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Аbstract. The most common approach in dynamic analysis of engineering structures and physical phenomenas consists in finite element 
discretization and mathematical formulation with subsequent application of direct time integration schemes. The space interpolation 
functions are usually the same as in static analysis. Here on example of 1-D wave propagation problem the original implicit scheme 
is proposed, which contains the time interval value explicitly in space interpolation function as results of analytical solution of differ-
ential equation for considered moment of time. The displacements (solution) at two previous moments of time are approximated as 
polynomial functions of position and accounted for as particular solutions of the differential equation. The scheme demonstrates the 
perfect predictable properties as to dispersion and dissipation. The crucial scheme parameter is the time interval – the lesser the 
interval the more correct results are obtained. Two other parameters of the scheme – space interval and the degree of polynomial 
approximation have minimal impact on the general behavior of solution and have influence on small zone near the front of the wave. 
Кeywords: 1-D wave equation, implicit, direct time integration, suddenly applied force, numerical dissipation.

1. Introduction 

The transient behavior of various engineering struc-
tures and wave propagation are usually performed by 
method of mode superposition or direct time integration 
[1]. The mode superposition becomes a cumbersome ap-
proach in case of nonlinear effects, thus most of investiga-
tions and software are based on direct time integration of 
finite element equations. Regretfully in analysis of wave 
propagation problems these solutions are often lack of suf-
ficient accuracy, which is exhibited in artificial period 
elongations (dispersion) and amplitude decays (dissipa-
tion) [2]. The reason of it lies in the spatial discretization 
and elaboration of finite elements as well as time integra-
tion peculiarities.  

Furthermore, the common approach for structural 
dynamic equations in FEM is independent treatment of 
spatial finite element description, i.e., in dynamical analy-
sis it is supposed that interpolation functions within each 
element are time independent and are the same as in static 
[3]. Yet the theoretical solution of 1-D wave propagation 
has the form ( ) ( )1,2,U x t f x ct= ± , where x – is the spatial 
variable, t – is a time, and c is a constant of material. The 
same is about the general solution by natural modes, where 
the general term can be approximately presented as: 

 ( ) ( ) ( ), cos / cosn n nU x t x c t= ω ⋅ ω =  

 ( ) ( )1 1cos cos .
2 2

n nx ct x ct
c c

ω ω   = + + −   
   

 (1) 

Where n is the mode number, and nω  is the mode 
frequency. So, the space and time coordinates are interre-
lated in exact analytical solutions. This means that within 
the small space element the interpolation functions in FEM 
should be time dependent too. Such idea was vaguely exp-
ressed in book [3].  

In this paper we elaborate this idea on the very popu- 
lar example of 1-D wave propagation problem. A lot of au-
thors demonstrate the advantages and peculiarities of ap-
plication of their methods of time integration on example 
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of the elastic long rod subjected to variable force, mention 
here only some recent works [4–15]. There are, at least, 
three reasons for that. First, it has a remarkable and simple 
analytical solution to compare with, which can be adjusted 
to different boundary and initial conditions, to rod consist-
ing of several materials, etc. Second, for suddenly applied 
force the solution has an abrupt propagation velocity front, 
which is hard to obtain in numerical approach, so the quali-
ty of numeric calculation can be evidently demonstrated. 
Third, this type of equation and solution is very important 
for practical water hammer analysis and 1-D gas dynamic 
of multibranched piping systems [16, 17]. 

A few words about the time integration schemes. 
The equation of equilibrium is considered in consequent 
discrete points of time. In structural dynamic the order of 
differential equation with respect to time is equal to 2. It 
means that minimal number of required consequent time 
points in any scheme is 3. In general, step-by-step integra-
tion methods are divided into two types: explicit and im-
plicit. The explicit methods are considered to be much sim-
pler because they do not require the factorization of the ef-
fective stiffness matrix. On other hand they are only un-
conditionally stable, requires very small steps of time and, 
what is important in our opinion, they do not eventually 
lead to the static solution, when the outer load stabilizes in 
time. Implicit methods are more versatile, although are 
much expensive.  

In our work we will use the simplest implicit central 
difference scheme [18], so we will not discuss here the 
abundance of modern developments in time integration 
schemes [4–15]. The main emphasis of paper is a new tech-
nique of accounting for the time integration interval tΔ  in 
the space interpolation functions. In this sense the idea of 
work is similar to spectral element technique [19], where 
the of frequency is employed in space interpolation func-
tions. The principal difference consists in necessity to ac-
count for the states achieved in two previous points of time.  

2. Semianalytical method 

Start from the general equation of 1-D wave propa-
gation in rod with length L, Fig 1. The derivative of dis-
placement, ( ),U x t  is related with inner force ( , )N x t , and 
derivative of force is related with the acceleration, so:  

 ( ) ( ), ,dU x t N x t
dx EF

= −  (2a) 

 
( ) ( )2, ,dN x t d U x t

F
dx dx

= −ρ  (2b) 

Where the axis x, force N  and displacement U  are di-
rected from the left to right, Fig 1. Excluding the inner 
force from these equations we get the 1-D wave propaga-
tion equation:  

 
( ) ( )2 2

2
2

, ,d U x t d U x t
c

dxdt
= , (2c) 

 2c E= ρ . (2d) 

Where E  is the module of elasticity, ρ is the density, F is 
the rod area.  

 

 
Fig. 1. General scheme of rod 

According to simplest central difference scheme 
consider the looking for function U only in discrete points 
of time 0 1 1, ,..., , ,...i it t t t−  As in all numerical methods break 
down the whole length of rod by points 

0 1, ,..., ,...,j JX X X X  on J elementary sections (elements). 
For each element, j , introduce the local system of coordi-
nate x: 

 1 10 ;j j j j jx X X l x x l− −≤ = − ≤ − =  (2e) 

where jl  is the length of element j . Withing each element 
j  the looking for function U in each point of time it  is 

considered as a continuous function of x .  
For each space element 𝑗 the left side of wave equa-

tion (2c) can be presented according to the simplest central 
difference scheme centered in time point 1i − , as:  

 
( ) ( ) ( ) ( )2

1 2
12 2

, 2
|

j ji j
i i i

i
d U x t U x U x U x

dt t
− −

−
− +

=
Δ

. (3a) 

The general scheme of solution of (2c) to be the im-
plicit one, we need to take the right hand of (2c) in the point 
of time equal to i . So, according to the simplest implicit 
scheme we can rewrite (2c):  

 
( ) ( ) ( ) ( )2

1 2
2 2 2

2 ,j jj j
i ii iU x U x U x d U x t

t c dx
− −− +

=
Δ

. (3b) 

In subsequent analysis we mostly omit the upper index j , 
it will be used only when several length elements are con-
sidered. Expression (3b) can be rewritten as:  

 
( ) ( ) ( )

2
2 2

12 ; 0i
i i j

d U x
b U x b Z x x l

dx −− = − ≤ ≤ . (3c) 

Where the constant b  is given by:  

 2 2 2c t b−⋅Δ = . (3d) 

And auxiliary function ( )Z x is determined from two pre- 
vious moments of time, and is considered to be known:  
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 1 1 2( ) 2 ( ) ( )i i iZ x U x U x− − −= − . (3e) 

Equation (3c) is the main equation of analysis. Its 
solution is presented as the sum of homogeneous solution, 

( )iU x , and partial solution of nonhomogeneous equa-

tion, ( )ˆ
iU x :  

 ( ) ( ) ( )ˆ
i i iU x U x U x= + . (4a) 

It will be presented in form suitable for application of trans-
fer matrix method [20, 21]. According to it [21], solution 

( )iU x  is to satisfy the initial conditions (at the beginning 
of the given element, j ):  

 ( ) ( )0 ; 0i b i bU x U N x N= = = = . (4b) 

The respected homogeneous solution in any point x
can be expressed through the given initial condition, and is 
written below:  

( )
( )

( ) ( ) ( )
( ) ( )

,1 2

,1 2

b ii

b ii

UK x K x EFU x
NK x EF K xN x

   −   
=      ′ ′−    

. (5a) 

Where ( )1K x  and ( )2K x  are so called generalized 
Krylov’s functions, which satisfy to the following initial 
conditions:  

 ( ) ( ) ( ) ( )1 1 2 20 1; 0 0; 0 0; 0 1K K K K′ ′= = = = . (5b) 

And for given differential equation (3c) these functions are: 

 ( ) ( ) ( ) ( )1 2; / .K x ch xb K x sh xb b= =  (5c) 

These functions have another remarkable property:  

 ( ) ( ) ( ) ( )2
1 2 2 1; .K x b K x K x K x′ ′= =  (5d) 

Next step is to find the partial solution. We look for 
specific partial solution which is to satisfy the zeroth initial 
conditions [21]: 

 ( ) ( )ˆ ˆ0 0, 0 0i iU N= = . (6a) 

To find the partial solution of (3c) the function ( )1iZ x−

should be specified. We require that it should contains the 
static solution of (2c), and some additional terms. So, pre-
sent it in simplest form as the polynomial expansions:  

 ( ) 1 1 1 2 1 3
1 0 1 2 3 ...i i i i

iZ x c c x c x c x− − − −
− = + + + +  (6b) 

Where first two terms 1 1
0 1
i ic c x− −+  provides the static solu-

tion of (2c). Two other terms are not necessary, and their 
contribution will be investigated below. Usual partial solu-
tion of (3c), ( ),

ˆ
us iU x , with right side taken in form (6b), is 

following:  

 ( ) 1 1 1 2 1 3
, 0 1 2 32 2

2 6ˆ i i i i
us iU x c c x c x c x x

b b
− − − −   = + + + + +   

   
, 
(6c)

 

 
( ), 1 1 1 2

1 2 3 2

ˆ 62 3us i i i iN x
c c x c x

EF b
− − −  = − − − + 

 
. (6d) 

In space point 0x = it gives nonzero values:  

 ( ) 1 1
, 0 22

2ˆ 0 ;i i
us iU c c

b
− −= +  

 ( ) 1 1
, 1 3 2

6ˆ 0 i i
us iN EF c c

b
− − = − + 

 
. (6e) 

To satisfy zeroth initial condition it should be sup-
plemented by general homogenous solution with unknown 
coefficients A  and B :  

 ( ) 1 1 1 2
, 0 1 2 2

2ˆ i i i
us iU x c c x c x

b
− − −  = + + + + 

 
 

 ( ) ( )1 3
3 1 22

6ic x x AK x BK x
b

−  + + + + 
 

. (6f) 

Accounting for the properties of the generalized Krylov’s 
functions and initial values of usual partial solution (6d) 
and (6e), we get:  

 ( ) ( )( ) ( )( )1 1
0 1 1 2

ˆ 1i i
iU x c K x c x K x− −= − + − +  

 
( )( ) ( )( )1 21 2 1 3

2 32 2

2 1 6i iK x x K x
c x c x

b b
− −   − −

+ + + +      
   

. (6g) 

 
( ) ( ) ( )( )1 1

0 1 1 2

ˆ
1i i iN x

c K x c K x
EF

− −′ ′= − − −  

 ( ) ( )( )211 1 2
2 32 2

6 12
2 3i i K xK x

c x c x
b b

− −  ′−′ 
− − − +       

. (6h) 

So, expressions (5a) with (6g) and (6h) give the complete 
solution for given section (element) according to (4a).  

Now consider how to get the solution for the whole 
rod at the given point of time. Thus, the lower indexes i  
will be omitted below and upper indexes j  will be re-
tained. Rewrite the complete solution for the element j  in 
the general form:  

( )
( )

( ) ( ) ( )
( ) ( )

( )
( )

1 2

1 2

ˆ

ˆ

j jj
b

j jj
b

U x U xUK x K x EF
K x EF K xN x N xN

     − 
    = +     ′ ′−     

. 

  (7a) 

This solution allows to relate the vector of state in any point 
x  of the section 𝑗 with the state at initial point 0x = . So, 
it can establish the relation for the last point jx l= , too: 

( )
( )

ji je
i
e i j

U lU

N N l

  
 = =       

 

 
( ) ( ) ( )

( ) ( )
( )
( )

1 2

1 2

ˆ

ˆ

ij
j j b

ij
bj j

K l K l EF U xU

N xNK l EF K l

 −   
    = +

    ′ ′−     
 (7b) 
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Now consider the border between the elements j  and 1j + . 
The solution should be continuous, so we should write the 
conditions of continuity of the vector of state, which is 
characterized by displacement and force:  

 
1

1

j j
eb

j j
eb

U U

N N

+

+

   
  =       

. (7c) 

The above values of displacement and force at the 
ends of each section are considered as unknowns. To form 
the systems of equations for them we use equations (7b) 
and (7c), supplemented by two boundary conditions for the 
whole rod – one on the left side and one at the right side of 
the rod. For example, for considered below free-clamped 
rod these conditions are:  

 1 ; 0J
b L eN N U= = . (7d) 

The only remained issue to be solved is a polynomial 
presentation of the function ( )1iZ x−  in form (6b), given 
that it is determined from (3e), which terms were derived 
in form (7a).  

Rewrite (7a) in other form:  

 ( ) ( ) ( ) ( )1 2 ,
ˆ

i i i us iU x K x K x U x= α + β + ; (8a) 

( ) ( ) ( ) ( )2
2 1 ,

ˆ
i i i us iN x EFb K x EFK x N x= −α − β + . (8b) 

Where  

0,1 1 1 1
0, 0 2 1 32 2

2 6; ii i i i
i i i

N
U c c c c

EFb b
− − − −α = − − β = − − − . (8c) 

Expand functions ( )1K x  and ( )2K x  in polynomial 
series of third degree. The simplest way is to use well-
known Tailor’s expansion. The best way is to get the inte-
grally weighted expressions. So, present ( )1K x in form:  

 ( ) ( ) 2 3
1 0 1 2 3ch xb K x f f x f x f x= = + + + . (9а) 

Multiply both sides of (9a) by 1 and integrates over x  from 
1x =  to x l= , we get:  

 
( ) 2 3 4

0 1 2 32 3 4
sh lb l l lf l f f f

b
= + + + . (9b) 

Then multiply by x  and similarly integrate:  

( ) ( ) 2 3 4 5

0 1 2 32
1

2 3 4 5
lsh lb ch lb l l l lf f f f

b b
−

− = + + + . (9c) 

Next multiplying by 2x and integrating, we get:  

( ) ( ) ( )2 3 4 5 6

0 1 2 32 3
2 2

3 4 5 6
l sh lb lch lb sh lb l l l lf f f f

b b b
− + = + + + . 

  (9d) 

Similarly, for 3x :  

 
( ) ( ) ( ) ( )( )3 2

2 3 4

6 13 6 ch lbl sh lb l ch lb lsh lb
b b b b

−
− + − =  

 
4 5 6 7

0 1 2 34 5 6 7
l l l lf f f f= + + + . (9e) 

Four coefficients of expansion of ( )1K x  are derived from 
these four equations (9b–e). 

In similar way present ( )2K x  as a polynomial ex-
pansion:  

 ( ) ( ) 2 3
2 0 1 2 3

sh xb
K x h h x h x h x

b
= = + + + . (10a) 

Where the coefficients kh  are derived from the following 
four equations:  

 
( ) 2 3 4

0 1 2 32 2
1

2 3 4
ch lb l l lh l h h h

b b
− = + + + ; (10b) 

 
( ) ( ) 2 3 4 5

0 1 2 32 3 2 3 4 5
lch lb sh lb l l l lh h h h

b b
− = + + + ; (10c) 

 
( ) ( ) ( )( )2

2 3 4

2 12 ch lbl ch lb lsh lb
b b b

−
− + =  

 
3 4 5 6

0 1 2 33 4 5 6
l l l lh h h h= + + + ; (10d) 

 
( ) ( ) ( ) ( )3 2

2 3 4 5
3 6 6l ch lb l sh lb lch lb sh lb

b b b b
− + − =  

 
4 5 6 7

0 1 2 34 5 6 7
l l l lh h h h= + + + . (10e) 

Now present the calculated function ( )iU x on i-time 
step at each space section as a polynomial series:  

 ( ) 2 3
0 1 2 3
i i i i

iU x u u x u x u x= + + + . (11a) 

Comparing it with (8a) and accounting for (6c) we can get 
the approximation for each coefficient i

ku : 

 1 1
0 0 0 0 2 2

2 ;i i i
i iu f h c c

b
− −= α + β + +  (11b) 

 1 1
1 1 1 1 3 2

6i i i
i iu f h c c

b
− −= α + β + + ; (11c) 

 1
2 2 2 2 ;i i

i iu f h c −= α +β +  (11d) 

 1
3 3 3 3
i i

i iu f h c −= α + β + . (11e) 

The next step is compilation of coefficients i
kc , 

0,1,2,3k =  based on results of calculations at time step 
1i − , and i . According to definition of ( )1iZ x−  by (3e), 

we can write: 



Mech. Adv. Technol. Vol. 6, No. 2, 2022  119 

 12i i i
k k kc u u −= − . (11f) 

Thus, all steps in formulation of semi analytical ap-
proach are described. It operates by the following parame-
ters: 1) time step, tΔ ; 2) length of element jl ; 3) number 
of terms of expansions of previous state (6b) – two, three 
or four. In the following we will explore their influence on 
the accuracy of solution.  

3. Examples for suddenly applied force 

For simplicity, in all examples we consider the 
clamped-free bar with a clamped right side, and left side is 
loaded by some transient force ( )P t , Fig 1. All constants 
related to material and section ( , , )E Fρ  are taken to be 1, 
so the constant c  is also equal to 1. The length of rod, L , 
is equal to 100.  

In all following examples we will compare our solu-
tion with Fourier based mode superposition solution. Thus, 
give some preliminary results and constants for this task. 
The natural forms, ( )n xΦ , are given the by following ex-
pression:  

 ( ) ( )cos cos cos cosn
n n

x
x x

c
ω

Φ = = ω . (12a) 

Where the frequencies nω are calculated from:  

 ( ) ( )2 1 2 1
, 1,2,3...

2 200n
n nc n

L
+ π + π

ω = = =  (12b) 

3.1 The force is studently applied at the moment 
0t = . The analytical mode superposition solution is given 

by the following expression: 

 ( ) ( ) ( )21
2, 1 cos n nn

n
U x t t x

L
∞

=

 
= − ω ⋅Φ  ω 
 . (13) 

Our goal is to investigate the influence of the semi 
analytical scheme parameters on accuracy of calculation. 
There are three main groups of them: time step, tΔ ; length 
of element, jl ; and power, K , of previous history expan-
sion – 2K =  terms (static like), 3K = terms, or 4K =  
terms. As we see later, the most important is the time step. 
Nevertheless, start our investigation from two last groups.  

3.1.1. So, fix the time step, 1tΔ = , and consider sev-
eral different combinations of constant lengths of element, 

jl l=  and the degrees of expansion. Present results of 

force determination, ( , 50)N x t =  for moment of time 
50t s=  in the vicinity of point 50X m= .  

Several cases are considered, and results for them 
are shown on Fig. 2. These cases are: 1) 0.1l =  (1000 ele-
ments), 2K = ; 2) 1l =  (100 elements), 2K = ; 3) 2l =  
(50 elements), 2K = ; 4) 5l =  (20 elements), 2K = ;  
5) 5l = , 3K = ; 6) 10l =  (10 elements), 2K = ;  
7) 10,l = 3K = ; 8) 10l = , 4K = . At this stage of analy-
sis, we are only interested in the numerical consistence, or 
by other words coincidence of results for different parame-
ters of numerical scheme. Draw a few conclusions from 
these results. 

 
Fig. 2. Dependance of axial force from axial coordinate at the time equal to 50s with a time step 1tΔ = : a) case 6, 

10,l = 2K = ; b) case 4, 5l = , 2K = ; c) case 7, 10,l =  3K = ; d) all other considered cases; e) theoretical 
solutions 
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Two terms (static like) expansion of previous history 
provide the consistent results if the length of element is 
smaller than 2. More generally, 2 terms consistency condi-
tion is: 

 0 2lb< ≤   or  0 2l t c< ≤ ⋅Δ ⋅ . (14a) 

Similarly, three terms expansion leads to con-
sistency at slightly larger length of element (lesser number 
of elements):  

 0 5l t c< ≤ ⋅Δ ⋅ . (14b) 

The increase of number of terms allows to further 
increase the length of element. Thus for 4 terms we get the 
following condition:  

 0 10l t c< ≤ ⋅Δ ⋅ . (14c) 

Actually, the above conditions (14) justify the idea 
(name) of the proposed numerical scheme – semi-analytic 
one with respect to space coordinate x . It means that 
meshing in space practically has no influence on results. 
Also, conditions (14) will be used in analysis of influence 
of time step, tΔ .  

Interesting to note, that proposed scheme gives no 
complications during application of elements of different 
length. The only restriction is that each element should sat-
isfy the condition of consistency.  

3.1.2. Analysis of spurious oscillations and ampli-
tude decay (dissipation). They usually occur in most nu-
merical schemes. So, consider them on example of case 

1l = , 1tΔ = , 2K = . Here we fix the point of space 
50X m= , and build the graph of axial force in it with time, 

Fig. 3. Fig. 3, a show the time dependance of force in time 
range 0 800t≤ ≤ . As we see, there are no spurious oscil-
lations, which is the remarkable property of the proposed 
scheme. Fig. 3, b shows another remarkable property – the 
results, while decaying, still tend to the static solution. This 
means that proposed scheme is consistent with static solution.  

3.1.3 Analysis of dispersion. To characterize it quan-
titively let us formulate some subjective criteria. We let 
that full dispersion does occur, if the maximum of force 
become smaller than 2. Introduce the time period, 0T : 

 0 2T L c=  (15a) 

 
a 

 
b 

Fig. 3. Axial force in point 50X m=  for case 1l = , 1tΔ = , 4K = : a) 0 600t≤ ≤ , b) 0 40000t≤ ≤  
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which is required for the wave to go and return along the 
entire rod. Here 0 200T s= . So, the question is how many 
time periods the wave can travel along the rod until the dis-
persion would occur in dependence with chosen time step? 
The answers are given in Table 1, which we obtained by 
calculation of the critical time cT at which the full disper-
sion occurs.  

Table 1. Number of periods until the dispersion would 
occur 

,t sΔ  Time of full  
dispersion, cT , s 

Number of 0T at full 
dispersion 

1 400 2 

0.5 800 4 

0.25 1600 8 

0.2 2000 10 

0.1 4000 20 

0.05 8000 40 

0.02 20000 100 

0.01 40000 200 

As we see, the number of time periods at full disper-
sion is inversely proportional to tΔ . Let us justify this em-
pirical conclusion by simplified considerations. As we 
know the implicit central difference scheme possesses the 
accuracy, ε , (error at one time step realization) propor-
tional to 2tΔ , i.e.:  

 2tε = γΔ .  (15b) 

Where γ  is coefficient of proportionality. So, the critical 
error E  can be attained at time step number cN : 

 cN Eε = . (15c) 

From the other hand, the critical time, cT , is proportional  
to the product of time step and number of steps:  

 c c
ET N t

t
= ⋅ Δ =

γΔ
 . (15d) 

This simplifying consideration justifies the numeri-
cally observed behavior.  

3.1.4. Detailed behavior at 0.02tΔ = , 0.2l =  (500 
elements), 4K = . This example is chosen to illustrate the 
ability of the scheme to reflect the ideal theoretical behav-
ior of the wave front. Fig. 4 shows the axial force in point 

50X m= at two times windows. First one embraces the pe-
riod 0 400t≤ ≤  and second one - 00 47 400t T≤ − ≤ . In 
this sense the semianalytical scheme resemble the Fourie 
analysis – the more terms are used the more accurate solu-
tion can be derived.  

3.2. Consider force impulse with restricted duration. 
The boundary initial conditions are given below:  

 ( )100, 0;RU t =  (16a) 

 ( ) ( )
1 1, 40

0, 0,
0, 40

L
L

tdU t N t ES
dx t

− = − ≤= = 
 >

 

  (16b) 

The similar examples are very rarely analyzed in literature. 
It is interesting that here we have both the fore and rear 
fronts of the wave.  

3.2.1 The analytical mode superposition solution for 
initial 40 seconds is given by expression (13). As to the 
subsequent behavior we introduce the auxiliary time τ : 

 40t = τ + . (17a) 

 
Fig. 4. Axial force in point 50X m=  for case 0.02tΔ = , 0.2l = , 4K = for two time windows:  
a) 0 400t≤ ≤ , b) 00 47 400t T≤ − ≤  
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Then the following solutions as to displacement and 
force can be derived:  

( )(21
2( , ) 1 cos 40 cosn nn

n
U x

L
∞

=τ = − ω ω τ +
ω



)sin 40sin ( )n n n x+ ω ω τ ⋅ Φ . (17b)

( )(21
2( , ) 1 cos 40 cosn nn

n
N x

Lc
∞

=τ = − ω ω τ +
ω



)sin 40sin sin sin n
n n

x
c

ω
+ ω ω τ ⋅ . (17c) 

3.2.2. Numerical solution. Take a relatively coarse mesh, 
namely 0.1tΔ = , 0.5l =  (200 elements, 5b = ), 4K = . 
The results of calculation of forces ( )N x at fixed moments 
of time are shown on Fig. 5. As it shown here the fore and 
rear fronts are determined with similar accuracy. The re-
sults are shown for the moments of time equal to:  

070 2forwt kT= + (18a) 

070 (2 1)backt k T= + + (18b) 

Where forwt  are the moments of time when the wave 

goes forward (from left to right), and backt are the mo-
ments when reflected wave goes backward. As in above 
example, the results are quite logical, they show the simi-
lar tendency of decay behavior, and eventually they tend 

to zero – static solution for this case. No spurious oscilla-
tions are noticed at any space and time points.  

4. Conclusion

Here the original implicit direct time integration 
scheme is proposed. Contrary to existing approaches it in-
itially applies the central difference scheme to the second 
time derivative, and then consider the static like (time in-
dependent) boundary problem, where the time interval is 
the constant parameter in space differential equation. So, 
the space interpolation functions become dependent from 
the time interval. The solutions at two previous moments 
of time are approximated by polynomials of K degree and 
accounted for as the particular solutions of the differential 
equation.  

The numerical example for suddenly applied force 
shows a good consistency of approach which demonstrate 
no spurious oscillations. The main parameter which prede-
termines the accuracy and decay behavior is the time step – 
the decay is inversely proportional to it. As to space inter-
val and degree of approximation polynomial – they have 
auxiliary significance and should satisfy some minimum 
requirements only. For example, for 4K =  space interval 
should satisfy condition (14c); for 3K = – condition (14b); 
and for 2K = – condition (14a). 
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Напіваналітична неявна схема прямого інтегрування по часу на прикладі 
одновимірної задачі поширення хвилі  
І. Ориняк, Р. Мазурик, В. Цибульський  

Анотація. Найпоширеніший підхід у динамічному аналізі інженерних конструкцій і фізичних явищ полягає в кінцево-елемент-
ній дискретизації та математичному формулюванні з подальшим застосуванням схем прямого інтегрування по часу. Функції 
просторової інтерполяції зазвичай такі ж, як і в статичному аналізі. Тут на прикладі одновимірної задачі про поширення 
хвилі запропоновано оригінальну неявну схему, яка містить значення часового інтервалу явно в просторовій інтерполяційній 
функції як результат аналітичного розв’язку диференціального рівняння для розглянутого моменту часу. Переміщення 
(розв’язок) у два попередні моменти часу апроксимуються як поліноміальні функції положення та враховуються як часткові 
розв’язки диференціального рівняння. Схема демонструє ідеальні передбачувані властивості щодо дисперсії та дисипації. 
Вирішальним параметром схеми є часовий інтервал – чим менше інтервал, тим точніші результати. Два інших параметри 
схеми – просторовий інтервал і ступінь поліноміальної апроксимації мають мінімальний вплив на загальну поведінку 
розв’язку і впливають на малу зону біля фронту хвилі. 
Ключові слова: одновимірне хвильове рівняння, неявне, пряме інтегрування в часі, раптово прикладена сила, чисельна дисипація. 
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