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Prediction of the unsteady ventilated partial
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Abstract. Approximate methods of computing the unsteady ventilated partial cavities created on both the plane and the cylindrical
streamlined surfaces have been developed. The cases of plane partial cavities past a slender wedge-shaped cavitator, and axisymmetric
partial cavities past a ring flange on the surface of an infinite circular cylinder are considered. Results of computer simulation of the
unsteady ventilated partial cavities of both that types are shown. A comparison of the unsteady behavior of plane and axisymmetric
ventilated partial cavities is given. A comparative analysis of two methods of controlling the partial cavities by varying the cavitator
shape and by regulating the gas supply rate into a cavity is given. It has been shown that the first method is more effective for a partial
cavity on a plane. For an axisymmetric partial cavity on a cylinder, both the control methods appear ineffective.
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Introduction

One of the ways to reduce the viscous drag of surface
ship and underwater vehicle motion is to create elongated
cavities on the streamlined surfaces [1]. These cavities are
filled with the water vapor or gas. Various types of cavita-
tors may be used to create partial cavities (see Fig. 1). If
the flow velocity V' is relatively low, then the partial cav-
ities must be ventilated with the volumetric gas supply
rate Qin.

A large number of experimental and theoretical
works are devoted to the study of various problems arising
when applying this method. Until now, however, the prob-
lems of the unsteady behavior of partial cavities, and also
problems of controlling the partial cavities are weak inves-
tigated. As examples, we can give problems of the partial
cavity reaction to varying the flow velocity ¥ (¢), the im-

mersion depth H (), the air supply rate Qn @), etc.
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Control of the partial cavities is specified variations of the
cavity dimensions by varying the cavitator shape and/or the
gas supply rate, as well as suppression of possible instabil-
ity of ventilated cavities [2].

The aim of this work is to develop approximate
methods for calculating and computer simulation of un-
steady ventilated partial cavities on plane and cylindrical
surfaces under various unsteady perturbations, and with
various methods of the cavity control.

Two practically important types of partial cavities
are considered. The first type is the partial cavity past an
elongated rectilinear cavitator located on the plane perpen-
dicular to the mainstream (see Fig. 1, a). The second type
is the partial cavity past a ring cavitator located on the sur-
face of an infinite circular cylinder, when the mainstream
is directed along the cylinder generatrix (see Fig. 1, b). In
the first case, the problem can be approximately considered
as plane. The method for calculating the plane partial cav-
ities is based on the methods of the linear theory of cavita-
tion flow and the numerical method of discrete singulari-
ties [3, 4]. In the second case, the problem can be approxi-
mately considered as axisymmetric. To calculate axisym-
metric partial cavities on a cylinder, an approximation
method based on the principle of independence of cavity
section expansion by G.V.Logvinovich [5-7] was used.
Using both the methods, we have developed the rapid com-
putational algorithms that allow us to observe the behavior
of unsteady cavities on a computer screen directly during
calculation, i.e. to realize computer simulation.
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Fig. 1. Sketches of partial cavities: () on a
plane surface; (b) on a cylinder surface

Solution of plane problem

If the cavitator, which is located on the flat wall Oxz
, has sufficiently large aspect ratio A=5b/a >> 1 (where

a, b are respectively the cavitator chord and the cavitator
span), then in the middle sections parallel to the plane Oxy

, the problem can be approximately considered as plane.
Here, we will neglect the boundary layer influence, the
gravity and the surface tension influence, as well as the in-
fluence of the gas flow inside the partial ventilated cavity
on the cavity shape and dimensions.

One considers a plane unsteady problem of cavita-
tion flow of ideal, incompressible, and imponderable fluid
around a slender wedge located on a flat wall y =0, so that

the flow occurs in the upper half-plane y > 0 (see Fig. 2, a).
Its solution coincides with the solution of the problem for
infinite fluid and has the form of a set of three functional
equations for three unknown functions ¢ (x,?), [(2),

p(1) [4]:
(0

f q(s t)ds I q(s,0)In | x—s | ds+mp,(t) = p,, (1),
0 1)
1<x<I(2).
(1)
J q(s,t)ds =0, )

0

I 0001=p,0[0,0-0u®] . G

i X
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Fig. 2. (a) Plane unsteady partial cavity past
a slender wedge; (b) discretization scheme

Here, ¢ (x,?) is the intensity of source distributed on the
interval [0, I(£)]; p.(¢) is the cavity pressure; p, () is the
specified water pressure; Q is the cavity volume per unit
length; O, and O, are the coefficients of volumetric gas

rates of supply into the cavity and loss from the cavity, re-
spectively, referred to the pressure p,,(0). Here and be-

low, all variables are made dimensionless with respect to
a, V. The source intensity g,,(x,?) on the interval [0, 1] is

determined by the specified cavitator shape:

W@ﬁ+wwﬁ]

ot Ox @

qw(xst) = 2|:

The equation of the gas mass in the cavity balance
(3) was derived under the assumption that the gas expan-
sion in an unsteady cavity occurs according to the isother-
mal law. In this case the cavity pressure p_(¢) is synchro-

nously varied along the cavity.

The gas supply rate Qm is the specified fixed value
or the specified time function when controlling the cavity.
In the steady case O, =0, , the known experimental data
give a linear dependence of Q,,, on ¢ in some interval of

the cavitation number variation. So, in work [8], in the case
of the vertical plate cavitator one obtained the empirical
dependence:

0, =-0.52936+0.2426 when c=0.1-03. (5)

Here, we will approximate the rate of the gas loss from the
unsteady partial cavity with the semi-empirical depend-

ence.:
Gm} ©)
o

v

Qou, t)=vB V[

where y is the empirical coefficient; B, is the cavity mid-
section width; o, =2(p,, —p,)/ sz is the vapor cavita-

tion number; p, = 2350 Pa is the saturated vapor pressure;

c=2(p,—p.)/p V2 is the real cavitation number for the
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same values of p,,, V. Formula (6) gives correct asymp-

totic Qom — 0 when 6 —>o,. A comparison of relation
(6) with (5), and also with [9] gives the magnitudes y=0.02
—-0.04.

Formulae for determination of both the shape and the
volume per unit length of the unsteady cavity are as follow-
ing:

F(x,t)z%]iq(s,t—x+s)ds, 1<x<(d). (7
0

1(1)
0 = [ Fs,t)ds . ®)
1

Calculation algorithm

The set of equations (1) — (3) is nonlinear, since /()

is the unknown time function. We will find its numerical
solution at successive times

(=D AL =2, 3,...
for the starting conditions:

t<1) = O’ q(l) (x) = qO (x)’ l(l) = l()’ G(l) = GO.

One replaces the time derivative in equations (1) and (3)
with a finite difference of the first order. Then, on the n-th
time layer, equations (1) — (3) can be written as following:

l(”)

(n)
J g 136 (s)ds j ¢ (s)In|x—s|ds+mp” =

=mp" — A(")(x)+ A<" D), 1<x<I™, (9

l(”]

[ 4" (s)ds = 4" = j g (s)ds , (10)
1

(n)Q(ﬂ) _p(n I)Q(n 1) +Atp(n)(Q(n) Q(EZt)) , (11

where functions 4" (x), 4" in the right part are known,

and function Aé”il) (x) is calculated by data of the previous
time layer:

A" (x) = Iq(" 1)(s)ln(x—s)afs+

=)
+ j " V(s)In|x—s|ds. (12)
1
If the value /" at the n-th time step is considered to
be known, then the set of equations (9), (10) becomes linear
and may be effectively solved numerically by the discrete
singularity method [3]. To improve the convergence of the

method, we change of variables x — z*, s — A% prelimi-
narily in the integrals of the equations. After that, the cavity

projection [1, \/I(T) ] is partitioned into M equal intervals.
Each interval contains a point source and a control point in
which equation (9) is satisfied (see Fig. 2, b). The order of
location of the singularities s; and control points x; is de-
fined by the function class in which solution of the singular
integral equation (9) is sought. It is limited in the point

x =1 and unlimited in the point x =/ :

z =1+A2(i-0.75), A, =1+Az(j—0.25),
) _
PO Ll i j=12,...M.
M

As a result of discretization of equations (9), (10), we ob-
tain the set of M + 1 linear algebraic equations with respect

to the unknowns qg"), pf"), j=1L2,..M:

< n At At (,
qu) 3 +1n‘ ?»2‘ k Epg):
Jj=1 i _7\‘]
= TAL ) A (2 + AP (2,) (13)
Az w 1 i 2 i
Zq(n)x _ (n)_ Z:q(n);L (14)
1
where M, =—,
Az

n " 1 1
A" (z) = Zq” ~+—In(z} =23
Zi Xj At

M
Az = Z gy " In(z! =230+ D g 27 - 23
j=1 j=1
After discretization, formulae (7), (8) have the form:

F(") _ f(”)(l)‘f‘ (n)

OZ P =R SR s
1:2,3,...,M(”).
Mm
0" = A, 3 £ (16)
i=1
where Ax, = O_I,i:2,3,...,M(").

It is assumed that the values of the function qf”)

known in the nodes of a fixed rectangular grid with the step

At in direction to n and with the step Ax, in direction
o i . Since these nodes do not coincide with the nodes of
the computational grid, the values q,(") are preliminarily

obtained by interpolation.



10

Mech. Adv. Technol. no. 3(90), 2020

We consider the cavity length /(¢) as a free param-

eter and determine it at successive times " by numeri-
cally solving functional equation (11) by the iterative
method. At each iteration, the solution is calculated for
fixed /™ =1(t™) from the set of linear algebraic equa-
tions (13), (14).

Note that the condition of equality to zero of the total
intensity of the sources (2) ensures the limitation of the
pressure at infinity, but the unsteady cavity is open-ended.
In this case, during computation the cavity thickness in the
point x = I can become both positive and negative. We
will assume that only that part of the cavity with F(x,?) >

0 has the physical meaning. For each /™ this condition is

fulfilled on some interval [1, I ], where I <1 We

will consider the value /("

" as the real cavity length and

use it instead of /' when calculating the cavity volume
0™ by formula (16).

Solution of axisymmetric problem

Let us now consider the problem of an axisymmetric
cavity past a ring cavitator (flange) on the surface of an in-
finite circular cylinder in the flow of ideal incompressible
fluid (see Fig. 1, b). The cavitation number  is considered
to be small. The flange height /4 is considered to be small
compared to the cylinder diameter D, . As above, we will

neglect the boundary layer influence, the gravity and the
surface tension influence, as well as the influence of the
gas flow inside the ventilated partial cavity on the cavity
shape and dimensions.

In contrast to plane problems, axisymmetric prob-
lems on cavitation flows do not have exact solutions. We
construct an approximate solution of the problem using the
energetic and asymptotic methods [5—7]. It is known that
an axisymmetric cavity has in its middle part the shape of
an ellipsoid of revolution with the minor and major axes
D, and L, . In the case of small cavitation numbers for

steady axisymmetric supercavities past blunted cavitators,
the following semi-empirical relations are established [5]:

/ Ay
Dc:Dn c_x, Lc:Dn Cx’
KGC (e}

where D, and L, are the supercavity mid-section diame-

(17)

ter and length, respectively; D, is the cavitator diameter;

c, is the cavitation drag coefficient; o is the cavitation

X
number; k =0.9-1.0, A=2.0 are the empiric constants.
It follows from here that the cavity aspect ratio A does not
depend on the shape and dimension of the cavitator, it de-
pends only on the cavitation number:

L Ak

7\‘:—:

D, o

In Chapter 5 of book [10], the relation for the midsection
diameter of the cavity past the ring flange on a cylinder was
obtained using the momentum theorem:

de h(1+h
D, =Db4/1+—c”h( +h),
KO

where h =h/D,; ¢

(18)

(19)

- 1s the cavitation drag coefficient for

the ring flange:
2F, ? ,
€y =— —, Where §, = ™Dy +2h)° _ nD; . (20)
pr-s, 4 4

The length L, of the major axis of the ellipsoid approxi-

mating the cavity shape can be determined by formula (18).
If we draw the ellipse contour directly through the cavitator
edge, then the distance of the edge from the left end of the
ellipse is as following (see Fig. 3):

2
L R, +h
xp =—¢|1—,[1-| 2— 21
=221 - ) @
L I
X, h Rq
, i
)f O a Rb \‘\
Xy Y
L2 | L2

Fig. 3. Design scheme of axisymmetric partial
cavity past a ring flange on a cylinder

The shape of a steady ellipsoidal cavity is deter-
mined by equation [6, 7]:

2
865—(2)6):_k1_0 0<x<L_,
x

n . (22)

where S is the cavity section area; k; is the semi-empiri-

cal constant. Twice integrating this equation and requiring
the fulfillment of two obvious relations:

L D? L
S| 2o ox, | =12, OS(L _
2 4 or\ 2

xojzo, (23)

we obtain the calculation formula:

D}k
S =" ) (L - 25 —x ) (24)
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p 4D -D;)

, x<x<L.
' oL, - 2x,) : ¢

The real cavity length past the flange L, <L, is deter-

mined from the condition S(L,)=nDj /4.

It is taken into account in expression (24), that equa-
tion (22) is not valid for some transition interval 0 <x < x;

near the cavitator. On the interval 0<x <x;, the cavity
shape is calculated using another formula, usually empiri-
cal one [5]. In the point x = x; , both the formulae should
be matched so that the composite cavity contour does not
have a roughness (D, is the cavity diameter in the agree-
ment point).

In this case, since the flange height is small h << 1,

the flow near the flange weak differs from the plane flow
[10]. Therefore, the exact solution of the plane problem can
be taken as the cavity shape on the transition section
0<x<x.

ky @
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N e )(
\\\ ‘}— G
A e -~ H
a
Ay
Al oo
€9
011
T 1 1T o
— } Lot
B FG H A ¢
b

Fig. 4. Scheme of cavitation flow past a wedge:
(a) physical plane; (b) parameter plane

Here we use the solution of the plane nonlinear prob-
lem of cavitation flow around a wedge located on the flat
wall according to M.Tulin's 2nd scheme [11] (see
Fig. 4, a). Let us denote: a is the wedge side length,
o =7y is the wedge angle.

This problem is equivalent to the problem of infinite
cavitation flow around a symmetric wedge with the angle
2a.. Its solution is effectively constructed by the Chap-
lygin singular point method [11] by conformal mapping of
the flow region and the complex potential region

W = ¢ +iy onto the first quadrant of the parametric varia-
ble plane ¢ = £ +in (see Fig. 4, b):

2
W et
dg (I-¢%)

d_W:emm(g—ijz“{(wxgr—l)}“" 26

dz c+i (c—D)(ct+1)

2
1
where y=—In(l1+0); =14 1+(l] ; &k is the
2n u \/ H

scale coefficient. Here, all the variables were made dimen-
sionless with respect to a and V. Correspondence of points
of the parametric and the physical planes is given by the
formula:

(25)

S
2(g) =™ +xe ™ [D(c)ds, 27
0

where © = le”r“ 4z dw .
K dw dg

From here, the shape of the upper cavity boundary may be
calculated by assuming 0 < ¢ <1, n=0. We obtain the

value of the scale coefficient by calculating the wedge side
length:

1
K j @),y dn=1. (28)
0

The cavitation drag of the ring flange on a cylinder is equal
to:

1
_ — d
F,. =npV? j p(n)[R,, + y(n)]d—ﬁdn, (29)
0
2
- D
where fa(n)zl—d—W s sz—b.
dz 2a

It was shown in work [10] in the case o =90° that
the agreement point x; moves away from the cavitator

edge with increasing the cylinder diameter D, . When cal-
culating, the value x; should be selected in each individual

case.
The method of calculating the unsteady axisymmet-
ric cavity shape is based on the principle of independence
of the supercavity section expansion by G.V.Logvinovich
[5]. The mathematical expression of the independence
principle is equation of expansion of the axisymmetric cav-

ity section [6, 7]:

2
0°S (. 1) :_klc(t) ’ t—LC(Z)S‘CSt ’
or? 2

(30)
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where T is the instant of formation of the section x;
o) =2[p,®O-p.®O) sz . The perturbed water pres-
sure p,,(¢) is assumed to be specified, the cavity pressure
p.(t) for ventilated cavities is an unknown time function.

According to the independence principle, the con-
stant k, and the starting velocity of the section expansion

must be the same for steady and unsteady cavities. From
this we obtain the starting conditions for equation (30):

2
S(r.7) = nD; ’ 08(z,7) _ klcl(t)

L,—2x,).
4 at ( e x())

€2))

Twice integrating equation (30) with starting conditions
(31), we obtain the calculation formula:

2 t
%%1 o(1)(L, ~2% ) (1) ~2[ (1=s)o(s)ds |. (32)

T

S(rt)=

At each time instant, the cavity length is determined from
the condition:

2
S(t-L, (£),1) = % . (33)

In the ventilated cavity case, the equation of the gas
mass in the cavity balance during its isothermal expansion
(3) is added to relation (32). Dividing all terms of Eq. (3)
by o, and integrating it for 7 > 0, we obtain the calculation

formula:
Pe(D0() = P.(0)0(0)+B[ [0, (5) = Oy ()1, (34)
0

where p.=p./c,=Pp-0(t); 6=6/0y; p=0,/0, =1

is the similarity parameter for gas-filled cavities;

c,=2(p,—p,)/ ij is the vapor cavitation number; p,

= 2350 Pa is the saturated vapor pressure; Q-n and Qom

are the coefficients of volumetric gas flow rates into the
cavity and from the cavity, which are referred to the water
pressure p,,:

O = QOM; .
VD,

— 0. —
0= 2u. G3)

VD;

Basing on results of a series of experiments [12], we
proposed the semi-empirical formula for the volumetric
gas loss rate when a ventilated cavity is closed on a cylin-
drical body:

) D>
Qr)ut ZYbVDch I_D_g > (36)

c

where 7, is the empiric coefficient which weakly depends

on o. Formula (36) gives the correct asymptotic Qout -0

when D, — D, . When D, — 0, it gives the gas loss rate

for the case of free closure of the cavity with weak gravity
influence [13].

In the unsteady case, it is more convenient to use the
law (6) describing the dependence of gas loss from the cav-
ity on the variable cavity pressure:

Qout (t) = YblVDch (1 _@j .

G,

(37

In the case of a natural (vapor) supercavity, we have
B=1, Qn :QM =0, and equation (3) degenerates into
the condition of cavity pressure constancy ¢ =G, . At each
time instant, the partial cavity volume is equal to:
L.(0)

[ [SGs.-S,]ds.
0

o) = (3%)
During calculation, the cavity part may be separated,
and a jump of functions L, (t) , Q(t) may occur (see
Fig. 5). In this case at the separation instant ¢ =¢ functions
L.(t) and Q(¢f) are stepwisely decreased from
Ly=L.(y-Ar), Q@ —Ar) to L, =L.(1), O), but
the cavity pressure are not changed: p (¢, —A?) = p (%) .
When ¢ > 1, equation (34) is replaced by the equation:

P.(00) = P.(t)0(1) +B[10,, ()~ Oy ()lds . (39)

]

The similar transformation of equation (34) occurs at each
separation of the cavity part.

The same algorithm is used to calculate the discon-
tinuous oscillation of the plane partial cavities (see above
Section 3).

rava ki
b
=< ¥

Fig. 5. Scheme of separation of the unsteady
cavity part

Calculation results: plane cavities

Examples of calculating the unsteady partial cavities
for specified variation of the wedge angle y = a(¢)x and
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the gas supply rate Qm () are given below. All the calcula-
tions were performed for fixed parameters @ =100.0 mm,
oy =7.5%, y=0.04.

Fig. 6 shows the graphs of variation of the relative
length of the partial vapor cavity Zc =(/-1)/(,-1) and

the dimensionless volume per unit length Q =Q/ a® under

stepwise (a) and periodic (b) variation of the wedge angle.

As one can see, the cavity reaction is delayed and
asymmetric. Under periodic perturbations, this develops in
phase shift of the cavity oscillation.

4

Fig. 6. Variation of L. and Q under variation of
a : (a) stepwise, (b) periodic

Fig. 7 shows the graphs of variation of the relative
length of the ventilated cavity L. (@) and dimensionless
cavity pressure p,'=p,./ sz (b) for a number of values

of the excess gas supply coefficient Qm (#). The calcula-

tions were performed for the following initial values of pa-
rameters: V' =30.0 m/s, L., =500.0 mm. The calculated

C
initial parameters of the ventilated cavity are: p, = 41.740
KPa, Qout =0.0235, 6, =0.1469. It is assumed that the
fixed balanced gas supply Q-,, = Qou, acts when ¢ < 0. At

the time instant t =0 , the gas supply Qn = Qom 0) +Qm
starts.

L.
25+
0.04
2.0
1.5+ 0.02
1.0 —
Qext =0
0.5r -0.02
0.0 ‘ : ‘ !
0.0 0.2 0.4 0.6 0.8 t,s
a
P
0.04
0.15 -
0.02
0.10
Qext =0
0.05 -
-0.02
0.00 ‘
0.0 0.2 0.4 0.6 0.8 ts
b

Fig. 7. Variation of L, (a)and p, (b)at fixed 0,

As one can see, in both the cases of excessive and insuffi-
cient gas supply, the cavity length and cavity pressure are
varied until a new balanced value of the gas loss coefficient

O = Q-n is set. The time for settling the balanced regime
increases with increasing the gas supply intensity.

Fig. 8 shows the graphs of varying ZC and p. under
stepwise (@) and periodic (b) variation of the gas supply
rate. A comparison with Fig. 6 shows that the cavity reacts
much slower to the gas supply variation than to the cavita-
tor shape variation.

Fig. 9 shows the graphs of variation of ZC (a) and
p. (b) at abrupt turning-off the gas supply (Q-n =Q,w
when <0, Qn =0 when ¢ > 0) for a number of immer-

sion depths H . The calculations were performed for the
flow velocity ¥ =30.0 m/s, the starting cavity length
L., =500.0 mm and fixed o, =0.1469.

As one can see, when the gas supply is turned off,
the pressure and length of the cavity are rapidly decreased
until the value p, = p, is attained. In this case, the higher

H , the higher the cavity collapsing speed.
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2.5

0.0 0.2 0.4 0.6 ts

2.0

The developed calculation method makes it possible
to solve a number of practical problems of the partial cavity
control. As an example, Fig. 10 shows the processes of
compensation of the plane partial cavity length decrease
caused by decrease of the flow velocity V' (¢) by regulating

the wedge angle a(¢) (a) and by regulating the gas supply
rate O, (1) (b).

1.4 -

120 0.1.a°

0.0 0.1 0.2 0.3 0.4 ts

Fig. 8. Variation of L, and p,under variation of

0., : (a) stepwise, (b) periodic

0.2 20m

0.0 :
0.00 0.05 0.10 0.15 ts

0.4 - H=1m

0.3
10m

0.2 -

0.1 ¢ 20m

0.00 ‘ 0.65 0.10 0.15 t.s
b

Fig. 9. Effect of immersion depth H on variation

of L. (a) and p, (b) after the gas-supply

turning off

0.0 0.1 0.2 0.3 0.4 ts

1.4 -

12l 01.a°

Fig. 10. Compensation of the plane partial cavity
length decrease: (@) by regulating o, (b) by reg-

ulating Qin

As one can see, compensation of the plane partial
cavity length decrease by regulating Qin requires longer

time due to the slower cavity reaction to the control action.
This makes control of the plane partial cavity by regulating

0, less effective than control by regulating o.

Calculation results: axisymmetric cavities

In contrast to a freely closing supercavity past a disc or
past a cone, the relative length of the partial cavity on a cylin-

der L, =L, /h depends not only on o and o, but also on
D, . Fig. 11 shows the graphs of dependencies c,, and ZC

on D, =D,/ h for 5 =0.1 foranumber of o.
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15

ch
90°
0.8
60°
45°
0.6 -
o=30°
04 1 1 1 —
0 10 20 30 Dy
a
Lc
200 -
100 -
0

Fig. 11. Effect of the cylinder diameter on c,,
(a)andon L, (b)

Examples of the calculation of unsteady axisymmet-
ric partial cavities past the ring flange on a cylinder for
specified variation of both the cavitator wedge angle a.(¢)
and the gas supply rate Qm (t) are given below. All the cal-
culations were performed for fixed parameters
Dy =200.0 mm, ¢ =10.0 mm, 6, =0.1, x;, =40.0 mm,
¥y = 0.006.

Fig. 12 shows the graphs of variation of the dimen-
sionless length L.'=L./D, and dimensionless volume
0'=0/ D,f of the vapor partial cavity on a cylinder under

stepwise (@) and periodic (b) variation of the angle o
(compare with Fig. 6).
Fig. 13 shows the graphs of variation of L, ' (a) and

imensionless cavity pressure p.'=p./p or
dimensionl i =p. PV (b) f

o, =45.0° under stepwise (@) and periodic (b) variations

of the gas supply rate Qm (compare with Fig. 8).

As one can see, the partial cavity past the flange on
a cylinder reacts very weakly to variation of both the
wedge-shaped cavitator angle and the gas supply rate when
h << D,,. This is explained by the fact that in this case the

cavity dimensions are defined mainly by the parameter D,

, which value is fixed (see (19)). Thus, both methods of
controlling the partial cavity are ineffective in this case.
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Fig. 12. Variation of L. and Q under variation

of A : (a) stepwise, (b) periodic

Fig. 13. Variation of 7 and p,_under variation of

O,,: (a) stepwise, (b) periodic



16

Mech. Adv. Technol. no. 3(90), 2020

As is known, the similarity parameter f=0,/c2>1

is of important for unsteady ventilated cavities. The higher
the value of the parameter B, the stronger the dynamic be-
havior of a ventilated cavity differs from the dynamic be-
havior of a natural supercavity with the same starting cav-
itation number o, . If the certain critical value B, is ex-
ceeded, then the ventilated cavity stability loss may occur
[2, 14, 15]. After that, the intense self-induced cavity oscil-
lation (pulsation) is settled. In the calculations, we can ob-
tain cavities with the same o but with different g by var-

ying the parameters A and V' .
In the case of a free closing axisymmetric gas-filled
cavity, one determines the minimum  value

B, =1+7° /6=2.645 (see, for example, [14]). It was

shown in our work [2], that if the cavity closes on a cylin-
der, then the value 3, depends on the cylinder diameter.

Namely, with increasing the relative diameter D), / D, the
value of B, increases, and the frequency f of the arising
self-induced oscillation decreases.

Fig. 14 shows the graphs of variation of ZC (a) and

Al

p.' (b) at fixed excess gas supply stt =0.04 for
V=400m/s, B,=1319<B, (a) and V' =20.0 m/s,
By =5.275>,, (b) (compare with Fig. 7).
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Fig. 14. Effect of parameter p on variation of Z,

and p, for fixed Op: (@) Po=1319;
(b) By =5.275

As one can see in Fig. 14, a, the cavity is stable when
By <B. - InFig. 14, b, when B, > B, , loss of stability oc-

curs, and the self-induced discontinuous cavity oscillation
with the fundamental frequency f = 23.8 Hz is settled. In

practice, the cavity stability loss is always extremely unde-
sirable.

When analyzing the self-induced oscillation of ven-
tilated cavities, it is convenient to consider the set of non-
linear equations (32) — (34) as a dynamic system with three
phase variables L.(f), p.(¢), O(¢). In this case, a limit

loop in a phase space corresponds to the self-induced cav-
ity oscillation. Fig. 15 shows the three-dimensional phase-
plane portrait () and the power spectral density P of the
cavity length oscillation () for the cavity self-induced os-
cillation in Fig. 14, b. Here, k =2nfD, /V is the reduced

frequency.
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Fig. 15. Analysis of self-induced oscillation of
ventilated partial cavity on a cylinder: (a) phase-
plane portrait; (b) power spectral density of

L9

Comparison of unsteady behavior of plane
and axisymmetric cavities

A comparison of the results of computer simulation
of unsteady plane and axisymmetric partial cavities shows
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that in both the cases the cavity reaction to external pertur-
bation is delayed, which leads to the phase shift under the
oscillatory perturbation.

The main difference is that the partial cavities on a
cylinder (& << D, , mathematical model of Section 4) react

to external effects essentially weaker than the partial cavi-
ties on a plane. This is due to the fact that in this case the
cavity dimensions are defined mainly by the parameter D,

, which is fixed. Hence, both the considered methods of ac-
tive control of the partial cavity on a cylinder are ineffec-
tive. On the contrary, these control methods are sufficiently
effective for the partial cavity on a plane.

The second important difference is that for axisym-

metric ventilated cavities, when B> ., spontaneous or

forced loss of stability and the occurrence of self-induced
oscillation (pulsations) of cavities are possible. On the con-
trary, in the case of the plane ventilated cavities on a plane
(mathematical model of Section 2), the stability loss does
not appear for any p . One can say in this respect that the

mathematical model of Section 4 better reflects reality,
since the instability of the plane ventilated cavities is ob-
served experimentally [15]. Also, it has been investigated
theoretically [16].
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Pacuer HECTANUOHAPHBIX BECHTUWINPYEMBIX IPUCTCHHBIX KaBCPH

Baagumup Cemenenko, Enena Haymona

Aunomayusn. Paspabomansl npubnudicentvle Memoovl pacuema HeCmayuoHapHblX 6eHMUTUPYEMbIX NPUCMEHHBIX KA6epH, co30asae-
MUIX HA NAOCKUX U YUTUHOPUUECKUX 0OMEKaeMblX NO8epXHOCmsAX. Paccmompensl ciyuau nAOCKUX NPUCMEHHBIX KABEPH 3a MOHKUM
KIUHOBUOHBIM KABUMANMOPOM U OCECUMMEMPUUHBIX NPUCIMEHHBIX KABEPH, 0OPA3068AHHBIX 30 KONbYEGbIM 8bICIYNOM HA NOBEPXHOCU
OeCKOHEeUH020 KPYy2068020 yununopa. IIpusedensl pe3yibmamsl KOMIbIOMEPHO20 MOOIUPOBAHUSL HECIAYUOHAPHBIX 6EHMUNUPYEMbIX
NPUCMEHHBIX KABePH 000UX munos. JJaHo cpasHeHue HeCmayuoOHAPHO20 NOBEOEHUs NIOCKUX U OCECUMMEMPUUHBIX GEHMUIUDYEMbIX
npucmenHvix KagepH. J{an cpasHumenbHblll aHaiu3 Memooos ynpasieHus NPUCMeHHbIMU KA6epHamil Nymem usMeHeHUs Qopmbl Kasu-
mamopa u nymem pe2yiuposanus pacxood 2a3a Ha nodoys kagephvl. Ilokaszarno, ymo 0.5t NPUCMENHOU KagepHbl HA NIOCKOCMU NEPEblil
Mmemoo sigusiemces boaee dghpexmusHvim. [l ocecummempuyHoOl RPUCMERHOU KAephbl HA YUIUHOpe 06a Memood Ynpagienus okasa-
JIUCL MATOIPPEKMUSHBIMU.

Knrwouesvie cnosa: NPUCMEHHAs KaBepHA, 6EHMUIUpyemdas Kkaeepna, HecmayuoHapHas KaeepHa, Memoo Oucxpemelx OCO6€HHOCm€1Z,'
KomMnvlomepHoe /WOO@]IHPO@CZHME.

P03anYHOK HeCTaHiOHapHI/IX BCHTHWJIBOBAHUX IIpI(ICTiHHI/IX KaBEpH

Boaoaumup Cemenenko, Osiena Haymona

Anomauia. Po3pobneno nabaudiceni memoou po3paxyHKy HeCmayioHapHUX 8eHMUNbOBAHUX NPUCMIHHUX KABEPH, WO CMBOPIOIOMbCS
Ha NIOCKUX | YUNTHOPUYHUX OOMIYHUX NoBepXHAX. Pozenanymo eunaoku niockux npucminHux KaeepH 3a MOHKUM KAUHONOOIOHUM
KAimamopom i ocecumMempuyHux nPUCmiHHux KaeepH, YMeopeHux 3a Kilbyesum GUCTHYNOM HA NOBEPXHI HECKIHYEHHO20 KPY208020
yuninopa. Hageoeno pesynvmamu komn'tomepHo2o MoOen08anHs HeCmayioOHaPHUX GeHMUTbOBAHUX NPUCIIHHUX KABEPH 000X MUNIs.
Jano nopienauns HecmayioHapHO® NOBEOIHKU NJIOCKUX I OCECUMEMPUYHUX 6EHMUTbOBAHUX NPUCIIHHUX KABEPH. [JaHO NOPIGHATbHULL
aHaniz Memooie YnpaeiHHsL NPUCTIHHUMU KAGEPHAMU WLTISXOM 3MIHU (POPMU KABIMamopa i Wisixom pe2yo8anHs eumpamu 2azy Ha
niodye xkasepuu. Iloxaszano, wo 0 NPUCMIKHOT KAGEPHU HA NJIOWUHI nepuull Memoo € Oinvut epekmusHum. /s ocecumempuunoi
npUCMinKOl Kasephu Ha YULiHOPi 06U08a MemoOU YRPAGIIHHS GUABUIUCS MALOCHEKMUBHUMU.

Knrwuoei cnosa: npucmiHHa KaeepHd, 6eHMUl1b068AHA KdaeepHa, Hecmauionapﬁm KdaeepH, Mmemoo c)ucxpeml-mx oco6ﬂueocmeﬁ;
Komn ’iomepHe MOOCNIOBAHHSL.





