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Abstract. The principally new method of selected exact solutions, SES, for plate vibration based on fundamental solutions of Voigt is 
suggested. In contrast to similar known methods, it employs the frequency dependent functions for both space coordinates. The sets of 
exact solutions which depends on some arbitrary chosen parameters are constructed. This allows to choose any number of exact 
solutions, while the required number of them depends on the boundary conditions which should satisfy in considered collocation points.  
The efficiency of method is demonstrated for the most unfavorable case of all sides clamped rectangular plate. Nevertheless, the 
accuracy is quite satisfactory for first six natural frequencies even for relatively small number of collocation boundary points, and 
testify about big prospects as to application for complex structures, different geometries, various boundary conditions.  
Additionally two variants of the Galerkin method are realized and compared. First one, employs the exponential functions, while the 
second one –the very popular beam functions. The calculation results show the superiority of first variant as in technical realization 
as in accuracy, and in further applications in structural mechanics. 
Keywords: rectangular plate, free vibrations, clamped-clamped plate, Galerkin method, Voigt solution.

Introduction 

In spite of very long history of investigation the vi-
bration of plates is still a topic of primary interest important 
for various engineering application, for example, in solar 
plates, circuit plates, robots, aircraft, etc. Sometimes these 
plates are constrained by others structural elements, which 
should be considered and modeled withing one compre-
hensive calculational scheme [1]. Such necessity restricts 
the efficiency of very popular numerical techniques (finite 
difference, finite element methods) [1], and promote the 
development of analytical and semianalytical methods. 
Except for the huge practical significance, this topic is the 
most efficient educational example for students for the 
study of partial differential equation eigenvalue problems 
[2]. Whatever the sophisticated and versatile the method 
might be for various geometrical and materials properties 

of structure, its peculiarities and efficiency are usually 
studied on example of rectangular isotropic plate.  

1. The most popular semianalytical methods, in our
opinion, are Ritz methods, RM, and weighted residual 
methods, WRM. RM is based on minimization of func-
tional of energy over the whole area of plate. WRM mini-
mizes the governing differential equation (residual) of the 
theory of plate, and this is achieved by multiplication by 
special weight functions [3] and integration over the area. 
Both methods employ so-called trial functions, which 
should to satisfy the required boundary conditions. They 
should form the systems of independent and, preferably, 
orthogonal functions [3]. These two approaches have a lot 
of common features in their realization, complexity and ap-
plication [4], yet RM gives the assessment for eigenvalues 
from above, while WRM approaches the correct values 
from below.  

The trial functions predetermine the peculiarities 
and essential difference between various methods. The 
comprehensive theoretical analysis and investigation of in-
fluence of their choice on the computational efficiency on 
example of clamped rectangular plate was undertaken in 
work [5]. Six different trial functions were investigated in 
Ritz method: 1) characteristic functions [6], 2) modified 
characteristic functions [7], 3) orthogonal polynomials [8], 
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4) nonorthogonal polynomials [9], 5) product of trigono-
metric functions [10], and 6) static beam functions [11].
Regretfully the problems of convergence with respect to
the number of trial functions were mostly analyzed there,
and modified characteristic functions were stated to exhibit
the best results. As to characterized functions, they were
failed at very low number of applied functions (it was
stated [5] that already 9 terms with respect to each variable
lead to appearance of complex eigenvalues).

Nevertheless, the characteristic functions or, by 
other words, normalized eigenfunctions exactly satisfying 
the equation of motion of a freely vibrating, uniform beam 
[12] (beam functions) are very popular in literature even
for other problems in structural dynamics, for example, for 
the cylindrical shell problem [13]. Their application has 
started from the work of Young [6] and subsequently were 
efficiently applied in classical work of Leissa [12], where 
the practical results for rectangular plates at different 
boundary condition were obtained. Their application re-
quires the preliminary finding of roots for transcendental 
equations of beam vibration, and analytical integration of 
different beam functions [14].  

From other hand, the principally new family of trial 
functions were suggested by present authors in works 
[15–17] where the specially constructed exponential func-
tions, EF, were successfully applied in Galerkin method for 
various structural mechanics problems. Remind that Ga-
lerkin method is a special kind of WRM, where the weight 
functions coincide with trial ones [3]. So, it is interesting 
here to compare the results of application of above two 
kinds of trial functions (EF and beam functions) in Galerkin 
method. This predetermined the first objective of paper. 

2. The notion of analytical solutions for thin plate
vibration equation we attribute to original work of Voigt 
[18] written as far as in 1893. Considering that solution is
a product of two exponential (real or complex) functions of
separate variables 𝑥 and 𝑦 he obtained the simple relations
between coefficients of these exponents with natural fre-
quency. For example, for each fixed coefficient in x – de-
pendent exponential function four related y – dependent
functions were derived. In work of Leissa [12] this tech-
nique was applied for case of plate with two opposite sim-
ple supported edges. This allowed to choose the 𝑥-func-
tions as family of sinus functions and obtain the respected 
4-terms 𝑦– dependent complementary solution, which is
able to satisfy any arbitrary 4 boundary conditions on two 
other opposite sides. Actually, the idea of Leissa is a gen-
eralization of the static approach of Levi [19]. Later on, it 
was shown by Bert and Malik [20] that similar exact solu-
tions can be constructed for cases when two opposite sides 
are either simple supported or guided (where the slope and 
the shear force are zero).  

Gorman presented the concept of the method of su-
perposition and its potential applications in obtaining the 
accurate analytical solutions for rectangular thin plates 

with arbitrary combinations of classical boundary condi-
tions [21]. He considered that general solution consists of 
4 parts (building blocks) and dealt with each separately: 
symmetric mode for two coordinates, antisymmetric mode, 
and two symmetric-antisymmetric mode of deformation.  

Gorman methods of superposition found its further 
development in spectral dynamic stiffness matrix method 
proposed by Banerjee and co-workers [22]. They analyti-
cally rearranged the dependencies between different phys-
ical parameters of plate, and made it more suitable for 
plates of various form. Other notable applications of Voigt 
solution and Gorman idea of superposition are modern 
works of Yu and Yin [23], where only two building blocks 
are constructed based on half-range Fourier cosine series; 
and exact frequency-domain spectral element model by 
Kim and Lee [24] which used the fast Fourier transform 
technique. 

In all above analytical methods one function of any 
coordinate is taken as dependent from the length parameter 
while another one – is found from the Voigt solution and 
consequently is dependent from unknown in advance the 
value of frequency.  

The main idea of the present work and its second ob-
jective is elaboration of the method of selected exact 
(Voigt) solution, SES, with combination with the boundary 
collocations. Both of two product functions are taken as 
trigonometrical or exponential functions of coordinate 
multiplied on fraction of unknown frequency. This fraction 
is taken to be arbitrary in advance for one function, so an-
other function is directly obtained from the first one. So, 
both functions are frequency dependent.  

The accuracy of proposed method is verified on ex-
ample of clamped rectangular plate by comparison with re-
sults of two variants of Galerkin method. Note, that chosen 
geometry is very popular in practical verifications of vari-
ous methods, because it usually gives the maximal discrep-
ancies between results [5, 25]. 

Method of selected exact solutions, SES 

The governing differential equation for thin-walled 
plate is obtained by considering that the function of trans-
verse deflection ( ), ,W x y t  is proportional to ( )sin tϕ :

4 4 4
2 4

4 2 2 42W W W W W
x x y y

∂ ∂ ∂+ + = ω = Ω
∂ ∂ ∂ ∂

, (1a) 

where ϕ  is the frequency, and for convenience the dimen-
sionless, ω , and conventional frequencies, Ω  are intro-
duced, which are interrelated as: 

2 2 4h
D
ρω = ϕ = Ω (1b)

and 
3

212(1 )
EhD =

− ν
 is the bending rigidity , ,Eρ ν , are 
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materials characteristics: density, module of elasticity, 
Poisson’s coefficient, h  is wall thickness. Besides, deflect- 

tions ( ),W x y  should satisfy the boundary conditions.
The proposed method is based on general solution of 

Voigt. Assume that:  

( ) ( ) ( ),W x y X x Y y= . (2a) 

If we take that:  

( ) ( ), yx yxX x e Y y eλλ= = , (2b) 

then, inserting (2a) and (2b) into (1a), the following rela-
tions between the parameters of solutions is obtained:  

2 2 2
x yλ + λ = ± Ω . (2c) 

In particular, for case of simply supported opposite 
sides of plate along the lines 0x = , and x a= , take, as in 
work [12], that ( ) ( )sin ,x xX x x na= λ λ = π , where n is 
integer, then: 

( ) ( ) ( )2 2
1, sin sinx xW x y x A y= λ Ω − λ +

( ) ( ) ( )2 2 2 2 2 2
2 3 4cos .x x xA y A ch y A sh y + Ω − λ + Ω + λ + Ω + λ 

 

(2d)

Then four unknowns ( )1,4iA i =   are determined

from boundary conditions on two other opposite sides. In 
contrast to the conventional methods [12, 20–24] we pre-
sent both functions of coordinates as:  

( ) ( ), ,x yX x e Y y eαΩ βΩ= = (3a) 

2 2 1.α + β = ± (3b) 

Thus, both of two parameters α  and β  are related 
to the looking for frequency Ω , rather than to the plate di-
mensions. The idea of method of SES lies in that the value 
of α  is fixed and taken as: 

α = ± γ ,     iα = ± γ , (4a)

where 0 0.5< γ < , 1i = ± − . Then, according to (3b), 
the value of β  can be determined by two dimensionless 
parameters:  

2 21 ; 1γ = − γ γ = + γ  . (4b) 

Form and numerate the following solutions of equa-
tions (1a). At beginning write the solutions which depends 
from γ and γ . We have set of 8 solutions ( , , , , )if x yΩ γ γ ,
where Ω  is usually omitted from the designation of the 
functions:  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2

3 4

5 6

7 8

sin sin ; sin cos ;

cos sin ; cos cos ;

; ;

; .

f x y f x y

f x y f x y

f sh x sh y f sh x ch y

f ch x sh y f ch x ch y

 = γ Ω ⋅ γ Ω = γ Ω ⋅ γ Ω

 = γ Ω ⋅ γ Ω = γ Ω ⋅ γ Ω


= γ Ω ⋅ γ Ω = γ Ω ⋅ γ Ω

 = γ Ω ⋅ γ Ω = γ Ω ⋅ γ Ω

 

 

 

 

(5a)

To provide the equality between the two independ-
ent variables x  and y , introduce the supplemental eight 

solutions ( ), , , ,ih x yΩ γ γ , where x  and y are swapped.

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2

3 4

5 6

7 8

sin sin ; sin cos ;

cos sin ; cos cos ;

; ;

; .

h y x h y x

h y x h y x

h sh y sh x h sh y ch x

h ch y sh x h ch y ch x

 = γ Ω ⋅ γ Ω = γ Ω ⋅ γ Ω

 = γ Ω ⋅ γ Ω = γ Ω ⋅ γ Ω


= γ Ω ⋅ γ Ω = γ Ω ⋅ γ Ω

 = γ Ω ⋅ γ Ω = γ Ω ⋅ γ Ω

 

 

 

 

(5b)

Now construct two additional sets of eight solutions 
( ), , , ,if x yΩ γ γ  and ( ), , , ,ih x yΩ γ γ , which depend on pa-

rameters γ  and γ : 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

9 10

11 12

13 14

15 16

sin ; sin ;

cos ; cos ;

sin ; cos ;

sin ; cos .

f x sh y f x ch y

f x sh y f x ch y

f sh x y f sh x y

f ch x y f ch x y

 = γ Ω ⋅ γ Ω = γ Ω ⋅ γ Ω

 = γ Ω ⋅ γ Ω = γ Ω ⋅ γ Ω
 = γ Ω ⋅ γ Ω = γ Ω ⋅ γ Ω


= γ Ω ⋅ γ Ω = γ Ω ⋅ γ Ω

 

 

 

 

(5c)

and 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

9 10

11 12

13 14

15 16

sin ; sin ;

cos ; cos ;

sin ; cos ;

sin ; cos .

h y sh x h y ch x

h y sh x h y ch x

h sh y x h sh y x

h ch y x h ch y x

 = γ Ω ⋅ γ Ω = γ Ω ⋅ γ Ω

 = γ Ω ⋅ γ Ω = γ Ω ⋅ γ Ω
 = γ Ω ⋅ γ Ω = γ Ω ⋅ γ Ω


= γ Ω ⋅ γ Ω = γ Ω ⋅ γ Ω

 

 

 

 

(5d)

Write separately the group of solutions at 0γ =  and 

at 0.5γ = . When 0γ =  we get two sets of four solutions. 
They are: 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

17 18

19 20

17 18

19 20

sin ; cos ;
; ;

sin ; cos ;
; .

f x f x

f ch x f sh x

h y h y

h ch y h sh y

= Ω = Ω


= Ω = Ω
 = Ω = Ω
 = Ω = Ω

(5e)
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Accordingly, at 0.5γ = , two sets of 16 functions for if  
and ih  given by (5a–5d) are partially coincides (at 1 8i = − ) 
and this should be accounted for in introducing the re-
spected set of considered solutions: 

( ) ( )1 8 1 8, , 0.5 , , 0.5, 0.5g x y f x y− −= =

( )1 8 , , 0.5, 0.5 ;h x y−= (5f) 

( ) ( )
( ) ( )

9 16 9 16

17 24 9 16

, , 0.5 , , 0.5, 1.5 ;

, , 0.5 , , 0.5, 1.5 .

g x y f x y

g x y h x y

− −

− −

 =

 =

 (5g) 

The drawback of these functions is that they cannot 
satisfy the boundary conditions on the whole boundaries or 
their sections. They can be fulfilled only in discrete points. 
Thus, it is suggested to combine these solutions (functions) 
with method of collocation, i.e., to require the satisfaction 
of boundary conditions only in discrete points. There are 
two boundary conditions in each boundary point. So, the 
number of functions (5) used for the solution of particular 
task should be two times higher than the number of bound-
ary collocation points. The idea and technique of solution 
will be explained in details in Chapter V. 

Galerkin Method 

The essence of Galerkin method consists in several 
steps. 

1. The looking for solution of (1a) is presented as:

( ) ( ) ( )
1 1

,,
K K

k m k m
k k m m

W x y B X x Y y
= =

=   , (6a) 

where ,k mB  are unknown coefficients. So-called trial func-

tions ( ){ } ( ){ }
1 1

;
K K

k mk k m m
X x Y y

= =
; ( 1 1, ,k m K  are chosen

integers), generally satisfy the boundary conditions but 
generally they are not the exact solutions of equation (1a).  

2. Substitute (5a) into (1a), we have:

1 1 1 1

2
, , , ,( , ) ( , ),

K K K K

k m k m k m k m
k k m m k k m m

B x y B P x y
= = = =

Φ = ω     (6b) 

where: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

,

" "

,

,

2 ,
, .

IV
k m mk

IV
k m k m

k m k m

x y X x Y y

X x Y y X x Y y

P x y X x Y y

Φ = +

 + +
 =


 (6c) 

3. Multiply equation (6b) on trial functions
( ) ( )r qX x Y y  at specified ( ) 1 1, ; , , ,r q r k K q m K∈ Ζ = =

and integrate each equation over the whole area of plate. In 
this way the system of linear equations is obtained with re-
spect of unknown ,k mB :  

1 1

, ,2
, , ,1 1 0

K K
r q r q

k m k m k m
k k m m

B P
= =

 ⋅ Φ − ω ⋅ =   , (6d) 

where:  

( ) ( ) ( )
( ) ( ) ( )

,
,,

,
,,

1 , ,

1 , .

r q
k m r qk m

r q
k m r qk m

x y X x Y y dS

P P x y X x Y y dS

Φ = Φ ⋅ ⋅

 = ⋅ ⋅




 (6e) 

The only nontrivial solution exists when determinant 
of the system (6e) is equal to zero. This allows to find the 
natural frequencies ( 1, )i i Kω = . 

Remind the peculiarities of application of exponen-
tial as well as beam functions in Galerkin method. 

Exponential functions 

Their application is described in details in works 
[15–17]. Introduce the following designations for exponen-
tial functions: 

( ) ( ), exp , , expk x m y
x y

kx myx L y L
L L

  
Γ = Γ =        

, (7a) 

where ,k m ∈ Ζ , and xL , yL – are the scaling parameters 
which are comparable with dimensions of plate in given 
direction.  

Construction of trial functions ( ) ( ),k mX x Y y
Taking into account that each trial function should satisfy 
4 boundary conditions (2 on each side) take them as a sum 
of 5 consecutive exponential functions ( ),k xx LΓ  and

( ),m yy LΓ :

( ) ( )
4

, 2
0

,k k i k i x
i

X x x L+ −
=

= α Γ , (7b)

( ) ( )
4

, 2
0

,m m j m j y
j

Y y y L+ −
=

= γ Γ . (7c)

In formulas (7b) and (7c) the coefficients with zeroes 
index 𝑖 ( ,0kα and ,0mγ ) are taken to be 1, and all other co-

efficients ,k iα , ( ), , 1, 4m j i jγ =  are determined from the

boundary conditions. 
The advantage of exponential functions is that they 

are easily analytically differentiated and integrated.  

Beam functions 

Beam functions ( )kX x  and ( )mY y  are the linear
combinations of Krylov’s functions [19]: 
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1

2

3

4

0.5 cos ;

0.5 sin ;

0.5 cos ;

0.5 sin .

S z ch z z

S z sh z z

S z ch z z

S z sh z z

 β = β + β  
 β = β + β  

β = β − β   


β = β − β   

 (8a) 

In general cases functions ( )iX x  and ( ) ( ), 1,jY y i j K=

are presented as:  

( ) ( ) ( )1 20 0i i
i i i

k x k xX x X S X S
a a

   ′= ⋅ + ⋅ +   
   

( ) ( )3 40 0i i
i i

k x k xX S X S
a a

   ′′ ′′′+ ⋅ + ⋅   
   

; (8b) 

( ) ( ) ( )1 20 0j j
j j j

m y m y
Y y Y S Y S

b b
   

′= ⋅ + ⋅ +   
   

( ) ( )3 40 0j j
j j

m y m y
Y S Y S

b b
   

′′ ′′′+ ⋅ + ⋅   
   

. (8c) 

These functions are very simple in differentiating and 
slightly more complicated in integration, which requires 
special elaboration [14]. 

Four sides clamped rectangular plate 

The intension of paper is a verification of new meth-
ods, so no new or unusual geometries will be considered 
here. So, four sides clamped rectangular isotropic plate 
0 , 0x a y b≤ ≤ ≤ ≤  is considered where a and b – are 
length and width of the plate. The boundary conditions are: 

0
0

0
0

0; 0; 0; 0;

0; 0; 0; 0.

x x a
x x a

y y b
y y b

W WW W
x x

W WW W
y y

= =
= =

= =
= =

 ∂ ∂= = = = ∂ ∂
 ∂ ∂ = = = =
 ∂ ∂

(9a)

Trial functions in Galerkin method 

The calculation of four unknown coefficients ,k iα  

and ( ), , 1, 4m j i jγ = in trial functions (7b), (7c) is presented

in details in work [15]. This is reduced to solutions of four 
linear equations. 

When the trial functions are the beam functions the 
substitution of conditions (8a) into general presentation 
(8b) gives the following expressions for them:  

( ) ( )
( )

3
3 4

4

ii i
i

i

S kk x k x
X x S S

a S k a
   = + ⋅   
   

, (9b) 

where ik  are solution of the transcendental equation: 

( ) ( )cos 1i ich k k⋅ = . (9c)

The roots of (9c) ( )1,ik i K=  can be calculated only by

numerical methods, which is the possible source of error. 
Here, for example we give the following first three roots 
of (9c): 1 4.300407449;k =  2 7.853204624;k =  

3 10.99560784k = . 

Collocation boundary conditions in method of SES 

We treat the boundary 1 2 3 4P P P P P= ∪ ∪ ∪  as a set 
of discrete points. In given case each side of plate 

( )1, 4k kΛ =  is substituted by N  points (Fig. 1):

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1,

2,

3,

4,

1
, : ; 0 ;

2

1
, : ; ;

2

1
, : 0; ;

2

1
, : ; , 1, .

2

j j

j j x

j j

j j y

a j aP x y x x y
N N

a j aP x y x x y b
N N

b j bP x y x y y
N N

b j bP x y x a y y j N
N N

−  = = = + = 
  

−  = = = + + ε = 
  

−  = = = = + 
  

−  = = = = + + ε = 
  

(10)

Fig. 1. Asymmetrical placement of points 

The parameters xε  and yε  are the small disturb-
ances as compared with the distances between the adjacent 
point. They are introduced artificially here, because due to 
the geometrical symmetry of task and symmetry of choice 
of functions ( ), , , ,if x yΩ γ γ and ( ), , , ,ih x yΩ γ γ  the sys-

tem of equations can degenerate. Two boundary conditions 
should satisfy in each of 4N  boundary points, so at whole 
we have 8N  boundary conditions. 
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Variants of numerical realizations  

In Galerkin method we take the same number of 
functions K  with respect to x  and y , which give the gen-
eral dimension of the resulting system of equation. So, the 
choice of K functions means 2K  equations. As to SES 
method N  points on each sides means 8N equations  
(unknowns).  

The object of investigation is the accuracy of each 
method as to the number of unknowns. Yet in SES method 
the selection of the particular Voigt solution might have in-
fluence on the accuracy. The same can be said on the par-
ticular placement of the collocation points. In this work we 
formulated the corresponding rules in advance and do not 
tried other variants except the described below.  
So, in method of SES the general solution of (1a) is 
presented as follows:  

 ( ) ( )
8

1
, , , ,

N

m m
m

W x y b F x y
=

= ⋅ Ω γ , (11) 

where mb  are unknown coefficients, ( ), , ,mF x yΩ γ  are 
some subjectively chosen functions compiled from ,i if h  
and ig , see formulas (5). For 2N =  it is necessary to 
chose 16 functions ( ), , ,mF x y kΩ , for 3N =  we need 24 
functions mF , for 4 32N = −  functions mF  and so on. 

Results and their analysis 

Investigation on the convergency of results on 
example of first frequency 

The results for first frequency for two different rec-
tangular plates are presented in Table 1. All three tech-
niques (SES and two variants of Galerkin method) were 
employed. 

Make some explanations as to the choice of Voigt 
functions in SES method. For 2N = the number of func-
tions should be equal to 16, and we choose the following 
ones: { }17 20 17 20 1 8, ,f f h h g g− − − . At 4N =  we must 
take 32 functions. So, they are the same as in case 2N =  
plus 16 functions { }1 8 1 8,f f h h− − , given by (5a) and (5b) 

at 0.2γ = .  
Adding two more points on each side requires em-

ployment of 16 additional functions. They are chosen as 
functions { }1 8 1 8,f f h h− −  for some other value of 

, 0 0.5γ < γ < . All employed values of 2γ  for various 
number of the side points are given in Table 1. As to pa-
rameters xε  and yε  at calculation they were chosen to be 

the following: ( )20x a Nε =  and ( )20y b Nε = .  
As it follows from the Table 1 both Galerkin methods 

Table 1. The values of first natural frequency 1ω  with respect to the number of unknowns 

Method of SES Galerkin method 

8N, number 
of equations 

The values of 2γ  in equations 
(5a) and (5b) 

Calculated 
frequency 

2K , number 
of equations 

Exponential 
functions Beam functions 

a/b = 1 

16 – 35,289007 1 36,0109 36,108678 

32 0,2 36,019756 9 35,989827 36,006762 

48 0,1;  0,2 35,988377 25 35,985464 35,991484 

64 0,1;  0,2;  0,3 35,987131 49 35,985217 35,987547 

80 0,1;  0,2;  0,3;  0,4 35,985446 81 35,985193 35,986225 

96 0,05;  0,1;  0,2;  0,3;  0,4 35,985291 121 – 35,985699 

112 0,05;  0,1;  0,15;  0,2;  0,3;  0,4 35,985221 169 – 35,985463 

a/b = 1,5 

16 – 59,718587 1 60,903124 60,957063 

32 0,2 60,804412 9 60,769458 60,796478 

48 0,1;  0,2 60,765354 25 60,761871 60,771733 

64 0,1;  0,2;  0,3 60,761256 49 60,761179 60,765224 

80 0,1;  0,2;  0,3;  0,4 60,761248 81 60,761108 60,762968 

96 0,05;  0,1;  0,2;  0,3;  0,4 60,761175 121 – 60,762043 

112 0,05;  0,1;  0,15;  0,2;  0,3;  0,4 60,761121 169 – 60,761617 
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demonstrate a good convergence even at very small num-
ber of unknowns. This is because the trial functions exactly 
satisfy the boundary conditions for this task. Exponential 
functions lead to better accuracy as compared with beam 
functions and this might justify their preferable application 
for more complicated geometries. The considered task with 
clamped edges is not a favorable case as to show the effi-
ciency of MSES. Nevertheless, the increase of the number 
of unknowns in it eventually leads to the little better accu-
racy as to the beam function method. Yet the salient ad-
vantage of the MSES is that it be can easily applied for any 
geometry and for any boundary conditions. 

Comparison with the literature results 

The comparison with the literature results is given in 
Table 2 and Table 3. Our results are presented for the maxi- 
mal number of equations employed for each particular 
method. Table 2 contains the results for square plate. As it 
follows from it the exponential functions based GM, EF-
BGM, demonstrates the very impressive accuracy.  

The employment of only 81 terms gives practically 
the identical results with those of Liu and Banerjee [22] 
and El-Gamel et al. [25] where much more equations were 
used. This impressive agreement (with 7 to 8 digit) is at-
tained for all six consecutive natural frequencies. From 
other hand, in work of Liu and Banerjee it was stated [22] 
that machine accuracy was actually attained. So, it has no 
sense to increase the number of equations in EFBGM. As 
to beam functions based GM, BFBGM, it also shows the 

good accuracy, however, this method is inferior in accu-
racy even for twice larger number of equations. The 
method of SES generally demonstrates the similar accu-
racy as BFBGM, even for smaller number of equations and 
even for this unfavorable boundary conditions.  

The similar conclusions can be drawn for rectangu-
lar plate with length ratio equal to 1.5. EFBGM demon-
strates the perfect accuracy even for relatively smaller 
number of terms. For us it is important that MSES still has 
a very good accuracy. As to BFBGM it is close to the re-
sults of MSES. 

Conclusions 

1. The principally new method of SES for plate vi-
bration based on fundamental solution of Voigt is sug-
gested. In contrast to similar known methods, it employs 
the frequency dependent functions for both space coordi-
nates. The boundary conditions are fulfilled only in chosen 
collocation points, which makes the method very simple, 
versatile for any geometry and boundary conditions. It eas-
ily can be adjusted for complex structures consisting of 
many structural elements.  

2. The verification of method of SES is performed 
for rectangular plate with the most unfavorable fully 
clamped boundary conditions. Nevertheless, the results are 
very encouraging and show good correspondence with 
other methods, at least, for first 6 frequencies. Note, that 

Table 3. First six frequencies for rectangular plate with 1,5a b =  

Frequency 
number 

Method of SES, 
112 equations 

Galerkin method 
Sakata, [26] El-Gamel et al., 

[25] Exponential functions, 
81 equations 

Beam functions, 169 
equations 

1 60,761121 60,761108 60,761616 60,761099 60,761139 
2 93,834006 93,833588 93,835714 93,833474 93,833784 
3 148,78117 148,77978 148,78199 148,77973 148,77994 
4 149,67389 149,67438 149,67780 149,67424 149,68349 
5 179,56336 179,56166 179,57260 179,56110 – 
6 226,82655 226,86414 226,83612 – – 

Table 2. First six frequencies for square plate 

Frequency 
number 

Method of 
SES, 112 
equations 

Galerkin method 
Liu and Banerjee 

[22] El-Gamel et al, Exponential functions, 
81 equations 

Beam functions, 169 
equations 

1 35,985221 35,985193 35,985463 35,98519 35,985191 

2 73,394328 73,393877 73,394955 73,39385 73,393857 

3 73,394328 73,393877 73,394955 73,39385 73,393857 

4 108,21816 108,21671 108,22220 108,2165 108,21652 

5 131,58077 131,58078 131,58303 131,5808 – 

6 132,20523 132,20490 132,20731 132,2048 – 
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Voigt functions were chosen subjectively, almost at ran-
dom, without detailed consideration of the best combina-
tion of particular functions and placement of point of col-
location. This testify that even for this geometry the better 
results might be achieved by this method.  

3. Two variants of the Galerkin method are realized 
and compared. First one, EFBGM, where trial functions 

employ exponential functions. As in work [17] it leads to 
superior accuracy, is very effective and can be applied to 
treatments of differential equations of very different task. 
As to the beam functions based GM, it is reliable method, 
but, in spite of very wide application, it still is inferior to 
EFBGM. Besides it can hardly be generalized for differen-
tial equations for other structure, say, for thick plates.
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Застосування вибіркових наборів точних розв’язків Фойта для задачі  
коливань тонких пластин  
І.В. Ориняк, Ю.П. Бай, І.А. Костюшко  

Анотація. Для дослідження коливань пластин запропоновано принципово новий метод вибіркових точних розв’язків (МВТР), 
який ґрунтується на основі фундаментальних розв’язків Фойгта. На відміну від аналогічних відомих методів, МВТР викори-
стовує функції, що залежать від шуканої частоти для обох просторових координат. Побудовано множини часткових точ-
них розв'язків основного диференціального рівняння, які залежать від певних параметрів, обраних довільним чином. Це до-
зволяє вибрати будь-яку кількість точних розв’язків, причому їх необхідна кількість залежить від граничних умов, які мають 
задовольнятися в точках колокації. Продемонстровано ефективність методу для найбільш несприятливого випадку закріп-
лення пластини – її жорсткого защемлення по всіх сторонах. Тим не менш, точність методу є цілком задовільною для ви-
значених перших власних частот навіть при відносно невеликій кількості вузлів колокації. Це свідчить про широкі перспек-
тиви застосування запропонованого методу для складних конструкцій, різної геометрії, різноманітних граничних умов. Для 
дослідження збіжності й точності МВТР додатково реалізовано та порівняно два варіанти методу Гальоркіна, перший з 
яких використовує експоненціальні функції, а другий – дуже популярні балочні функції. Результати розрахунків показують 
перевагу МВТР як в технічній реалізації, так і в точності, що свідчить про можливість його подальшого застосуваннях в 
більш складних динамічних задачах будівельної механіки. 
Ключові слова: прямокутна пластина, вільні коливання, жорстко защемлена пластина, метод Гальоркіна, розв’язки 
Фойгта. 
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