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Semi-analytical implicit direct time integration
scheme on example of 1-D wave propagation
problem
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Abstract. The most common approach in dynamic analysis of engineering structures and physical phenomenas consists in finite element
discretization and mathematical formulation with subsequent application of direct time integration schemes. The space interpolation
functions are usually the same as in static analysis. Here on example of 1-D wave propagation problem the original implicit scheme
is proposed, which contains the time interval value explicitly in space interpolation function as results of analytical solution of differ-
ential equation for considered moment of time. The displacements (solution) at two previous moments of time are approximated as
polynomial functions of position and accounted for as particular solutions of the differential equation. The scheme demonstrates the
perfect predictable properties as to dispersion and dissipation. The crucial scheme parameter is the time interval — the lesser the
interval the more correct results are obtained. Two other parameters of the scheme — space interval and the degree of polynomial
approximation have minimal impact on the general behavior of solution and have influence on small zone near the front of the wave.

Keywords: 1-D wave equation, implicit, direct time integration, suddenly applied force, numerical dissipation.

1. Introduction Furthermore, the common approach for structural

dynamic equations in FEM is independent treatment of

The transient behavior of various engineering struc-
tures and wave propagation are usually performed by
method of mode superposition or direct time integration
[1]. The mode superposition becomes a cumbersome ap-
proach in case of nonlinear effects, thus most of investiga-
tions and software are based on direct time integration of
finite element equations. Regretfully in analysis of wave
propagation problems these solutions are often lack of suf-
ficient accuracy, which is exhibited in artificial period
elongations (dispersion) and amplitude decays (dissipa-
tion) [2]. The reason of it lies in the spatial discretization
and elaboration of finite elements as well as time integra-
tion peculiarities.
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spatial finite element description, i.e., in dynamical analy-
sis it is supposed that interpolation functions within each
element are time independent and are the same as in static
[3]. Yet the theoretical solution of 1-D wave propagation
has the form U (x,t) = f; , (x%ct) , where x — is the spatial

variable, ¢ — is a time, and c is a constant of material. The
same is about the general solution by natural modes, where
the general term can be approximately presented as:

U, (x,t)=cos(®,x/c)-cos(w,t)=

o @ Lo s
—Ecos(—(x+ct)j+2cos( (x ct)). )

C C

Where 7 is the mode number, and ®, is the mode

frequency. So, the space and time coordinates are interre-
lated in exact analytical solutions. This means that within
the small space element the interpolation functions in FEM
should be time dependent too. Such idea was vaguely exp-
ressed in book [3].

In this paper we elaborate this idea on the very popu-
lar example of 1-D wave propagation problem. A lot of au-
thors demonstrate the advantages and peculiarities of ap-
plication of their methods of time integration on example
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of the elastic long rod subjected to variable force, mention
here only some recent works [4—15]. There are, at least,
three reasons for that. First, it has a remarkable and simple
analytical solution to compare with, which can be adjusted
to different boundary and initial conditions, to rod consist-
ing of several materials, etc. Second, for suddenly applied
force the solution has an abrupt propagation velocity front,
which is hard to obtain in numerical approach, so the quali-
ty of numeric calculation can be evidently demonstrated.
Third, this type of equation and solution is very important
for practical water hammer analysis and 1-D gas dynamic
of multibranched piping systems [16, 17].

A few words about the time integration schemes.
The equation of equilibrium is considered in consequent
discrete points of time. In structural dynamic the order of
differential equation with respect to time is equal to 2. It
means that minimal number of required consequent time
points in any scheme is 3. In general, step-by-step integra-
tion methods are divided into two types: explicit and im-
plicit. The explicit methods are considered to be much sim-
pler because they do not require the factorization of the ef-
fective stiffness matrix. On other hand they are only un-
conditionally stable, requires very small steps of time and,
what is important in our opinion, they do not eventually
lead to the static solution, when the outer load stabilizes in
time. Implicit methods are more versatile, although are
much expensive.

In our work we will use the simplest implicit central
difference scheme [18], so we will not discuss here the
abundance of modern developments in time integration
schemes [4—15]. The main emphasis of paper is a new tech-
nique of accounting for the time integration interval Az in
the space interpolation functions. In this sense the idea of
work is similar to spectral element technique [19], where
the of frequency is employed in space interpolation func-
tions. The principal difference consists in necessity to ac-
count for the states achieved in two previous points of time.

2. Semianalytical method

Start from the general equation of 1-D wave propa-
gation in rod with length L, Fig 1. The derivative of dis-

placement, U (x,t) is related with inner force N(x,?), and

derivative of force is related with the acceleration, so:

dU (x,t) :_N(x,t) (22)
dx EF
dN (x,1) _ dzU(x,t)
dx P dx (26)

Where the axis x, force N and displacement U are di-
rected from the left to right, Fig 1. Excluding the inner
force from these equations we get the 1-D wave propaga-
tion equation:

d*U(x,t) ,d°U(x,t)
=C N

dr? dx

(2¢)

=Efp. (2d)

Where E is the module of elasticity, pis the density, F is
the rod area.

TR B T N

[/
U,x L

Fig. 1. General scheme of rod

According to simplest central difference scheme
consider the looking for function U only in discrete points

oftime #,,4,...,t;,_;,t;,... Asin all numerical methods break

down the whole length of rod by points

X X5 X,y X, On J elementary sections (elements).

For each element, j, introduce the local system of coordi-

nate x:

Osx=X-X,,<[; xX;—x; =1

(2¢)

where /; is the length of element ;. Withing each element

J the looking for function U in each point of time ¢, is

considered as a continuous function of x .

For each space element j the left side of wave equa-
tion (2¢) can be presented according to the simplest central
difference scheme centered in time point i—1, as:

d’Uv’ (x,t)| U/ (x) =207, (x)+UL, (x) (3a)
[_ = . a
dt* : Ar?

The general scheme of solution of (2¢) to be the im-
plicit one, we need to take the right hand of (2¢) in the point
of time equal to i. So, according to the simplest implicit
scheme we can rewrite (2c¢):

Ul (x) =201, (x)+U/, (x) _ d°U] (x1)

Ar*c? dx

(3b)

In subsequent analysis we mostly omit the upper index j,

it will be used only when several length elements are con-
sidered. Expression (3b) can be rewritten as:

d’U; (x)

S —bU, (x)=-b"Z,, (x); 0<x<Il;. (30)

dx
Where the constant b is given by:
AP =07, (3d)

And auxiliary function Z(x) is determined from two pre-

vious moments of time, and is considered to be known:
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Zi 1 (x)=2U,;(x)=U; 5 (x). (3e)

Equation (3c) is the main equation of analysis. Its
solution is presented as the sum of homogeneous solution,
U, (x), and partial solution of nonhomogeneous equa-

tion, U(x):

Ui (x) =0, (x)+U; (x). (42)

It will be presented in form suitable for application of trans-
fer matrix method [20, 21]. According to it [21], solution
U, (x) is to satisfy the initial conditions (at the beginning

of the given element, j ):
U (x=0)=U,; N,(x=0)=N,. (4b)

The respected homogeneous solution in any point x
can be expressed through the given initial condition, and is

written below:
U (x)) | Ki(x) =Ky (x)/(EF)|(U,,
(N[(x)j{—K{(x)EF K5 (%) HN,,J' (52)

Where K;(x) andK,(x) are so called generalized

Krylov’s functions, which satisfy to the following initial
conditions:

K (0)=1; K{(0)=0; K,(0)=0; K5(0)=1. (5b)

And for given differential equation (3¢c) these functions are:

K, (x)=ch(xb); K,(x)=sh(xb)/b. (5¢)
These functions have another remarkable property:
K{(x)=bK, (x); Ky (x)=Ki(x). (5

Next step is to find the partial solution. We look for
specific partial solution which is to satisfy the zeroth initial
conditions [21]:

U.

1

(0)=0, N,

1(0)=0. (62)

To find the partial solution of (3¢) the function Z,_, (x)

should be specified. We require that it should contains the
static solution of (2c¢), and some additional terms. So, pre-
sent it in simplest form as the polynomial expansions:

i-1_2 i-1_3

Zo(x)=cf e xS T +. (6b)

Where first two terms ¢; ' +¢|'x provides the static solu-

tion of (2¢). Two other terms are not necessary, and their
contribution will be investigated below. Usual partial solu-

tion of (3¢), Uus,i (x) , with right side taken in form (6b), is
following:

g _ i 2 2, a3, 6
Uyi(¥)=cy +¢ x+¢; (x +b—2)+c3 [x +—2x),

(6¢)

Nmi(x) i1 -1 i-1( .2, 6
i L= = 2x = | 3T+ —|. 6d
i 1 2 3 ( sz (6d)

In space point x = 0 it gives nonzero values:

(6¢)

To satisfy zeroth initial condition it should be sup-
plemented by general homogenous solution with unknown
coefficients 4 and B :

5 _ i, -l i1 2, 2
Uus’i(x)—co +c x+c (x +b_2]+

+c;1(x3+b%xJ+AKl<x>+BKz<x>- (0

Accounting for the properties of the generalized Krylov’s
functions and initial values of usual partial solution (6d)
and (6e), we get:

Ui (x) = c(i)_] (l—K1 (x))+cli_1 (x—K2 (x))+

o [xz 20K () }c;—l {xs +w]. (62)

B> b’
]’\"’ i ’ i— 4
) _ k- (1- K5 ()
e (z)c ~ 212{2(16) j i [3x2 +WJ . (6h)

So, expressions (5a) with (6g) and (6h) give the complete
solution for given section (element) according to (4a).
Now consider how to get the solution for the whole
rod at the given point of time. Thus, the lower indexes i
will be omitted below and upper indexes j will be re-

tained. Rewrite the complete solution for the element j in

(U«f(x)]:{ K (%) _KZ(X)/(EF)}[UZHM)J
N (x)) |Ki(x)EF K; (x) N M (x))
(7a)

This solution allows to relate the vector of state in any point
x of the section j with the state at initial point x =0. So,
it can establish the relation for the last point x =/ ;> too:

M)
[ &) —&@)eEr {Ug]+[l7[(X)](7b)

-Ki(1,)EF K5 (1) N/

the general form:
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Now consider the border between the elements j and j+1.

The solution should be continuous, so we should write the
conditions of continuity of the vector of state, which is
characterized by displacement and force:

uty (uf
Nl{+1 = N/ ’

The above values of displacement and force at the
ends of each section are considered as unknowns. To form
the systems of equations for them we use equations (7b)
and (7c¢), supplemented by two boundary conditions for the
whole rod — one on the left side and one at the right side of
the rod. For example, for considered below free-clamped
rod these conditions are:

(7c)

N,=N,; U/=0. (7d)

The only remained issue to be solved is a polynomial
presentation of the function Z,_, (x) in form (6b), given
that it is determined from (3e), which terms were derived
in form (7a).

Rewrite (7a) in other form:

Ui ('x):(xiKl ('x)+BiK2( )+Uust( )’ (83)
Ni (X)Z—OCZ-EszKz (x)_BlEFK ( )+Nm1( ) (Sb)
Where
i1 2 Noi i 1 6
O‘z:Uo,i_col_b_zczl;ﬁi:_#_cl 1_03 lb_2~ (8¢)

Expand functions K, (x) and K, (x) in polynomial

series of third degree. The simplest way is to use well-
known Tailor’s expansion. The best way is to get the inte-
grally weighted expressions. So, present K| (x) in form:

ch(xb) =K, (x)= fo+ fix+ fox* + f3x° (9a)

Multiply both sides of (9a) by 1 and integrates over x from
x=1to x=1,we get:

4

sh(Ib) roor
= Jol + f1 SHh3thT (9b)
Then multiply by x and similarly integrate:
Ish(Ib) ch(ib)—1 ? 3 4 P
PR =hz+ths+hy +f3 (%)

Next multiplying by x? and integrating, we get:

Psh(Ib)  2ich(Ib) Jhe) PP
PR X —fo—+f1 fzgﬂ‘sg
(9d)

Similarly, for x*:

Psh(Ib) 312ch(lb)+6lsh(lb) 6(ch(1p)-1)
b b’ b b4

14 5 16
—hlenban bt

(9¢)

Four coefficients of expansion of K, (x) are derived from

these four equations (9b—e).

In similar way present K, (x) as a polynomial ex-

pansion:

sh(xb)

K, (x)= = By + X+ hyx* + yx

(10a)

Where the coefficients /4, are derived from the following
four equations:

ch(ib) 1 2 & /4
bz _b—2=h01+hl?+h2?+h31, (IOb)
leh(Ib) sh(lb) 1> [* P
T Ty Thegthgt hz—+h3— (10c)
b b
Pch(lb)  2ish(Ib) 2(ch(Ib)-1)
2 p
PP e
=hy—+h—+hy—+h—; 10d
3 1 4 2 5 3 6 ( )
Peh(Ib) 31°sh(lb) 6lch(lb)  6sh(Ib)
T
4 5 6 7
_hol_"‘hll5 h2%+h3l_ (10e)

Now present the calculated function U, (x) on i-time

step at each space section as a polynomial series:
Ui(x)—u0 +ujx+ubx +u§x3 (11a)

Comparing it with (8a) and accounting for (6¢) we can get
the approximation for each coefficient u,’( :

uh = o, fo +Bhg + i +c;1b22, (11b)

i_ i—1 i—1 6 .

up =0 fi 4B+ ey — (11¢)
uly = o fo +Bihy +c57 (11d)
uh = o, fy + By + i (11e)

The next step is compilation of coefficients c,i,
k=0,1,2,3 based on results of calculations at time step
i—1, and i. According to definition of Z,_, (x) by (3e),

we can write:
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= 2) 2 degree |j=10

——b) 2 degree lj=5

¢) 3 degree lj=10

d) Consistent

- — -~ ¢) Theoretical

30 35 40 45

Fig. 2. Dependance of axial force from axial coordinate at the time equal to 50s with a time step Af=1: a) case 6,
[=10, K=2;b)case 4, [=5, K=2;c)case 7, [ =10, K =3, d) all other considered cases; ¢) theoretical

solutions

¢, =2u, —u};_l. (119

Thus, all steps in formulation of semi analytical ap-
proach are described. It operates by the following parame-
ters: 1) time step, Af; 2) length of element /;; 3) number

of terms of expansions of previous state (6b) — two, three
or four. In the following we will explore their influence on
the accuracy of solution.

3. Examples for suddenly applied force

For simplicity, in all examples we consider the
clamped-free bar with a clamped right side, and left side is
loaded by some transient force P(¢), Fig 1. All constants

related to material and section (E,p,F) are taken to be 1,

so the constant ¢ is also equal to 1. The length of rod, L,
is equal to 100.

In all following examples we will compare our solu-
tion with Fourier based mode superposition solution. Thus,
give some preliminary results and constants for this task.
The natural forms, @, (x), are given the by following ex-

pression:
®, (x)=coscos——=coscos(®,x). (122)
c
Where the frequencies ®, are calculated from:
2n+l)mt (2n+1)m
L L ) L € ) L P S
L 2 200

3.1 The force is studently applied at the moment
t =0. The analytical mode superposition solution is given
by the following expression:

U (xt) = :zl(L—iz(l—coscont)-Qn(x)J. (13)

n

Our goal is to investigate the influence of the semi
analytical scheme parameters on accuracy of calculation.
There are three main groups of them: time step, A¢ ; length
of element, /;; and power, K , of previous history expan-
sion — K =2 terms (static like), K =3terms, or K =4
terms. As we see later, the most important is the time step.
Nevertheless, start our investigation from two last groups.

3.1.1. So, fix the time step, Af =1, and consider sev-
eral different combinations of constant lengths of element,
[; =1 and the degrees of expansion. Present results of

force determination, N(x,z=50) for moment of time
t =50s in the vicinity of point X =50m .

Several cases are considered, and results for them
are shown on Fig. 2. These cases are: 1) /=0.1 (1000 ele-
ments), K =2;2) /=1 (100 elements), K =2;3) [ =2
(50 elements), K =2; 4) /=5 (20 elements), K =2;
5) I=5, K=3; 6) [=10 (10 elements), K =2;
7) =10, K =3;8) /=10, K = 4. At this stage of analy-
sis, we are only interested in the numerical consistence, or
by other words coincidence of results for different parame-

ters of numerical scheme. Draw a few conclusions from
these results.
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Fig. 3. Axial force in point X =50m forcase [=1, At=1, K =4:a4) 0<1<600, 5) 0<¢t<40000

Two terms (static like) expansion of previous history
provide the consistent results if the length of element is
smaller than 2. More generally, 2 terms consistency condi-
tion is:

0</h<2 or 0<[<2-At-c. (14a)

Similarly, three terms expansion leads to con-
sistency at slightly larger length of element (lesser number
of elements):

0<I<5-At-c. (14b)

The increase of number of terms allows to further
increase the length of element. Thus for 4 terms we get the
following condition:

0</<10-At-c. (14c¢)

Actually, the above conditions (14) justify the idea
(name) of the proposed numerical scheme — semi-analytic
one with respect to space coordinate x. It means that
meshing in space practically has no influence on results.
Also, conditions (14) will be used in analysis of influence
of time step, Af.

Interesting to note, that proposed scheme gives no
complications during application of elements of different
length. The only restriction is that each element should sat-
isfy the condition of consistency.

3.1.2. Analysis of spurious oscillations and ampli-
tude decay (dissipation). They usually occur in most nu-
merical schemes. So, consider them on example of case
[=1, At=1, K=2. Here we fix the point of space
X =50m , and build the graph of axial force in it with time,
Fig. 3. Fig. 3, a show the time dependance of force in time
range 0<7<800. As we see, there are no spurious oscil-
lations, which is the remarkable property of the proposed
scheme. Fig. 3, b shows another remarkable property — the
results, while decaying, still tend to the static solution. This
means that proposed scheme is consistent with static solution.

3.1.3 Analysis of dispersion. To characterize it quan-
titively let us formulate some subjective criteria. We let
that full dispersion does occur, if the maximum of force
become smaller than 2. Introduce the time period, Tj, :

T, =2L/c (15a)
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Fig. 4. Axial force in point X =50m for case Ar=0.02, /=02, K=4for two time windows:

a) 0<1<400, b) 0<1—47T, <400

which is required for the wave to go and return along the
entire rod. Here 7;, =200s . So, the question is how many

time periods the wave can travel along the rod until the dis-
persion would occur in dependence with chosen time step?
The answers are given in Table 1, which we obtained by
calculation of the critical time 7, at which the full disper-

sion occurs.

Table 1. Number of periods until the dispersion would

occur
Afs Time of full Number of T} at full
’ dispersion, T,,s dispersion
1 400 2
0.5 800 4
0.25 1600 8
0.2 2000 10
0.1 4000 20
0.05 8000 40
0.02 20000 100
0.01 40000 200

As we see, the number of time periods at full disper-
sion is inversely proportional to Af . Let us justify this em-
pirical conclusion by simplified considerations. As we
know the implicit central difference scheme possesses the
accuracy, €, (error at one time step realization) propor-

tional to A ,l.e.:
e =YA. (15b)

Where 7V is coefficient of proportionality. So, the critical

error £ can be attained at time step number N, :

Ne=E. (15¢)

From the other hand, the critical time, 7, , is proportional

to the product of time step and number of steps:
E
T.=N,-At=—.

15d
vy (15d)

This simplifying consideration justifies the numeri-
cally observed behavior.

3.1.4. Detailed behavior at Ar=0.02, [=0.2 (500
elements), K = 4. This example is chosen to illustrate the
ability of the scheme to reflect the ideal theoretical behav-
ior of the wave front. Fig. 4 shows the axial force in point
X =50m at two times windows. First one embraces the pe-
riod 0<¢#<400 and second one - 0<¢-477, <400. In

this sense the semianalytical scheme resemble the Fourie
analysis — the more terms are used the more accurate solu-
tion can be derived.

3.2. Consider force impulse with restricted duration.
The boundary initial conditions are given below:

Uy (100,¢) = 0; (16a)
dU ~ L <40
dL(O,t)zNL(O,t)= ES T

o 0, t>40
(16b)

The similar examples are very rarely analyzed in literature.
It is interesting that here we have both the fore and rear
fronts of the wave.

3.2.1 The analytical mode superposition solution for
initial 40 seconds is given by expression (13). As to the
subsequent behavior we introduce the auxiliary time T:

t=T+40. (17a)
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Fig. 5. Forward and backward waves at short impulse loading shown for various moments of time

Then the following solutions as to displacement and
force can be derived:
Ux,o=>" -7

( (1—cos®,40)cos ®,T+

+s1n03n40$1n0)n‘t)-(l)n(x). (17b)

N(x,7)= Z

( (1-cos®,40)cos ®,T+
n= lL

+sin ®, 40sin ©,T)-sin sin 1% (17¢)
¢

3.2.2. Numerical solution. Take a relatively coarse mesh,

namely Ar=0.1, /=0.5 (200 elements, b=5), K =4.

The results of calculation of forces N (x) at fixed moments

of time are shown on Fig. 5. As it shown here the fore and

rear fronts are determined with similar accuracy. The re-
sults are shown for the moments of time equal to:

= 70 +2kT, (18)

tﬁ)rw

bk = 70+ 2k +1)T, (18b)

Where 7,,, are the moments of time when the wave

goes forward (from left to right), and ¢, are the mo-

ments when reflected wave goes backward. As in above
example, the results are quite logical, they show the simi-
lar tendency of decay behavior, and eventually they tend
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HaniBanajiTH4HA HesiIBHA CXeMa NPSIMOI0 IHTErPyBaHHSI 110 Yacy HA NPUKJIaAi
OJHOBHMMIpPHOI 3a1a4i NOIIMPEHH XBUJIi

I. Opunsk, P. Ma3ypuk, B. Lln0yabcbkmii

Anomauia. Haiinowupeniwiuii nioxio y OUHamMiyHOMY aHANI3] IHM#CEHePHUX KOHCIMPYKYIL | (DI3UUHUX A8ULY NONA2AE 8 KIHYeBO-eNeMeHN-
Hitl Ouckpemu3ayii ma MmamemamuiHomy opmyn08anHi 3 NOOANLUUM 3ACTNOCYBANHAM CXeM NPAMO20 inmezpye8ans no yacy. Qyuxyii
npocmopogoi inmepnonayii 3azeuuaii maxi ¢, AK i ¢ cmamuynomy avanizi. Tym na npukaadi 00HOBUMIPHOI 3a0a4i PO NOWUPEHH S
X6uJll 3anpONOHOBAHO OPULTHATLHY HEAGHY CXEeMY, AKA MICIUMb 3HAYEHHA YaACO8020 IHMEPEAy A6HO 6 NPOCMOPOSIL IHMEPNONAYIUHIL
yHKYIT AK pe3yibmam aHANIMUYHO20 PO36 'A3KY OUPDEPEHYIANbHO20 DIGHAHHS 0N PO32IAHYMOo20 Momenmy uacy. Ilepemiwenns
(p036’5130K) ¥ 06a NONEPeOHi MOMEHMU YaACY ANPOKCUMYIOMbCSA SIK NOJHOMIANbHI (DYHKYIL NOJIOJCEHHS MA 8PAX08YIOMbCSL SIK YACMKOGL
Ppo36’a3Ku ougepenyianvnoeo pienanua. Cxema 0eMOHCMpPYE i0eanbHi nepeddauysani 61acmueocmi wooo oucnepcii ma oucunayii.
Bupiwanenum napamempom cxemu € 4acosuii inmepean — 4um MeHuie inmepeai, mum mouniwi pezynomamu. Jléa inwiux napamempu
cxemMu — NPOCMOpPOSUll iHMePean i CMyniHb NOAIHOMIANLHOI anpoxcumayii marome MiHIMATbHUL 6NIUE HA 3A2ANbHY NOBEOIHKY
D038 A3KY i 6NAUBAIOMb HA MATLY 30HY 01N (PpOHMY X6ui.

Knrouosi cnosa: 00nosumiphe xeunboge pigHaHHsl, HesABHe, npame IHMe2pY8anHs 8 4Acl, panmoso NPUKIAOEHd CUNA, YUCETbHA OUCUNAYISL.
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