

lim 0
x

w


   (3c) 

are used. 
Asymmetrical task. Loading is similar to (3a), but 

the multiplier  21 / l  is used 

21 (1/ ),      0p l x l    (3d)

to provide the equality of the applied integrated bending 
moment. The restriction on infinity (3c) is used too. And 
the conditions of asymmetry are:  

(0) 0w  ,     ( 0) (0) 0M x w   . (3e) 

Concentrated force in symmetrical task. In spite 
that it is special case of (3a), we will single it out sepa-
rately. Take instead of (3a) that:  

( ) 0p x  (3f) 

and instead of (3b) the following conditions: 

  (0) 0w  ,     ( 0) (0) 1xQ x w   .  (3g) 

Classical exact solution can be obtained in the fol-
lowing way. The geometry is broken out on two sections: 
0 x l   and l x   . On first section the general ho-
mogenous solutions is written (4 unknown constants) and 
particular solution (constant  1/ 4l ). On second section 

only general solution exists which due to restriction on in-
finity (3c) contains only two eigenfunctions with 2 con-
stants. Six unknown constants are found from 2 conditions 
of symmetry (3b) and 4 conditions of conjugation between 
all 4 parameters ( w , x , xM  and xQ ) at the border be-

tween 1st and 2nd sections.  
Separately write the well known solution for concen-

trated force:  

 ( ) 0.25 exp( ) cos sinw x x x x    , (4a) 

0.5exp( )sinx x x   ,  (4b) 

 0.5 exp( ) sin cosxM x x x    , (4c) 

exp( )cosxQ x x  .  (4d) 

Classical Navier method. As far as we know this 
task is treated by Navier method in first time, where in fact 
it assumes application of the cosine and sinus functions for 
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approximate solution of (1a). For symmetrical task the 

loading is expanded by 
1

cos
n x

L


, where 1L , is some length; 

thus presents loading in the form: 

10

( ) cosn
n

n x
p x p

L


  ,  (5a)  

where np  are expansion coefficients, for which we get: 

1

1

0
1 10

1 1 10

1
( ) ,    0;

2 2
( )cos sin ,  1.

L

L

n

l
p p x dx n

L L

n x n l
p p x dx n

L L n L

  

 
  






  (5b) 

Then equation (2а) becomes: 

4

4
0

4 cosn
n

d w n x
w p

Ldx 


   (5c) 

Its particular solution for the displacements w  gives the 
following series: 

 
 

4
1

0 4 4
1 11 1

cos
4 4

n

n

p Ll n x
w p

L Ln L


 

 
 , (5d) 

which automatically satisfies (3b). 
Analogously for asymmetric loading we apply the 

expansion by sinuses, which satisfy to (3e). In similar man-
ner we get: 

 

4
1

4 4
11 1

sin
4

n

n

p L n x
w

Ln L









 
 .  (5e) 

With respect to condition of decaying at infinity, it 
is necessary to take that conditional length of expansion 1L  

should be bigger than sum of length of loaded section and 
theoretical wave-length of eigenfunction (see, for example, 
solution (4)). So, it is desirable that:  

 4 6 1L l    . (5f) 

In general case the influence of the chosen length of 
expansion 1L should be carefully studied. Thus in Navier 

method the conditions at infinity are not used. 

Application of decaying exponential functions. For 
convenience let’s introduce the following designations for 
decaying exponential functions: 

 ( ) exp /k x kx L   ,     0 x   , (6a)  

where length L  is arbitrary and its influence on accuracy 
will be analyzed below. The sets of symmetrical functions 

( )k x  which satisfy both (3b) and (3c) are introduced: 

,0 ,1 1 ,2 2( ) ,   0 ,k k k k k k kx x                

  ( ) ( ),    0.k kx x x         (6b) 

Conditions (3c) are satisfied automatically due to proper-
ties of (6a). To satisfy (3b) we chose ,0k  as equal to one, 

and other coefficients express by it, then: 

 ,0 ,1

,2

2 (2 2)
1, ,

( 1) 2 3

(2 1)
.

(2 3)( 2)

k k

k

k k

k k

k k

k k


    

 


 

 

 (6c) 

Analogously for asymmetrical loading introduce the 
following sets: 

,0 ,1 1 ,2 2( ) ,  0 ,

( ) ( ),  0,
k k k k k k k

k k

x x

x x x
           

      
(6d) 

where coefficients are chosen to satisfy the asymmetry 
conditions (3e): 

,0 1k  ,  
 ,1
2(2 2)

2 3k
k

k


  


,  ,2

(2 1)

(2 3)k
k

k


 


 (6e) 

Below consider in details the procedure of solution 
only to symmetric case. Insert (6b) in left side of differen-
tial equation (2a):  

4

4
4 ( )k

k k
d

x
dx


    ,  (7a) 

where ( )k x  is function which is defined from (7a). Thus 

expression for ( )k x  can be presented as 

,0 ,1 1 ,2 2k k k k k k k           ,  (7b)  

where  

 4 4

, , 4

4
 ,      0 2k i k i

k i L
a i

L

 
    .  (7c) 

Then let’s describe the general procedure of WRM 
application. As was noted above the second almost equally 
important step is the choice of test functions k . Here the 

general hint of Fletcher about the belonging to same family 
of functions for both trial and test functions will be dis-
cussed. But what is the same class if all our functions are 
constructed from functions ( )k x ? Evidently we can con-

struct from them the large number of combinations. As for 
considered task we already have 5 sets of function, which 
were created from ( )k x . Thus as test functions we chose 

the following sets: ( )k x  for Galerkin method; ( )k x are 

sets defining angle of rotation; ( )k x  are expressions for 

moments; ( )k x  are transverse force functions; ( )k x  

are the functions for outer loading.  
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Proceed to WRM application. Present the displace-
ment function w  as expansion in functions ( )k x : 

1

N

k k
k

w


   . (8a) 

Then from (1c) and (1d) ( 0 0  ) we get the following sys-

tem of equation:  

1

( ) ( ) ,   1 .
N

k k m m
n

x dx p x dx m N


 

         (8b) 

It can be presented in form: 

,k k m mb   ,  (8c) 

where the matrix coefficients ,k m  and free column mb  are 

calculated with accounting of symmetry:  

,
0 0

2 ( ) ( ) , 2 ( ) ( ) .k m k m m mx x dx b p x x dx
 

         (8d) 

The system (8c) with coefficient (8d) is applicable 
to all variants of WRM. Consider procedure of calculation 
for loading (3a) on example of first case of choice of test 
functions, namely m m    (Galerkin method). So, for 

terms of free column we get: 

  ,0 1
2

mm
m

Lb
l

ml

 
  

         ,1 ,2
1 21 1

1 2
m m

m m

L L
l l

m l m l 
   

    
 

 (8e) 

Similarly, the expressions for matrix coefficients ,k m  of 

system (8b) also can be written analytically too: 

 ,
,0 ,1 1 ,2 2

0
2
k m

k k k k k k



 


       

  ,0 ,1 1 ,2 2m m m m m m dx          
2 2

, ,
0 0

.k i m j
i j

L

k i m j 
  

    (8f)

Consider particular examples calculation for differ-
ent loadings and variants of WRM.  

Example of calculation 

Let’s demonstrate the efficiency and peculiarities of 
application of exponential functions for different loading 
with gradual transition to the most complicated case of 
concentrated force.  

1. Initially consider loading (3a), where 0.5l  . On
Fig. 1 the calculated values of: a) displacement; b) mo-
ments, c) distributed outer loading are shown. As it seen 
from Fig. 1, a that application of only 4 first terms in ex-
pansion (8a) (at 4N  , 2L  ) gives visual accuracy of 
results. This relates to choice of test functions in form: as 

m m   , as m m
    and as m m   . Similar accu-

racy is achieved in Navier method for number of terms 

1 10N   and value of length 1 7L  .  

The choice of test functions in form m m
    or 

m m
    (which also belong to the “family” of functions 

(6a)) will lead to no results, because the residuals m  are 

symmetrical, while they are asymmetrical. Integrals of 
their product give zero. Thus we do otherwise. We take that 
angle of rotation is a symmetric function too, and respec-
tively define its values for the range of negative x. Never-
theless the results of determination of displacement w  ac-
cording to above procedure were quite unsatisfactory, and 
they are also shown on Fig. 1. This testifies that not each 
system of functions, which constructed from the same ini-
tial family of functions, can be used as the test one.  

a b c 

Fig. 1. Calculated values of (a) displacement; (b) moments; (c) outer loading for symmetrical task at length of 
loading 0.5l   
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With respect to the graphs for moment (Fig. 1, b), 
then at 4N   they differ very little between themselves, 
while the best accuracy is attained (at least for point of 
maximum at x = 0) at m m

   . Of course increase in 

number of terms leads to very noticeable increase in accu-
racy and to coinciding of results. The worst results are for 
distributed loading. Navier method gives visual discrepan-
cies even at number of terms equal 1 40N  , while expo-

nential functions require only 15 terms to give the similar 
appearance. In this case, the best accuracy is achieved for 
test function taken in form of residuals, i. e. m m   . 

2. Asymmetrical case. Let’s again assume the length
0.5l   and investigate the application of 5 sets of function

generated from the same “family” of (6a) as candidates for
the test functions. As before, artificially modify the func-
tions m

  and m
  by changing their type of symmetry in 

the interval 0x   . Note, that again results for 

m m
    or m m

    were quite unsatisfactory. So we 

do not show them on figures, nor will use them later. So, 
the choice of test function can also be a crucial step in 
WRM application. 

Fig. 2 shows four calculated graphs for the displace-
ments w  obtained due to following test functions: 

m m   , m m
    and m m    as well as obtained 

by Navier method. In this case application of even 6 terms 
of expansion still gives some visual discrepancies. Here 
Galerkin method gives the better results, while the worst 
ones are got for functions m  (i.e. for LSM). Navier 

method again requires more terms. With respect to graphs 
of moment – the better results are achieved when 

m m
    (Fig. 2, b). As to reproduction of outer loading, 

the best results are got at m m    (Fig. 2, c). 

3. Back to symmetrical case. Let’s decrease the
length of action of outer loading, so take 0.1l   (Fig. 3). 
Here it is evident that: first, for better results it is necessary 
to apply more terms N  in all expansions; and second, 
adoption of different test functions may lead to big differ-
ence. As above, note that adoption m m    gives very 

good values of displacement, slight worse results for mo-
ment, and worst results for loading. Adoption of function 

m
  (moments) gives the best results for moments and gen-

erally good results for displacements; while adoption of 

m  (distributed loading) as the test function m  gives best 

results only for outer loading reproduction. Note, that bold 
dot on Fig. 4, b shows the exact value of bending moment 

a b c
Fig. 2. Calculated values of (a) displacement; (b) moments; (c) outer loading for asymmetrical task at length of 
loading 0.5l   

a b c
Fig. 3. Calculated values of: (a) displacement; (b) moments; (c) outer loading for symmetrical task at length of 
loading l= 0.1 
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in point x = 0. At whole Galerkin method is the best choice. 
As to Navier method, it requires much more terms to give 
the comparable accuracy. 

4. Drastically decrease the length of action of outer
loading up to 0.01l  . All calculation results are given on 
Fig. 4. All mentioned above tendencies are revealed here 
again. We only note, that much more terms, especially for 
Navier method are now required. Also note that LSM gives 
big fluctuations at smaller number of terms N , and its re-
sults are much worse in general, except for outer distrib-
uted loading, which hardly can ever be the goal of calcula-
tion. Note that adoption m m

    gives the better values 

of moment, and bold dot on Fig. 4, b is exact value of mo-
ment in point x = 0. In this case Navier method requires a 
very big number 1N  of terms. 

5. Let’s analyze the action of concentrated force at
point x = 0, which actually can be considered as the bound-
ary condition. But in contrast to 
general recommendations for 
WRM application [4], an addi-
tional trial function 0  is not used 

here. Only basic sets of function 

k  are employed instead for con-

struction of which the boundary 
condition ( 0) 0k x    is used. 

Results of calculation are shown 
on Fig. 5. To get the visual corre-
spondence of results now at least 
15 terms are needed. The best re-
sults for displacement are got for 
Galerkin method, i. e. m m   . 

The best results for moment are 
achieved at m m

    choice, 

bold dot on Fig. 5, b is exact value 
of moment in x = 0. The choice of 

test functions in form m m    (LSM) gives big fluctua-

tion and can not be recommended for cases when outer 
loading is significantly localized.  

6. Let’s generalize the above results as to their accu-
racy for tasks with different lengths of outer force action. 
Determine the minimal number of terms for each method, 
which provides the required accuracy of 1% in comparison 
with exact analytical solution. They are given in Table 1. 
In most cases the goal of calculation is not to look for a 
function itself, but rather its derivatives. Here such value is 
a bending moment (second derivative). Thus in Table 1 the 
required number of terms is given for moments. Evidently 
the proposed WRM based on application of exponential 
functions has an advantage as compared with Navier 
method. This is especially exhibited for case of concen-
trated load, where Navier method requires 300 terms, while 

a b 

Fig. 5. Calculated values of: (a) displacement; (b) moments for the action of con-
centrated force at x = 0. 

a b c

Fig. 4. Calculated values of: (a) displacement; (b) moments; (c) outer loading for symmetrical task at length of 
loading l = 0.01 

a b 

Fig. 5. Calculated values of: (a) displacement; (b) moments for the action 
of concentrated force at x = 0 
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WRM based on test functions m m
    or m m    al-

lows for ~20 terms only. 

Table 1. Minimal quantity of terms Nmin necessary to pro-
vides 1% accuracy for bending moment 

Length of 
loading 

Exact value 
for moment 

at x = 0  

Navier 
method 

Proposed method, 
test functions in 

WRM 

m m


l = 0.5 0.29079 22 8 8 

l = 0.1 0.45167 42 8 7 

l = 0.01 0.49502 154 16 13 

l → 0 0.5 284 23 18 

Other boundary conditions. In 2D applications so-
called “beam functions” are very often used which are so-
lutions of much simple 1D problems for beam. So 1D elab-
orated procedures are needed for future more complicated 
geometries. Proposed variant of WRM has not only single 
advantage over Navier method as to analysis of concen-
trated force. Other evident advantage – its simple adapta-
tion to different boundary conditions. Note that in Navier 
method only special combinations of them can be ana-
lyzed. To demonstrate it, consider the action of concen-
trated force on free edge of shell (beam) so the following 
boundary conditions are considered: 

(0) 1 ( 0), (0) 0,Q x M    (9a) 

where ( )x  is Dirac delta function. Similarly to above, 

construct the set of functions ( )k x : 

,0 ,1 1 ,2 2( ) ,   0 ,k k k k k k kx x             

( ) ( ),    0,k kx x x         (9b) 

which satisfy free boundary conditions: 

(0) ( ) 0k k x     . (9c)

Take ,0 1k  , then two other coefficient are related with it: 

,0 1k  ,
2

,1 2

2

( 1)
k

k

k
  


,    

2

,2 2( 2)
k

k

k
 


. (9d) 

The strict solution of this task is given by formula:  

1
( ) exp( ) cos

2
w x x x

    
 

.  (10) 

Check the accuracy of our variant of WRM. Note 
again that application of Navier method is impossible here. 
Another peculiarity of application of WRM is that 

( 0) 0m x   , and this excludes the possibility of adop-

tion of m
  as the test function, because free column in (8d) 

becomes equal to zero. As result only two test functions 

m m    and m m    are considered. On Fig. 6 the cor-

responding graphs of displacements and moments are 
shown for number of terms 15N  , for the sake of com-
parison the exact solution is given too. Galerkin method 
provides good accuracy for displacements and moments 
even with the number of terms 5N  . Application of 

m m    at 15N   provides almost perfect accuracy. As 

to adoption m m   , it gives much worse accuracy, as 

was noted in above tasks. 

a 

b 

Fig. 6. Calculated values of: (a) displacement; (b) 
moments at action of concentrated force at free 
edge 

Conclusions 

This work is methodological one, and on example of 
wide known 4th order differential task for axisymmetrical 
shell it demonstrates the peculiarities and advantages of ap-
plication of exponential functions in WRM. Special atten-
tion is given to choice of test functions, their justification 
and to consideration of action of concentrated force on the 
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boundary, while the trial functions satisfy to some zeros 
boundary conditions.  

1. It is suggested to use special symmetrical or
asymmetrical sets (combinations) of consequent exponen-
tial functions, which satisfy different combinations of zero 
boundary conditions. The technique of their determination 
is described. As in Navier method the possibility of omit-
ting the number zero function 0 , which usually chosen to 

satisfy non zero boundary condition, is demonstrated. This 
simplifies the procedure of application of WRM.   

2. Proposed method has noticeable advantage over
Navier method in case of action of concentrated or local-
ized forces. To achieve the similar accuracy it requires 

lesser terms, at least, in tens times as compared with Navier 
method.   

3. Influence of choice of test functions on the ac-
curacy of method is carefully investigated. It was shown 
that application in this capacity of odd derivative of trial 
function (even with artificially changed symmetry) gives 
very strange results. Attention is needed when outer force 
is concentrated one, then trial function should have non 
zero values in point of force application. Generally speak-
ing, the best choice of test function is the trial function it-
self (Galerkin method). Yet sometimes choice of test func-
tion as a second derivative of trial one can provide the best 
results for a bending moment. LSM sometimes requires too 
much terms, and is inferior one as compared with two 
above methods. 
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Застосування експоненціальних функцій в методі зважених нев’язок  в структурній  
механіці на прикладі осесиметричної задачі оболонки  
І. В. Ориняк, Ю. П. Бай  

Анотація. Метод зважених нев’язок набув широкої популярності протягом останніх років, особливо завдяки застосуванню 
в методах скінчених елементів. Він полягає в наближеному виконанні диференціальних рівнянь, тоді як граничні умови мають 
виконуватись точно. Ця мета досягається правильним вибором множин пробних (базових) функцій, які дають нев’язки. 
Нев’язки множать на вагові функції та мінімізують, інтегруючи по всій області задачі. Множина пробних і вагових функцій 
визначає особливість та переваги кожного конкретного методу. Найбільш популярним є вибір пробних і вагових функцій у 
вигляді тригонометричних або поліноміальних функцій. У двовимірних задачах часто використовуються так звані “балочні 
функції”, які є рішеннями більш простих одновимірних задач для балки.  
В даній методичній роботі ми досліджуємо можливість використання множин функцій, побудованих на послідовних експо-
ненціальних функціях, які точно задовольняють граничним умовам. Метод досліджено на прикладі простої осесиметричної 
задачі оболонки, точне рішення якої відоме для будь-якого навантаження. Для кількох прикладів розподіленого або концен-
трованого навантаження запропонований метод порівнюється з аналогічним методом Нав'є, в якому використовуються 
тригонометричні функції. Також ретельно досліджується правильний вибір вагових функцій. Зазначається, що запропоно-
вані множини симетричних чи антисиметричних експоненціальних функцій мають хорошу перспективу для застосування в 
більш складних задачах структурної механіки. 

Ключові слова: осесиметрична оболонка, розподілене навантаження, концентрована сила, метод Нав'є, метод Бубнова-
Гальоркіна, множина експоненціальних функцій. 
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Применение экспоненциальных функций в методе взвешенных невязок в структурной  
механике на примере осесимметричной задачи оболочки 
И. В. Орыняк, Ю. П. Бай 

Аннотация. Метод взвешенных невязок приобрел широкую популярность в последние годы, особенно благодаря применению 
в методах конечных элементов. Он состоит в приближенном выполнении дифференциальных уравнений, тогда как гранич-
ные условия должны выполняться точно. Эта цель достигается правильным выбором множества пробных (базовых) функ-
ций, которые дают невязки. Невязки умножают на весовые функции и минимизируют, интегрируя по всей области задачи. 
Множество пробных и весовых функций определяет особенность и преимущества каждого конкретного метода. Наиболее 
популярным является выбор пробных и весовых функций в виде тригонометрических или полиномиальных функций. В двумер-
ных задачах часто используются так называемые "балочные функции", которые являются решениями более простых одно-
мерных задач для балки. 
В данной методической работе мы исследуем возможность использования множеств функций, построенных на последова-
тельных экспоненциальных функциях, которые точно удовлетворяют граничным условиям. Метод исследован на примере 
простой осесимметричной задачи оболочки, точное решение которой известно для любой нагрузки. Для нескольких примеров 
распределенной или концентрированной нагрузки предложенный метод сравнивается с аналогичным методом Навье, в ко-
тором используются тригонометрические функции. Также тщательно исследуется правильный выбор весовых функций. 
Отмечается, что предложенные множества симметричных или антисимметричных экспоненциальных функций имеют хо-
рошую перспективу для применения в более сложных задачах структурной механики. 

Ключевые слова: осесимметричная оболочка, распределенная нагрузка, концентрированная сила, метод Навье, метод Буб-
нова-Галеркина, множество экспоненциальных функций. 
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