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Abstract. Sharp wave treatment for 1-D gas dynamic problem is still a challenge for modern numerical methods. They often require 
too many space and time steps, produce spurious oscillation of solution, exhibit a strong numerical dissipation or divergence of results. 
This paper is further extension of authors’ idea of employment the analytical solution for space coordinate, where time step is a 
parameter which used in the space solution. Its peculiarity consists in development of additional linearization procedure of dependence 
between the pressure and density. It is performed in premise that actual pressure for each space element is close to the basic pressure, 
attained at previous moment of time. The efficiency of method is tested on the very popular task of Sod, where two different ideal gases 
in a tube are separated by diaphragm, which is suddenly broken. The problem considered in Lagrangian coordinates formulation. The 
results obtained show the very good method efficiency, which requires the essentially lesser time and space steps, leads to no spurious 
oscillation and give consistent and predictable results with respect to meshing. The accuracy of method is mostly controlled by time 
step, which should be larger than clearly stated theoretical lower limit. Other advantage of method is that it can calculate the process 
to any desired time moment, and space meshing can be variable in time and space and can be easily adapted during the process of 
calculation. 
Keywords: transfer matrix method, Lagrangian formulation, implicit method, Sod’s task, stability, ideal gas.

Introduction 

Finite difference method in application to 1D gas dy-
namic problem was, seemingly, the first example of numer-
ical integration of partial differential equations [1]. Its 
origin was necessitated by that the traditional analytical 
techniques such as method of characteristics or Fourier 
method of variables separation were suitable only for linear 
problems such as linear hydrodynamic or solid deformable 
bodies. For gas the main variables are interrelated by 
highly nonlinear equations of state, which complicates the 
analytical treatment. 

Most finite difference methods were ineffective as to 
treatment of problems with discontinuities and produced 
spurious oscillations near the shock front. Von Neumann 

and Richtmyer [2] inserted in numerical scheme the artifi-
cial viscosity term which somehow averaged the positions 
of several points. Lax [3] suggested the triangular scheme, 
which was not suitable for the small time steps and employ 
only linearly distributed initial states. Godunov’s method, 
known as finite volume method [4] was the important step 
development of the numerical methods in general and was 
based on the integral form of the method of characteristics. 

The state of art of these early methods was outlined 
in work [5]. Among the very detailed consideration of the 
most popular and effective numerical schemes, this work 
is remarkable by that it gives the theoretically elaborated 
exact solution for the shock tube problem. In this task two 
gases in different initial states were separated by dia-
phragm, which is suddenly completely broken, and this in-
duces the shock waves in both parts. This task becomes the 
effective test benchmark for many subsequent numerical 
schemes.  

All above methods were explicit ones, where the 
state of the given point at the next time moments was 
simply calculated from the states of some neighboring 
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points at previous moment. This is explained by the short-
age of computational power at that time. The explicit me-
thods are only conditionally stable and their accuracy is 
provided only within short time range. 

The modern FD methods [6,7] and finite volume 
methods [8] are mostly implicit. It means that resulting 
FDM equations contain several unknown parameters at the 
next moment of time and calculation can be performed 
only for the whole piping system as solution of the equa-
tions system. The implicit methods are intendent as for 
slow as for fast transient processes and they allow to con-
siderer complex multibranched geometries. The high com-
putational cost of implicit methods can be partly compen-
sated by implementation of the adaptive time step and spa-
tial grid strategy [9] depending on the relative rate of dy-
namic process.  

The development of methods for numerical treat-
ment of 1D gas dynamic problems is still a relevant issue. 
They are applied for examination of: the impact of the hy-
drogen blended natural gas on the linepack energy under 
emergency scenarios of the pipeline operation [10]; for 
treatment of dynamic processes for very complicated ma-
rine pipelines with application of new enhanced state equa-
tion of highly compresses natural gas [11]; for modeling of 
transient processes in a gas during the local leak [12] and 
global fracture of pipeline [13].  

In recent decades, the wide attention has attracted 
the simulation of 1D pressure waves in the in nuclear reac-
tor system [14]. They can be induced by: the rapid closing 
or opening of system devices, such as pump-valve [15]; 
steam bubble collapse [16]; loss-of-coolant accident 
(LOCA) due to leak in piping system [17].  

The most known tool of treatment of transients in 
compressive media in nuclear power plant is the software 
RELAP, which is developed in Idaho National Laboratory. 
In its resent version, RELAP-7, the governing differential 
equations are discretized using a continuous Galerkin finite 
element method, and the resulting discrete equations are 
stabilized by artificial viscosity called the Entropy Viscosi- 
ty Method [18]. Its accuracy is also demonstrated among 
other by comparison with solution of Sod [5]. 

In Electricite De France the specialized software Eu-
roplexus is developed during the long time. It is based on 
finite volume method using the arbitrary Lagrangian–Eu-
lerian formulation for the resolution of the fluid problem 
and is able to take into account for the abrupt changes in 
area and junction of complex piping complex junctions 
[19]. The comprehensive assessment of accuracy and pe-
culiarities of the method application [19] was performed in 
subsequent work [20], where among other the Sod task was 
analyzed.  

The goal of this work is further elaboration of our 
semi analytical scheme [21], but now in application to gas 
dynamic problem. Accounting for the principal novelty of 
the method it will be verified only on example of the Sod’s 
task, so many equations are considered in simplified form 

only. The aim is to show that our method is perfectly suit-
able for description of steep wave front – actually this task 
is the most complicated one in gas dynamic problem. The 
task is considered in Lagrangian formulation.  

Governing equations 

Start from the governing equations of the gas dy-
namic problem. Contrary to [21] analysis of behavior of the 
rod, where only two parameters were used, here 4 parame-
ters, which characterize the state of the gas in any point, are 
used. Other difficulty, as compared with [21], lies in non-
linearity of the governing equations, which need to be lin-
earized in calculation process.  

Write down two basic differential equations in La-
grangian coordinates, which are related with each particu-
lar gas point (elementary mass) rather than with given point 
of pipeline, as used in Euler coordinates. 

Start from equation of flow continuity (defor-
mation). Consider the element of mass of the gas, mΔ . Ini- 
tially it occupies some volume 0V  and confined within the 
pipe length section xΔ  

 0 0m VΔ = ρ , (1a) 

 0 0V S x= Δ , (1b) 

where 0S  – is the area of pipe section, where the given 
mass was initially placed, 0ρ  is the density of the gas in 
initial state, and xΔ  is the difference between the initial 
position of the right and left borders of this mass. During 
the transient process the left border of this mass is located 
in space point with absolute coordinate ( )lU t , and the 
right side of it – in point ( )rU t  where t is the moment of 
time. The change of volume of this element mΔ  is given 
by formula:  

 ( ) 0( ) ( ) ( )r lV t L t L t S x SΔ = − − Δ ,  (2a) 

here S  is the area of pipe section, where the element mΔ  
is located at considered moment of time. Introduce the no-
tion of volumetric deformation, ε  

 ( ) 0

0 0

( ) ( )( ) r lL t L t S x SV t
V S x

− − ΔΔε = =
Δ

 

 ( ) 0

0

( ) ( )r lU t U t S x S
S x

− − Δ
=

Δ
. (2b) 

If the area is constant along the whole pipeline, then defor-
mation becomes:  

 
( ) 0

0 0

( ) ( )( ) r lL t L t S x SV t
V S x

− − ΔΔε = =
Δ

 

 
( ) ( )0

0

( ) ( ) ,r lU t U t S x S dU x t
S x dx

− − Δ
= →

Δ
. (2b) 
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Where ( ),U x t is the displacement (change of posi-
tion) of any gas material point. On the other hand, from 
physical consideration we know, that the volumetric defor-
mation of gas is proportional to the gas density in given 
state, ( )xρ . So, equating the physical notion of defor-
mation and its geometrical definition (2b) we get:  

 ( )
( )

0 ,x tdU
dx x

ρ − ρ
=

ρ
. (2c) 

Equation (2c) is equation of continuity. It is the first 
main differential equation of gas dynamic task.  

Second equation is the force equilibrium (momen-
tum) equation. To get it, note that inertial force of elemen-
tary mass mΔ  should be equilibrated by gain of inner pres-
sure PΔ : 

 
2

0 2 0d UP x
dt

−Δ − ρ Δ = . (3) 

Differential equations for gas flow (2c) and (3) are 
called in literature as hydraulic equations [22]. They 
mainly are responsible for the dynamical phenomena and 
gas flow. So, historically the researchers paid more atten-
tion for them, while assuming the temperature to be the 
constant or consider the adiabatic processes [6, 23]. For 
non-isothermal processes, where the heat exchange take 
place, very often the task is broken on two constituents – 
initially the hydraulic task is solved, for example for pres-
sure and velocity, and then other two main parameters are 
determined from equation of state and the equations of con-
servation of energy [24, 25].  

In simplified form, for ideal gas without thermal ex-
change with environment, these two equations are the fol-
lowing:  

 P
RT

ρ = , (4a) 

 

1

0 0

k
kT P

T P

−
 

=  
 

, (4b) 

where T is the temperature, R  is the universal gas con-
stant, and k  is adiabatic constant for given gas. Substitut-
ing the temperature T from (4a) into energy equation (4b), 
we get:  

 

1

0 0

kP
P

 ρ =  ρ  
. (4c) 

Now we are able to write the exact mathematical for-
mulation of the given problem. Reformulate the equation 
of continuity (2c) by considering for relationship (4c): 

 ( )
1

0 1
( )

kdU x P
dx P x

 
= − 
 

. (5a) 

So, now we have two governing differential equa-
tions (3) and (5a) both written in terms of displacement and 
pressure. But equation (5a) is nonlinear one. To linearize it 
present the inner pressure ( )P x  for each considered mass 
element as the sum of some basic constant value bP  and 
correction function ( )sP x : 

 ( ) ( )b sP x P P x= + . (5b) 

It is assumed that basic value is much larger than the 
correction one:  

 ( )b sP P x> . (5c) 

Thus, inserting (5b) into (5a), obtain:  

 

1 1/
0

1 2
( )1 1 ( )

k
k s

s
b b

P P xdU P x
dx P P

−
   

+ = + ≈ α − α   
   

. (5d) 

Where the following coefficients are introduced:  

 

1 1

0 0
1 2

1; .
k k

b b b

P P
P P k P

   
= α = α   

   
 (5e) 

For the sake of convenience, rewrite two governing 
differential equations together:  

 ( ) ( )1 21 ( )s
dU x

P x
dx

= α − − α ; (6a) 

 ( ) 2

0 2
( )sdP x d U x

dx dt
= −ρ . (6b) 

Take the derivative by x  from first equation and 
combine these two equations to exclude the correction 
pressure ( )sP x . These two equations with two variables 

( )P x and ( )U x can be reduced to one differential equa-
tions in partial derivatives with respect to x and t , which 
resembles very much that considered by us for the task of 
rod impact:  

 
2 2

2 02 2 0.d U d U
dx dt

− α ρ =  (6c) 

Description of semi analytical method for  
1-D gas dynamic  

The technique of solution is very similar to that for 
the impact rod problem [21].  

The gas as material body is divided on small elemen-
tary masses, jmΔ , where 1 j J≤ ≤ . For the case of equal 
pipe area, it is reduced to the division of the whole initial 
length of gas on the sections j jx lΔ = . Here we will con-
sider that initial lengths of each elementary mass (sections) 
are the same, but this is not necessarily for the method ap-
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plication, and will be discussed later. All subsequent equa-
tions are common for each element, and usually we will 
omit the upper index of space element “ j ”.  

Consider the equal intervals of time tΔ . Considered 
discrete moments of time are given by the following ex-
pression:  

 ( )0,1,..., , 1,...it t i i i i= Δ ⋅ = + . (7a) 

So, all other parameters in the given moments of time will 
contain the lower indexes i . Apply the simplest finite dif-

ference scheme with respect to time integration of 
2

2
d U
dt

 

term – the central scheme, which is centered in the moment 
of time equal to 1it − , then equation (6c) is written as: 

( ) ( ) ( ) ( ) ( )2
2 1 2

12 2
2

0.i i i i
i

d U x U x U x U x
c

dx t
− −

−
− +

− =
Δ

 (7b) 

Where: 

 ( )2
1 2, 1 0i ic − −= α ⋅ρ . (7c) 

So, within each element 0 jx l≤ ≤  the displacement is 
considered as continuous function of local length coordi-
nate x . Then equation (7b) can be rewritten as:  

( ) ( ) ( ) ( )( ) ( )
2

2 2 2
1 2 12 2 .i

i i i i
d U x

b U x b U x U x b Z x
dx − − −− = − − = −

  (7d) 
Where for convenience we introduced the special designa-
tion for the right side of equation: 

 ( ) ( ) ( )1 1 22i i iZ x U x U x− − −= −  (7e) 

and constant 1ic − : 

 ( )2 2 2
1ic t b−

− = . (7f) 

To solve the differential equation (7d) we need to 
specify its right-side, i.e. present function ( )1iZ x−  as the 
polynomial expansion up to second order:  

 ( ) 1 1 1 2
1 0 1 2

i i i
iZ x c c x c x− − −
− = + ⋅ + ⋅ . (8a) 

Which eventually allows to obtain give the following solu-
tion for two main parameters of the problem within each 
elementary mass (section) [21]:  

( ) ( ) ( ) ( ) ( )( )1
,0 1 2 ,0 2 0 11i

i i b iU x U K x P P K x c K x−= + α − + −

( )( ) ( )( ) ( ) ( )1 1 2
1 2 2 1 1 22

2 1 1 ;i ic x K x c x K x K x
b

− −  + − + + − + α − 
 

  (8b) 

 ( ) ( ) ( ) ( )( )
2

2
,0 ,0 1 1

2
1i i i b

b K x
P x U P K x P K x= − + + −

α
 

 ( ) ( )( ) ( )( )
2 1

21 1 1
0 1 1

2 2 2

1 1 1
i

i b K x cc K x K x
−

− α −
+ + − − −

α α α

 ( )( )
1

2
2

2

2 .
ic x K x
−

− −
α

 (8c) 

Where functions ( )1K x  and ( )2K x  are so-called gener-
alized Krylov’s functions:  

 ( ) ( ) ( ) ( )1 2; .K x ch xb K x sh xb b= =  (8d) 

Which have the remarkable properties: 

 ( ) ( ) ( )2
1 2 2 1; ( ).K x b K x K x K x′ ′= =  (8e) 

The solutions (8b) and (8c) are given in form suitable for 
application of transfer matrix method, which is very popu-
lar in analysis of 1D problems [26], especially in structural 
mechanics [27]. Application of formulas (8b) and (8c) for 
each elementary mass section xΔ , application of conjuga-
tion (continuity) equations at the border between any 
neighboring mass sections:  

 ( ) ( ) ( ) ( )1 10 ; 0j j j j j j
i i i iU l U P l P+ += =  (8f) 

and boundary conditions at both outer boundaries, allow to 
complete the mathematical statement of problem at given 
moment of time.  

To go to next moment of time we need to perform 
two additional procedures. First to find new function 

( )iZ x  (8a), and, second, to choose new basic value of 
pressure bP . Present ( )iU x as  

 ( ) 1 2( ) ( ) ( ).i i i iU x K x K x D x= α + β +  (9a) 

Where ( )iD x  is second order polynomial. The values of 
coefficients iα , iβ  and polynomial ( )iD x  can easily be 
got by comparing (8b) with (9a) [21]. Next step is expan-
sion of Krylov’s functions into polynomial series. So, we 
get ( )iU x  as second order polynomial. The last step in get-
ting ( )iZ x  is to find the linear combination (7e) of ex-
panded now ( )iU x with previously expanded ( )1iU x− . 

As to choosing of bP  with respect to which the line-
arization is performed. Similarly as to ( )iU x  in (9a), pre-
sent the solution for pressure ( )iP x  (8c) in form:  

 ( ) , 1 , 2 ,( ) ( ) ( )i i P i P i PP x K x K x D x= α + β + . (9b) 

We can define bP  for the next time step 1i +  as the mean 
value of ( )iP x  (9b), thus:  

( ), 1 , 1 , 2 ,
0

1 ( ) ( ) ( )
x

b i i P i P i PP K x K x D x dx
x

Δ

+ = α +β +
Δ  . (9c) 
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Taking into account the expressions for Krylov’s functions 
(8d) and polynomial terms in (8c), we get:  

 
( ) ( )( ), ,

, 1 2

1j j
i P i P

b i j

b sh l b ch l b
P

b l+

α ⋅ ⋅ ⋅ + β ⋅ −
=  

 
( )211 21 1

,
2 2 2

1
2

ii
j

b i

ccP l
−−α −

+ + − −
α α α

. (9d) 

So, all theoretical background is outlined and we can cal-
culate and analyze the real examples.  

Analysis of the Sod’s task  

The initial data are given on Fig. 1 [5, 20].  
 

Left-side high-pres-
sure chamber 

31 , 1 kgP bar
m

= ρ =  

Right-side low-pressure  
chamber

30.1 , 0.125 kgP bar
m

= ρ =  

0x m=   0.5x m=   1x m=  

Fig. 1. Sketch of the single-phase gas shock-tube 
with closed ( )0U =  boundary conditions at the 

inlet ( )0x m=  and at the outlet ( )1x m=  of the 
pipe 

The pipe of length 1m consists of two equal (0.5 m) 
chambers separated by diaphragm. The left-side chamber 

contains the ideal gas at 1P bar= and density 31 kg
m

ρ = . 

The initial parameters for left-side gas are 0.1P bar=  and 

30.125 kg
m

ρ = . The ideal gas is characterized by adiabatic 

constant 1.4k = . At initial (zero) time moment the dia-
phragm is broken, and transient process starts. So, the task 
is the description of the wave propagation process along 
the tube. 

Here we will use the previous finding [21] as to the 
method stability; the spurious oscillation might occur when 
the time step is lower than allowable. Due to employment 
of three term polynomial expansion of function ( )1iZ x−  it 
is expected that minimal allowable time step should satisfy 
the following inequality for each element of mass j  [21]: 

 5j jl b ≤ . (10a) 

Accounting for expression for b : 

 

1 1 1
0 0 0

0
0

1
5 5

j jk k

b b b

P Pl lt
P kP kP P

+
   ρ

Δ ≥ ρ =   
   

. (10b) 

So, the stability of method depends not only from initial me- 

shing, which is controlled by factor of initial state – 0

0kP
ρ

. 

Stability also depends from possible rarefaction. For exam-
ple, if the basic (mean) pressure at some moment become 5 
time smaller than that at the beginning, than minimum time 
interval should be at least 4 times larger, than was initially 
established. Note, that in such cases it is possible to make 
more fine meshing as to space element lengths. The semi-
analytical method is very easily adjustable to length modi-
fications.  

Make additional comment as to the method stability 
as compared with the most popular ones. The usual require-
ment in literature is that [19]:  

 

1

0
0

10.8
kj

b b

P
t l

P kP
 

Δ ≤ ⋅ ⋅ ρ 
 

. (10c) 

So, the requirements (10b) and (10c) are quate opposite – 
our method is more stable at larger time interval, while 
other methods require lesser time intervals.  

As in work [21] demonstrate that main meshing pa-
rameter which controls the accuracy is the time interval, 
while the length of element, provided it satisfies the re-
quirement of stability (10b), has lesser influence on accu-
racy. Choose the moment of time 4

0 4.5125 10T c−= ⋅ , 
which was considered in works [5, 20], and calculate the 
distribution of pressure along the whole pipe.  

Show that length of element has the lesser im-
portance on accuracy of results. Fix the time interval tΔ  
such as to arrive for the considered time moment 0T , in 
five time steps, i.e.:  

 0
s

T
t

s
Δ = τ = . (11a) 

Consider 4 different space meshing, which are char-
acterized by number J , of evenly spaced elements: 

1 1) 10, ; ) 20, ; ) 100;
10 20

j ja J l m b J l m c J= = = = =  

) 1000.d J = The results of calculation are shown on Fig. 2. 
As one can see, the number of space elements has almost 
no influence on the calculated results. In all these cases the 
requirement of stability was fulfilled at initial moment of 
time ( 0)t = , and the corresponding maximal values of 

j jl b  for all elements are given on the figures. At subse-
quent time moments the values of bP  become smaller, so 
max( )j jl b  for 10J =  may become around 7 at the time 
of interest 0T . Nevertheless, visually the results for 10J =  
are stable. 

Now demonstrate that time step interval is main 
meshing parameters which controls the accuracy of results. 
Fix the number of space elements 500J = . The different 
time intervals will be chosen to arrive to time moment 0T  an 
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integer number of time steps. For convenience, introduce the 
notion of unitary time step τ :  

 0

20
T

τ = . (11b) 

And take the following intervals of time: { ;2 ; 2
3

t ≈ τΔ τ

}0.4 ; 0.2 ; 0.1τ τ τ , which means that corresponding num-
ber, ii , of time steps are: {10,30,50,100, 200}ii = . The re-
sults of calculations (except for 100ii = ) are shown on Fig 3. 
Fig. 3 clearly demonstrates the prevailing effect of the time 
step on the results accuracy. The results for 50ii =  are 
very close to such for 200ii =  and results for 100ii =  (not 
shown here) are visually coincide with those for 200ii = . 

Note, that value of the stability control parameter j jl b  at 
200ii =  was 2.4–2.68. It means, that at 100ii =  it is equal 

to 1.2–1.34. In its turn, it means that we might apply as 
small as only 150J =  space elements for number of time 
step equal to 100ii = . Note, the similar accuracy was at-
tained in work [19] at 1000–2000 space elements (see Fig. 2 a 
in [20]). All this testify about the very good accuracy of the 
method.  

Note, that all existing numerical and theoretical re-
sult are restricted to the time moment when the wave front 
reaches the pipe wall. Our method is not restricted by simi- 
lar conditions. So, consider the further extension of wave be-
yond the time 0T . Fix the number of space elements, take 

500J = . All further results are shown for this space meshing.  

  
 ( )) 10; max 3.35j ja J l b= ≈  ( )) 20; max 1.67j jb J l b= ≈  

  
 ( )) 100; max 0.335j jc J l b= ≈  ( )) 1000; max 0.0335j jd J l b= ≈  

Fig 2. The results of calculation of pressure at the moment of time 4
0 4.5125 10T c−= ⋅  for the same time step 

0
5
TtΔ = , but for different number of space elements: ) 10; ) 20; ) 100; ) 1000a J b J c J d J= = = =  
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Take the time step fixed too: 

 0
1 5 100

Tττ = = . (11c) 

Apart from “usual” time moment 0t T= , consider 
two additional moments of time: 01.5t T=  and 02t T= . 
This means that calculations are performed for

{100,150,200}ii =  time steps. The results are shown on 
Fig. 4. The results are logical, clear and produce no spuri-
ous oscillations. The left wave slope decreases with time, 
and this agrees with numerical and theoretical results of 
work [17].  

 

 
Fig 4. The results of pressure calculation for the 
same number of elements, time step interval, but 
for different time: a) for 100ii = , 0t T= ; b) for 

0150, 1.5ii t T= = ; c) for 0200, 2ii t T= =  

Continue the calculations of pressure for larger time 
moments, the parameters of space and time meshing being the 
same as above. Now consider the moments of time after the 
reflection of the wave from the side boundary of pipe, Fig. 5.  

 

 
Fig. 5. The results of pressure calculations for the 
whole pipe at number of space element 500;J =  

time step 0
1 100

Tτ =  for different time moments: 

a) 02.2t T= ⋅  (red line); b) 02.5t T= ⋅  (green); 
c) 03t T= ⋅ (blue) 

The first graph (red line) is shown for the time 
02.2t T= ⋅ , i.e., at 220th time step. The next graph (green 

line) is obtained for 02.5t T= ⋅ i.e., at 250th time step, and 
third graph is calculated for 03t T= ⋅ , 300ii = . We can not 

   
 a b 

Fig. 3. The results of pressure calculation at the moment of time 4
0 4.5125 10T c−= ⋅  for the same space element 

number 500J =  but for different number of time steps, ii : ) {10,50}; ) {10,30,200}a ii b ii= =  
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comment the accuracy of them, but the graphs look as the 
consistent ones, the straight lines keep their straightness, 
there are no visual oscillations, which are usually exhibited 
in numerical methods.  

Conclusions 

Semi-analytical method is applied for 1D gas dy-
namic problem formulated in Lagrangian coordinates. 
Generally, the method resembles the one for the rod impact 
problem, but nonlinear dependence between the pressure 
and density requires the development of additional lineari-
zation procedure. It is performed in assumption that the 
looking for pressure is close to the assumed basic pressure, 
which is determined as a mean value from the previous 
time step. Technically, the realization of the method is per-
formed by transfer matrix method, which make it easy to 
code. The efficiency of method is tested on the task of Sod, 
and it is demonstrated that:  

1. The results of calculation are very consistent, they 
produce no spurious oscillations, and they correspond very 
well with theoretical finding and calculations by other nu-
merical scheme. The results are stable, provided that time 
step is larger than minimum admissible one, and this prin-
cipally differ it from existing ones, where maximal time 
step is usually restricted.  

2. The time step is the main parameter of meshing 
which controls the accuracy. So, the different space mesh-
ing give the same results, if the time step is the same. In 
contrary, if the space step is fixed the results can be essen-
tially improved by employing the lesser time steps. The 
method allows to calculate the transient effects as before as 
well as after the reflection of wave from the boundary. 

3. Employment the analytical solution withing each 
space element as well as realization of transfer matrix 
method allow to simplify the calculation procedure. It can 
be made very flexible, where the length of each element 
can independently be dynamically adjusted for the attained 
state of this element.  
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Напіваналітичний неявний метод інтегрування по часу одномірної  
газодинамічної задачі  
І.В. Ориняк1,  І.А. Костюшко1,  Р.В. Мазурик1  
1  КПІ ім. Ігоря Сікорського, Київ, Україна 

Анотація. Метод зважених нев’язок набув широкої популярності протягом останніх років, особливо завдяки застосуванню 
в методах скінчених елементів. Він полягає в наближеному виконанні диференціальних рівнянь, тоді як граничні умови мають 
виконуватись точно. Ця мета досягається правильним вибором множин пробних (базових) функцій, які дають нев’язки. 
Нев’язки множать на вагові функції та мінімізують, інтегруючи по всій області задачі. Множина пробних і вагових функцій 
визначає особливість та переваги кожного конкретного методу. Найбільш популярним є вибір пробних і вагових функцій у 
вигляді тригонометричних або поліноміальних функцій. У двовимірних задачах часто використовуються так звані “балочні 
функції”, які є рішеннями більш простих одновимірних задач для балки.  
В даній методичній роботі ми досліджуємо можливість використання множин функцій, побудованих на послідовних експо-
ненціальних функціях, які точно задовольняють граничним умовам. Метод досліджено на прикладі простої осесиметричної 
задачі оболонки, точне рішення якої відоме для будь-якого навантаження. Для кількох прикладів розподіленого або концент-
рованого навантаження запропонований метод порівнюється з аналогічним методом Нав'є, в якому використовуються три-
гонометричні функції. Також ретельно досліджується правильний вибір вагових функцій. Зазначається, що запропоновані 
множини симетричних чи антисиметричних експоненціальних функцій мають хорошу перспективу для застосування в більш 
складних задачах структурної механіки 
Kлючові слова: осесиметрична оболонка, розподілене навантаження, концентрована сила, метод Нав’є, метод Бубнова-
Гальоркіна, множина експоненціальних функцій. 
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