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Abstract. Approximate methods of computing the unsteady ventilated partial cavities created on both the plane and the cylindrical 
streamlined surfaces have been developed. The cases of plane partial cavities past a slender wedge-shaped cavitator, and axisymmetric 
partial cavities past a ring flange on the surface of an infinite circular cylinder are considered. Results of computer simulation of the 
unsteady ventilated partial cavities of both that types are shown. A comparison of the unsteady behavior of plane and axisymmetric 
ventilated partial cavities is given. A comparative analysis of two methods of controlling the partial cavities by varying the cavitator 
shape and by regulating the gas supply rate into a cavity is given. It has been shown that the first method is more effective for a partial 
cavity on a plane. For an axisymmetric partial cavity on a cylinder, both the control methods appear ineffective. 
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Introduction 

One of the ways to reduce the viscous drag of surface 
ship and underwater vehicle motion is to create elongated 
cavities on the streamlined surfaces [1]. These cavities are 
filled with the water vapor or gas. Various types of cavita-
tors may be used to create partial cavities (see Fig. 1). If 
the flow velocity V  is relatively low, then the partial cav-
ities must be ventilated with the volumetric gas supply 

rate inQ . 

A large number of experimental and theoretical 
works are devoted to the study of various problems arising 
when applying this method. Until now, however, the prob-
lems of the unsteady behavior of partial cavities, and also 
problems of controlling the partial cavities are weak inves-
tigated. As examples, we can give problems of the partial 
cavity reaction to varying the flow velocity ( )V t , the im-

mersion depth ( )H t , the air supply rate in ( )Q t , etc.

Control of the partial cavities is specified variations of the 
cavity dimensions by varying the cavitator shape and/or the 
gas supply rate, as well as suppression of possible instabil-
ity of ventilated cavities [2]. 

The aim of this work is to develop approximate 
methods for calculating and computer simulation of un-
steady ventilated partial cavities on plane and cylindrical 
surfaces under various unsteady perturbations, and with 
various methods of the cavity control. 

Two practically important types of partial cavities 
are considered. The first type is the partial cavity past an 
elongated rectilinear cavitator located on the plane perpen-
dicular to the mainstream (see Fig. 1, a). The second type 
is the partial cavity past a ring cavitator located on the sur-
face of an infinite circular cylinder, when the mainstream 
is directed along the cylinder generatrix (see Fig. 1, b). In 
the first case, the problem can be approximately considered 
as plane. The method for calculating the plane partial cav-
ities is based on the methods of the linear theory of cavita-
tion flow and the numerical method of discrete singulari-
ties [3, 4]. In the second case, the problem can be approxi-
mately considered as axisymmetric. To calculate axisym-
metric partial cavities on a cylinder, an approximation 
method based on the principle of independence of cavity 
section expansion by G.V.Logvinovich [5–7] was used. 
Using both the methods, we have developed the rapid com-
putational algorithms that allow us to observe the behavior 
of unsteady cavities on a computer screen directly during 
calculation, i.e. to realize computer simulation. 
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Fig. 1. Sketches of partial cavities: (a) on a 
plane surface; (b) on a cylinder surface 

Solution of plane problem 

If the cavitator, which is located on the flat wall Oxz

, has sufficiently large aspect ratio  /   1  b a  (where 
a, b are respectively the cavitator chord and the cavitator 
span), then in the middle sections parallel to the plane Oxy

, the problem can be approximately considered as plane. 
Here, we will neglect the boundary layer influence, the 
gravity and the surface tension influence, as well as the in-
fluence of the gas flow inside the partial ventilated cavity 
on the cavity shape and dimensions. 

One considers a plane unsteady problem of cavita-
tion flow of ideal, incompressible, and imponderable fluid 
around a slender wedge located on a flat wall 0y , so that 

the flow occurs in the upper half-plane y > 0 (see Fig. 2, a). 
Its solution coincides with the solution of the problem for 
infinite fluid and has the form of a set of three functional 
equations for three unknown functions ( , )q x t , ( )l t , 

c ( )p t  [4]: 
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Fig. 2. (a) Plane unsteady partial cavity past 
a slender wedge; (b) discretization scheme 

Here, ( , )q x t  is the intensity of source distributed on the 

interval [0, l(t)]; c ( )p t  is the cavity pressure; ( )wp t  is the 

specified water pressure; Q  is the cavity volume per unit 

length; inQ  and outQ  are the coefficients of volumetric gas 

rates of supply into the cavity and loss from the cavity, re-
spectively, referred to the pressure (0)wp . Here and be-

low, all variables are made dimensionless with respect to 
a, V. The source intensity ( , )wq x t  on the interval [0, 1] is 

determined by the specified cavitator shape: 

( , ) ( , )
( , ) 2w

f x t f x t
q x t

t x

      
.   (4) 

The equation of the gas mass in the cavity balance 
(3) was derived under the assumption that the gas expan-
sion in an unsteady cavity occurs according to the isother-
mal law. In this case the cavity pressure ( )cp t  is synchro-

nously varied along the cavity.

The gas supply rate inQ  is the specified fixed value 

or the specified time function when controlling the cavity. 
In the steady case in outQ Q , the known experimental data 

give a linear dependence of outQ  on   in some interval of 

the cavitation number variation. So, in work [8], in the case 
of the vertical plate cavitator one obtained the empirical 
dependence: 

  0.5293 0.2426  inQ    when   0.1 0.3   .    (5) 

Here, we will approximate the rate of the gas loss from the 
unsteady partial cavity with the semi-empirical depend-
ence: 

 
( )

( ) 1
 

    
out c

v

t
Q t B V ,  (6) 

where   is the empirical coefficient; cB  is the cavity mid-

section width; 2
v w2( ) /   vp p V  is the vapor cavita-

tion number; vp = 2350 Pa is the saturated vapor pressure; 
22 ( ) /   w cp p V  is the real cavitation number for the
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same values of wp , V . Formula (6) gives correct asymp-

totic 0outQ  when v . A comparison of relation

(6) with (5), and also with [9] gives the magnitudes  = 0.02 
– 0.04.

Formulae for determination of both the shape and the 
volume per unit length of the unsteady cavity are as follow-
ing: 

0

1
( , ) ( , )

2
  

x

F x t q s t x s ds ,     1 ( ) x l t .   (7) 

 
l( )

1

( ) ( , ) 
t

Q t F s t ds .   (8) 

Calculation algorithm 

The set of equations (1)  (3) is nonlinear, since ( )l t

is the unknown time function. We will find its numerical 
solution at successive times 

( ) ( 1) , 2, 3,  n nt t t n   

for the starting conditions: 

(1) (1) (1) (1)
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One replaces the time derivative in equations (1) and (3) 
with a finite difference of the first order. Then, on the n-th 
time layer, equations (1) ‒ (3) can be written as following: 
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where functions ( )
1 ( )nA x , ( )

3
nA  in the right part are known,

and function ( 1)
2 ( )nA x  is calculated by data of the previous 

time layer: 
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If the value ( )nl  at the n-th time step is considered to 
be known, then the set of equations (9), (10) becomes linear 
and may be effectively solved numerically by the discrete 
singularity method [3]. To improve the convergence of the 

method, we change of variables 2x z , 2s  prelimi-
narily in the integrals of the equations. After that, the cavity 

projection [1, ( )nl ] is partitioned into M equal intervals. 
Each interval contains a point source and a control point in 
which equation (9) is satisfied (see Fig. 2, b). The order of 
location of the singularities js  and control points ix  is de-

fined by the function class in which solution of the singular 
integral equation (9) is sought. It is limited in the point

1x  and unlimited in the point ( ) nx l : 

1 ( 0.75),   iz z i       1 ( 0.25),   j z j     

( ) 1
 

nl
z

M
,      , 1, 2, , i j M . 

As a result of discretization of equations (9), (10), we ob-
tain the set of M + 1 linear algebraic equations with respect 

to the unknowns ( ) ( ), , 1, 2,n n
j cq p j M :  
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After discretization, formulae (7), (8) have the form: 
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It is assumed that the values of the function ( )n
iq  are

known in the nodes of a fixed rectangular grid with the step 
t  in direction to n  and with the step 0x  in direction 

to i . Since these nodes do not coincide with the nodes of 

the computational grid, the values ( )n
iq  are preliminarily

obtained by interpolation. 
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We consider the cavity length ( )l t  as a free param-

eter and determine it at successive times ( )nt  by numeri-
cally solving functional equation (11) by the iterative 
method. At each iteration, the solution is calculated for 

fixed ( ) ( )( )n nl l t  from the set of linear algebraic equa-

tions (13), (14). 
Note that the condition of equality to zero of the total 

intensity of the sources (2) ensures the limitation of the 
pressure at infinity, but the unsteady cavity is open-ended. 
In this case, during computation the cavity thickness in the 

point ( ) nx l can become both positive and negative. We 
will assume that only that part of the cavity with ( , ) F x t

0 has the physical meaning. For each ( )nt  this condition is 

fulfilled on some interval [1, ( )n
rl ], where ( ) ( )n n

rl l . We

will consider the value ( )n
rl  as the real cavity length and

use it instead of ( )nl  when calculating the cavity volume 
( )nQ  by formula (16). 

Solution of axisymmetric problem 

Let us now consider the problem of an axisymmetric 
cavity past a ring cavitator (flange) on the surface of an in-
finite circular cylinder in the flow of ideal incompressible 
fluid (see Fig. 1, b). The cavitation number   is considered 
to be small. The flange height h  is considered to be small 
compared to the cylinder diameter bD . As above, we will 

neglect the boundary layer influence, the gravity and the 
surface tension influence, as well as the influence of the 
gas flow inside the ventilated partial cavity on the cavity 
shape and dimensions. 

In contrast to plane problems, axisymmetric prob-
lems on cavitation flows do not have exact solutions. We 
construct an approximate solution of the problem using the 
energetic and asymptotic methods [57]. It is known that 
an axisymmetric cavity has in its middle part the shape of 
an ellipsoid of revolution with the minor and major axes 

cD  and cL . In the case of small cavitation numbers for 

steady axisymmetric supercavities past blunted cavitators, 
the following semi-empirical relations are established [5]: 

, 
 

xx
c n c n

A cc
D D L D ,  (17) 

where cD  and cL  are the supercavity mid-section diame-

ter and length, respectively; nD  is the cavitator diameter; 

xc  is the cavitation drag coefficient;   is the cavitation 

number; 0.9 1.0, 2.0   A  are the empiric constants. 

It follows from here that the cavity aspect ratio   does not 
depend on the shape and dimension of the cavitator, it de-
pends only on the cavitation  number: 


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
c

c

L A

D
.  (18) 

In Chapter 5 of book [10], the relation for the midsection 
diameter of the cavity past the ring flange on a cylinder was 
obtained using the momentum theorem: 

4 (1 )
1


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c b
c h h

D D ,  (19) 

where / bh h D ; xrc  is the cavitation drag coefficient for 

the ring flange: 
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The length eL  of the major axis of the ellipsoid approxi-

mating the cavity shape can be determined by formula (18). 
If we draw the ellipse contour directly through the cavitator 
edge, then the distance of the edge from the left end of the 
ellipse is as following (see Fig. 3): 

2
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c

L R h
x

R
.   (21) 

Fig. 3. Design scheme of axisymmetric partial 
cavity past a ring flange on a cylinder 

The shape of a steady ellipsoidal cavity is deter-
mined by equation [6, 7]:  

 2
1

2
, 0 ,

2

 
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
c

S x k
x L

x
(22) 

where S  is the cavity section area; 1k  is the semi-empiri-

cal constant. Twice integrating this equation and requiring 
the fulfillment of two obvious relations: 

2
e

0x
2 4
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cL D
S ,   0x 0

2
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,   (23) 

we obtain the calculation formula: 
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2
1 1
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4 4 e
D k

S x x x L x x x
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1 2
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( 2 )
nD

k
L x

 

 

,     1   cx x L . 

The real cavity length past the flange eLcL  is deter-

mined from the condition 2S( ) / 4 c bL D .

It is taken into account in expression (24), that equa-
tion (22) is not valid for some transition interval 10  x x  

near the cavitator. On the interval 10  x x , the cavity 

shape is calculated using another formula, usually empiri-
cal one [5]. In the point 1x x , both the formulae should 

be matched so that the composite cavity contour does not 
have a roughness ( 1D  is the cavity diameter in the agree-

ment point). 

In this case, since the flange height is small 1,h
the flow near the flange weak differs from the plane flow 
[10]. Therefore, the exact solution of the plane problem can 
be taken as the cavity shape on the transition section 

10  x x . 

 b 

Fig. 4. Scheme of cavitation flow past a wedge: 
(a) physical plane; (b) parameter plane

Here we use the solution of the plane nonlinear prob-
lem of cavitation flow around a wedge located on the flat 
wall according to M.Tulin's 2nd scheme [11] (see 
Fig. 4, a). Let us denote: a  is the wedge side length, 
    is the wedge angle. 

This problem is equivalent to the problem of infinite 
cavitation flow around a symmetric wedge with the angle 
2 . Its solution is effectively constructed by the Chap-
lygin singular point method [11] by conformal mapping of 
the flow region and the complex potential region 

   W i  onto the first quadrant of the parametric varia-

ble plane     i  (see Fig. 4, b): 
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2 3
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;   is the 

scale coefficient. Here, all the variables were made dimen-
sionless with respect to a and V. Correspondence of points 
of the parametric and the physical planes is given by the 
formula: 

0

( ) ( )i iz e e d

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i dz dw
e

dw d
. 

From here, the shape of the upper cavity boundary may be 
calculated by assuming 0     , 0  . We obtain the 

value of the scale coefficient by calculating the wedge side 
length: 

1

0
0

( ) 1     d .  (28) 

The cavitation drag of the ring flange on a cylinder is equal 
to: 

  
1
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 b
b

D
R

a
. 

It was shown in work [10] in the case 90    that 
the agreement point 1x  moves away from the cavitator 

edge with increasing the cylinder diameter bD . When cal-

culating, the value 1x  should be selected in each individual 

case. 
The method of calculating the unsteady axisymmet-

ric cavity shape is based on the principle of independence 
of the supercavity section expansion by G.V.Logvinovich 
[5]. The mathematical expression of the independence 
principle is equation of expansion of the axisymmetric cav-
ity section [6, 7]: 

   2
1

2

,

2

  
 



S t k t

t
,       ct L t t ,   (30)
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where   is the instant of formation of the section x ; 
2( ) 2 [ ( ) ( )] /   w ct p t p t V . The perturbed water pres-

sure ( )wp t  is assumed to be specified, the cavity pressure 

( )cp t  for ventilated cavities is an unknown time function. 

According to the independence principle, the con-
stant 1k and the starting velocity of the section expansion 

must be the same for steady and unsteady cavities. From 
this we obtain the starting conditions for equation (30): 

2
1( , )

4


  

D
S ,  1

0
( )( , )

2
4
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 

 e
kS

L x
t

.  (31) 

Twice integrating equation (30) with starting conditions 
(31), we obtain the calculation formula: 

        
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1 1
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e
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At each time instant, the cavity length is determined from 
the condition: 

2

S(t- ( ), )
4


 b

c
D

L t t .  (33) 

In the ventilated cavity case, the equation of the gas 
mass in the cavity balance during its isothermal expansion 
(3) is added to relation (32). Dividing all terms of Eq. (3)
by 0  and integrating it for 0t , we obtain the calculation 

formula:

0
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t

c c in outp t Q t p Q Q s Q s ds    (34) 

where 0/ ( )   c cp p t ; 0/    ; 0/ 1    v  

is the similarity parameter for gas-filled cavities; 
22( ) /    v vp p V  is the vapor cavitation number; vp

= 2350 Pa is the saturated vapor pressure; inQ  and outQ

are the coefficients of volumetric gas flow rates into the 
cavity and from the cavity, which are referred to the water 
pressure wp : 

2
 in

in
b

Q
Q

VD


,      

2
 out

out
b

Q
Q

VD


.   (35) 

Basing on results of a series of experiments [12], we 
proposed the semi-empirical formula for the volumetric 
gas loss rate when a ventilated cavity is closed on a cylin-
drical body: 

 
2

2
1 ,
 

    
 

b
out b c c

c

D
Q VD L

D
 (36) 

where b  is the empiric coefficient which weakly depends 

on  . Formula (36) gives the correct asymptotic 0outQ  

when b cD D . When 0bD , it gives the gas loss rate 

for the case of free closure of the cavity with weak gravity 
influence [13]. 

In the unsteady case, it is more convenient to use the 
law (6) describing the dependence of gas loss from the cav-
ity on the variable cavity pressure: 

out 1
( )

( ) 1
 

    
b c c

v

t
Q t VD L . (37) 

In the case of a natural (vapor) supercavity, we have 

1  , 0 in outQ Q , and equation (3) degenerates into 

the condition of cavity pressure constancy   v . At each 

time instant, the partial cavity volume is equal to: 

 
cL ( )

0

( ) ( , ) 
t

bQ t S s t S ds .  (38) 

During calculation, the cavity part may be separated, 

and a jump of functions  cL t ,  Q t  may occur (see

Fig. 5). In this case at the separation instant 1t t  functions 

( )cL t  and ( )Q t  are stepwisely decreased from 

1 1( )  c cL L t t , 1( ) Q t t  to 2 1( )c cL L t , 1( )Q t , but 

the cavity pressure are not changed: 1 1( ) ( ) c cp t t p t . 

When 1t t , equation (34)  is replaced by the equation: 

1

1 1( ) ( ) ( ) ( ) [ ( ) ( )] .
t

c c in out
t

p t Q t p t Q t Q s Q s ds    (39)

The similar transformation of equation (34) occurs at each 
separation of the cavity part. 

The same algorithm is used to calculate the discon-
tinuous oscillation of the plane partial cavities (see above 
Section 3).  

Fig. 5. Scheme of separation of the unsteady 
cavity part 

Calculation results: plane cavities  

Examples of calculating the unsteady partial cavities 
for specified variation of the wedge angle ( ) y t x  and 
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the gas supply rate ( )inQ t  are given below. All the calcula-

tions were performed for fixed parameters 100.0a  mm, 

0 7.5   , 0.04  .  

Fig. 6 shows the graphs of variation of the relative 

length of the partial vapor cavity 0( 1) / ( 1)  cL l l  and 

the dimensionless volume per unit length 2/Q Q a  under 

stepwise (a) and periodic (b) variation of the wedge angle. 
As one can see, the cavity reaction is delayed and 

asymmetric. Under periodic perturbations, this develops in 
phase shift of the cavity oscillation. 

a 

b 

Fig. 6. Variation of cL  and Q  under variation of 

 : (a) stepwise, (b) periodic 

Fig. 7 shows the graphs of variation of the relative 

length of the ventilated cavity cL  (a) and dimensionless 

cavity pressure 2
c' / cp p V  (b) for a number of values

of the excess gas supply coefficient ( )extQ t . The calcula-

tions were performed for the following initial values of pa-
rameters: 30.0V  m/s, 0 500.0cL mm. The calculated 

initial parameters of the ventilated cavity are: c 41.740p

KPa, out Q 0.0235, 0 0.1469  . It is assumed that the 

fixed balanced gas supply in outQ Q  acts when 0t . At 

the time instant t 0 , the gas supply ext(0) in outQ Q Q

starts. 

a 

b 

Fig. 7. Variation of cL  (a) and cp  (b) at fixed inQ

As one can see, in both the cases of excessive and insuffi-
cient gas supply, the cavity length and cavity pressure are 
varied until a new balanced value of the gas loss coefficient 

out inQ Q  is set. The time for settling the balanced regime 

increases with increasing the gas supply intensity. 

Fig. 8 shows the graphs of varying cL  and cp  under 

stepwise (a) and periodic (b) variation of the gas supply 
rate. A comparison with Fig. 6 shows that the cavity reacts 
much slower to the gas supply variation than to the cavita-
tor shape variation. 

Fig. 9 shows the graphs of variation of cL  (a) and 

cp  (b) at abrupt turning-off the gas supply ( in outQ Q

when 0t , 0inQ  when t  0) for a number of immer-

sion depths H . The calculations were performed for the 
flow velocity 30.0V  m/s, the starting cavity length 

0 500.0cL  mm and fixed 0 0.1469  . 

As one can see, when the gas supply is turned off, 
the pressure and length of the cavity are rapidly decreased 
until the value c vp p  is attained. In this case, the higher 

H , the higher the cavity collapsing speed. 
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a 

b 

Fig. 8. Variation of cL and cp under variation of 

inQ : (a) stepwise, (b) periodic

a 

b 

Fig. 9. Effect of immersion depth H  on variation 
of cL  (a) and cp  (b) after the gas-supply 

turning off 

The developed calculation method makes it possible 
to solve a number of practical problems of the partial cavity 
control. As an example, Fig. 10 shows the processes of 
compensation of the plane partial cavity length decrease 
caused by decrease of the flow velocity ( )V t  by regulating 

the wedge angle ( ) t  (a) and by regulating the gas supply 

rate ( )inQ t  (b).

a 

b 

Fig. 10. Compensation of the plane partial cavity 
length decrease: (a) by regulating  , (b) by reg-

ulating inQ

As one can see, compensation of the plane partial 

cavity length decrease by regulating inQ  requires longer 

time due to the slower cavity reaction to the control action. 
This makes control of the plane partial cavity by regulating 

inQ  less effective than control by regulating .  

Calculation results: axisymmetric cavities  

In contrast to a freely closing supercavity past a disc or 
past a cone, the relative length of the partial cavity on a cylin-

der /c cL L h  depends not only on   and  , but also on 

bD . Fig. 11 shows the graphs of dependencies xrc  and cL

on /b bD D h  for 0.1   for a number of  . 
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a  

b 

Fig. 11. Effect of the cylinder diameter on xrc

(a) and on cL  (b)

Examples of the calculation of unsteady axisymmet-
ric partial cavities past the ring flange on a cylinder for 
specified variation of both the cavitator wedge angle ( ) t  

and the gas supply rate (t)inQ  are given below. All the cal-

culations were performed for fixed parameters 
200.0bD  mm, 10.0a  mm, 0 0.1  , 1 40.0x mm, 

1 0.006. b  

Fig. 12 shows the graphs of variation of the dimen-
sionless length ' /c c bL L D  and dimensionless volume 

3' / bQ Q D  of the vapor partial cavity on a cylinder under

stepwise (a) and periodic (b) variation of the angle 
(compare with Fig. 6).  

Fig. 13 shows the graphs of variation of 'cL  (a) and 

dimensionless cavity pressure 2
c' / cp p V  (b) for

0 45.0    under stepwise (a) and periodic (b) variations 

of the gas supply rate inQ  (compare with Fig. 8). 

As one can see, the partial cavity past the flange on 
a cylinder reacts very weakly to variation of both the 
wedge-shaped cavitator angle and the gas supply rate when 
 bh D . This is explained by the fact that in this case the 

cavity dimensions are defined mainly by the parameter bD

, which value is fixed (see (19)). Thus, both methods of 
controlling the partial cavity are ineffective in this case. 

a 

b 

Fig. 12. Variation of cL  and Q  under variation 

of  : (a) stepwise, (b) periodic 

a 

b 

Fig. 13. Variation of cL and cp under variation of 

inQ :  (a) stepwise, (b) periodic
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As is known, the similarity parameter / 1    v  

is of important for unsteady ventilated cavities. The higher 
the value of the parameter  , the stronger the dynamic be-

havior of a ventilated cavity differs from the dynamic be-
havior of a natural supercavity with the same starting cav-
itation number 0 . If the certain critical value cr  is ex-

ceeded, then the ventilated cavity stability loss may occur 
[2, 14, 15]. After that, the intense self-induced cavity oscil-
lation (pulsation) is settled. In the calculations, we can ob-
tain cavities with the same   but with different   by var-

ying the parameters H  and V . 
In the case of a free closing axisymmetric gas-filled 

cavity, one determines the minimum value 
21 / 6 2.645   cr  (see, for example, [14]). It was 

shown in our work [2], that if the cavity closes on a cylin-
der, then the value cr  depends on the cylinder diameter. 

Namely, with increasing the relative diameter /b cD D  the 

value of cr  increases, and the frequency f  of the arising 

self-induced oscillation decreases. 

Fig. 14 shows the graphs of variation of cL  (a) and 

c'p  (b) at fixed excess gas supply ext 0.04Q  for 

40.0 m/sV , 0 1.319   cr  (a) and V 20.0 m/s, 

0 5.275   cr  (b) (compare with Fig. 7). 

a 

b 

Fig. 14. Effect of parameter   on variation of cL

and cp  for fixed inQ : (a) 0 1.319  ;

(b) 0 5.275 

As one can see in Fig. 14, a, the cavity is stable when 

0  cr . In Fig. 14, b, when 0  cr , loss of stability oc-

curs, and the self-induced discontinuous cavity oscillation 
with the fundamental frequency f  23.8 Hz is settled. In 

practice, the cavity stability loss is always extremely unde-
sirable. 

When analyzing the self-induced oscillation of ven-
tilated cavities, it is convenient to consider the set of non-
linear equations (32) – (34) as a dynamic system with three 
phase variables ( )cL t , ( )cp t , ( )Q t . In this case, a limit 

loop in a phase space corresponds to the self-induced cav-
ity oscillation. Fig. 15 shows the three-dimensional phase-
plane portrait (a) and the power spectral density P  of the 
cavity length oscillation (b) for the cavity self-induced os-
cillation in Fig. 14, b. Here, 2 /  bk fD V  is the reduced 

frequency.  

a 

  b

Fig. 15. Analysis of self-induced oscillation of 
ventilated partial cavity on a cylinder: (a) phase-
plane portrait; (b) power spectral density of 

( )cL t

Comparison of unsteady behavior of plane 
and axisymmetric cavities 

A comparison of the results of computer simulation 
of unsteady plane and axisymmetric partial cavities shows 
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that in both the cases the cavity reaction to external pertur-
bation is delayed, which leads to the phase shift under the 
oscillatory perturbation. 

The main difference is that the partial cavities on a 
cylinder (  bh D , mathematical model of Section 4) react 

to external effects essentially weaker than the partial cavi-
ties on a plane. This is due to the fact that in this case the 
cavity dimensions are defined mainly by the parameter bD

, which is fixed. Hence, both the considered methods of ac-
tive control of the partial cavity on a cylinder are ineffec-
tive. On the contrary, these control methods are sufficiently 
effective for the partial cavity on a plane. 

The second important difference is that for axisym-
metric ventilated cavities, when   cr , spontaneous or 

forced loss of stability and the occurrence of self-induced 
oscillation (pulsations) of cavities are possible. On the con-
trary, in the case of the plane ventilated cavities on a plane 
(mathematical model of Section 2), the stability loss does 
not appear for any  . One can say in this respect that the 

mathematical model of Section 4 better reflects reality, 
since the instability of the plane ventilated cavities is ob-
served experimentally [15]. Also, it has been investigated 
theoretically [16]. 

Conclusion 

The approximate methods for calculating the un-
steady ventilated partial cavities created on the streamlined 
surfaces have been developed. The cases of both the cavity 
on a flat wall and the cavity past a ring flange on a cylinder 
surface are considered. In both the cases, rapid computa-
tional algorithms have been developed that make it possi-
ble to observe the behavior of unsteady cavities on a com-
puter screen directly during calculation. A number of prac-
tical problems of active control of the partial cavities are 
considered. It was established that the control of the plane 
partial cavity by regulating the gas supply into the cavity is 
less effective than control by regulating the wedge-shaped 
cavitator angle. This is due to the relatively slow reaction 
of the cavity to the gas supply variation than to varying the 
cavitator shape. For the axisymmetric partial cavity past 
the flange on a cylinder, both the considered control meth-
ods appear ineffective when  bh D . In addition, control 

by regulating the gas supply into the cavity is difficult due 
to the possible loss of stability and the occurrence of self-
induced oscillation of the ventilated cavity.   
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Расчет нестационарных вентилируемых пристенных каверн  

Владимир Семененко, Елена Наумова 

Аннотация. Разработаны приближенные методы расчета нестационарных вентилируемых пристенных каверн, создавае-
мых на плоских и цилиндрических обтекаемых поверхностях. Рассмотрены случаи плоских пристенных каверн за тонким 
клиновидным кавитатором и осесимметричных пристенных каверн, образованных за кольцевым выступом на поверхности 
бесконечного кругового цилиндра. Приведены результаты компьютерного моделирования нестационарных вентилируемых 
пристенных каверн обоих типов. Дано сравнение нестационарного поведения плоских и осесимметричных вентилируемых 
пристенных каверн. Дан сравнительный анализ методов управления пристенными кавернами путем изменения формы кави-
татора и путем регулирования расхода газа на поддув каверны. Показано, что для пристенной каверны на плоскости первый 
метод является более эффективным. Для осесимметричной пристенной каверны на цилиндре оба метода управления оказа-
лись малоэффективными. 

Ключевые слова: пристенная каверна; вентилируемая каверна; нестационарная каверна; метод дискретных особенностей; 
компьютерное моделирование. 

Розрахунок нестаціонарних вентильованих пристінних каверн  

Володимир Семененко, Олена Наумова 

Анотація. Розроблено наближені методи розрахунку нестаціонарних вентильованих пристінних каверн, що створюються 
на плоских і циліндричних обтічних поверхнях. Розглянуто випадки плоских пристінних каверн за тонким клиноподібним 
кавітатором і осесиметричних пристінних каверн, утворених за кільцевим виступом на поверхні нескінченного кругового 
циліндра. Наведено результати комп'ютерного моделювання нестаціонарних вентильованих пристінних каверн обох типів. 
Дано порівняння нестаціонарноъ поведінки плоских і осесиметричних вентильованих пристінних каверн. Дано порівняльний 
аналіз методів управління пристінними кавернами шляхом зміни форми кавітатора і шляхом регулювання витрати газу на 
піддув каверни. Показано, що для пристінної каверни на площині перший метод є більш ефективним. Для осесиметричної 
пристінної  каверни на циліндрі обидва методи управління виявилися малоефективними. 

Ключові слова: пристінна каверна; вентильована каверна; нестаціонарна каверн; метод дискретних особливостей; 
комп’ютерне моделювання. 
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