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Method of matched sections in application
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I. Orynyak! e K. Danylenko!

Received: 17 April 2023 / Revised: 14 August 2023 / Accepted: 18 September 2023

Abstract. The paper elaborates the principally new variant of finite element method in application to plate problem. It differs from
classical FEM approach by, at least, three points. First, it uses the strong differential formulation rather than the weak one and suppose
the approximate analytical solution of all differential equations. Second, it explicitly uses all geometrical and physical parameters in
the procedure of solution, rather than some chosen ones, for example, displacement and angles of rotation as usually done in FEM
formulation. Third, the conjugation between adjacent elements occurs between the adjacent sections rather than in polygon vertexes.
These conditions require the continuity of displacements, angles, moments and forces. Each side of rectangular elements is character-
ized by 6 main parameters, so, at whole there are 24 parameters for each rectangular element. The right and upper sides’ parameters
are considered as output ones, and they are related with lower and left sides ones by matrix equations, which allows to apply transfer
matrix method for the compilation of the resulting system of equations for the whole plate. The numerical examples for the thin-walled
and Mindlin plates show the high efficiency and accuracy of the method.
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1. Introduction

Plates are the basic construction elements used in
various industries, and its proper analysis is a requirement
of many standards. Yet theory of plate has tremendous sig-
nificance for the development of applied mathematics, in
general, and partial differential equations, in particular.
The solutions of plate bending problem led to the appear-
ance of brilliant mathematical methods, some of which are
now indispensable in modern mathematical physics. The
history of plate theory is intriguing and fascinated [1] and
is very instrumental in understanding of solution methods
for partial differential equations, PDE [2].

The theoretical method of Navier was the first exam-
ple of application of double trigonometrical (Fourier) se-
ries to PDE; while the Levi method was the first one in re-
duction of PDE to the ordinary differential equation when
the looking for function is considered as product of known

DA I Orynyak
Igor_orinyak@yahoo.com

U Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine

function of one coordinate (due to specific boundary con-
ditions) by the unknown function of another coordinate [3].
These methods are considered as the exact ones, because
each function of the general solution satisfies to the gov-
erning PDE. The exact methods are still popular in litera-
ture, yet their application is restricted to plate of particular
form and type of loading [4], or they require the special
procedure of treatment of rather simple boundary condi-
tions [5].

The theory of plate has generated two versatile math-
ematical techniques both being proposed at the beginning
of 20" century due to new challenges by ship building in-
dustry. They are — a) Ritz method [6]; b) Galerkin method,
GM [7]. Both methods are approximate ones. GM operates
by set of products of unknown coefficients on known trial
functions which satisfy to boundary conditions. This set is
inserted into resulting PDE, which gives so-called residual.
The residual is consequently multiplied on each one trial
function and integrated over the domain area, which give
the corresponding system of linear equations. The generali-
zation of Galerkin method gave rise to more general
weighed residual methods [7]. Ritz method also operates
by similar functions with unknown coefficients which are
substituted in the energy functional (instead of governing
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PDE as in GM) over the domain area. It contains the prod-
ucts of pairs of unknown coefficients. The minimization of
functional gives the required system of equations. Both
methods are very widely used in mathematical physics [8],
in general, and are popular in plate analysis up to now [6,
9, 10, 11], in particular.

All above (semi-) analytical methods employ the
functions which are continuous over the whole domain.
They imply the cumbersome theoretical manipulation. Yet
their main drawback is inability to handle problems with
complicated boundaries, variable properties (initial, or
changed due to complicated physical behavior) and geo-
metrical form, thickness, inclusions, cut-outs and so on. In
this sense, the methods which operates by local functions
defined within the local volumes, have indispensable ad-
vantages.

The finite element method stemmed out from the
Ritz method, where the whole domain is considered as as-
semblage of simple geometrical shapes (elements), sepa-
rated by nodes. The known specially constructed interpo-
lation functions (with the property of partition of unit) are
defined within these small volumes. Within each element
the solution is presented as a sum of products of interpola-
tion functions on the unknown geometrical positions of the
nodes. In the treatment of plate, the most popular are rec-
tangular elements, which contains 12 known interpolation
functions and 12 unknown node positions: each of four
nodes is characterized by displacement and two (in x di-
rection and y direction) angles of rotation [12]. To provide
better continuity between elements the more complicated
interpolation functions are used, which accounts for larger
number of assumed degrees of freedom at nodes. For ex-
ample, it was suggested to employ additional fourth degree
of freedom at each node — mixed derivative with respect to
both coordinates [13].

FEM is very popular method; it is used in over-
whelming majority of engineering application. As to plate
analysis it sometimes suffers from the locking phenomena
for relatively thick (Mindlin) plate. This problem manifests
itself as an overly stiff system when the plate thickness
tends to zero, and related with inability of the interpolation
functions to be able to represent the Kirchoff plate behavior
[14]. Other drawback of conventional FEM plate element
is its conjugation with different structural elements, for ex-
ample, beam element. This requires the development and
justification of special variational procedures [15, 16] to
avoid the spurious stress between the interface of plate and
beam elements.

Our goal is to develop a principally new FE ap-
proach for plate analysis. In contrast to conventional one,
where the neighboring elements are conjugated only at
nodes and only by some chosen in advance degrees of free-
dom (say, displacements and angles of rotation), our ele-
ments conjugates at neighboring sides and by all six de-
grees of freedom, which completely characterize the sec-
tion as a beam. They are: displacement, two angles of rota-

tion — normal to the section and tangential ones, two mo-
ments — normal and tangential (twisting) ones, and trans-
verse force. So, in contrast to the conventional (nodes
matched) FEM (or NM-FEM), our method can be called as
(section matched) SM-FEM, or for brevity — Method of
Matched Sections, MMS. Other difference between con-
ventional FEM and MMS is that relations between kine-
matic and force parameters (so-called stiffness matrix) in
NM-FEM is not evident and derived from variational prin-
ciple (minimization of functional), while in MMS the rela-
tionship is evident, is a beam-like one and is derived di-
rectly from physical equations of dependence of strains
from stresses.

2. Differential equations and their solution
2.1. Differential equations for the Mindlin plate

The peculiarity of our solution is that we do not com-
bine all partial differential equations together to form one
governing equation with respect to one main parameter of
the problem — we analyze and approximately solve each
differential equation separately. So, we need to write them.

Consider the rectangular element, Fig 1, with sides
equal to a (along x direction) and b (along y direction). All
parameters and their positive directions are shown on Fig 1.
Start from the force equilibrium equation:

90, (x) 30, (5.9
dy ox

:p(x,y). (1a)

Where O, and Q, are the transverse shear forces,

p(x,y) is outer distributed loading, as shown on Fig. 1a.

Consider the moment equilibria around y axis:

0. = Mi(xy) Mz (vy)

1b
* ox dy (10)
And around x axis:
oM (x, *
Qy= y(x y)+aMr (st’). (I¢)

dy ox
Where M, and M, are normal bending moment as shown

on Fig. 1a, M and M are twisting bending moment and
upper indexes indicate the plane of their application, Fig. 1a.

Next step is compilation of the physical equations.
For normal bending moments we have [12]:

ox dy
dy ox



Mech. Adv. Technol. Vol. 7, No. 2, 2023

207

Fig. 1. The general scheme of rectangular plate element: a) directions of force parameters, ) directions of kine-

matic parameters

Where v is Poisson ratio, 8, and 6, are the angles
of rotation of the normal to the middle surface of plate,
Fig. 1b, and D is flexural rigidity of the plate:

Eh-h?

= m . (2C)

Where # is the thickness of plate. For the twisting moments
it can be written:

12 200 2
mr= 20 _pan L, (2d)
12 ox ox
My =D(1-) % (26)
el

Where we used the known dependence between the con-
stants for isotropic material:

E

=)

(21

The last set of governing equations are the geomet-
rical equations with shear force correction as in Timo-
shenko beam. The gain of displacement w in x direction, is:

ow(x,y)

™ (3a)

:ex(x’y)""Yx(x’y)’

Where the notion of the shear angle 7y, is intro-

duced, namely it makes the difference between thin-walled
plate and a Mindlin plate. The value of 7, is proportional

to the shear transverse force Q,, as given by the following:

_ 60,
5hG

Ve = (3b)

In similar way write for gain of displacement w in y direc-
tion

(3¢)

Where:

60,

TG (3d)

Yy =

2.2. Idea of method

The idea of method is inspired by analogy with the
beam. The plate element is considered as two beams, one
extending from the middle of the left side to the middle of
the right side (in x direction), and second one is a beam
extending from the middle of lower side to the upper side
of plate (in y direction). X beam is characterized by 6 pa-
rameters, which depend only on x. All these parameters are

related to the central line of this beam (x,gj . They are:

— transverse displacement w”(x), where super-
script shows affiliation to the X beam;

— angle of rotation of the beam 67 (x), and angle of
twisting of the beam 67 (x);

— distributed moments applied to X beam: M (x) —

bending moment, which leads to the gain of angle of rota-
tion of beam sections, and twisting moment M (x) which

leads to the gain of angle of twisting;
— distributed transverse force Q,.(x).

Analogously, Y beam is also characterized by 6 pa-
rameters, which depend only on y, and they pertain to the

central line of this beam [%, yj . They are: displacement

w” () ; angle of rotation of the beam Gi (x) , and angle of
twisting of the beam 67 () ; distributed bending M ()

and twisting M} (y) moments; distributed transverse force
0,(»).

These 12 parameters change along the corresponding
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axes according to above differential equations (1), (2), (3).
Solve them and find the dependences of the parameters
along the central lines.

2.3. Procedure of solution of plate equations

According to the main idea of two beam-like inter-
acting solutions, rewrite the differential equation (1a), as:

20, () _30,(+
dy ox

=P. (4a)

Where for each

p(x,y)=P. Assume that:
90, (x)

————==const=4,.

ox

small element we can take that

(4b)

Where 4, is a constant to be determined later. Then, we
get from (4b), that:

Qx (x) = Qx,O + Alx . (40)
And from (4a) and (4b), that:
Qy(y)zQy,0+(P—Al)y. (4d)

Where lower index “0” indicate the affiliation to the begin-
ning section of the corresponding beam, Fig. 1.

Let us go up. Rewrite the differential equations with
respect to moments according to the “beam” approxima-
tion:

oM oM
fﬂ—gwr—giﬁ; (52
x y

M, () _ _ oM (x)
S0 - (5b)

There are two still unknown functions in each of equations
(5a) and (5b). So, we need to introduce two additional un-
known constants 4, , and 4; for determination of twisting

moments:
MY
BT—(y) = A, =const ; (5¢)
dy
Mx
aT—(X) = A, = const . (5d)
dx

Where from we get the approximate expressions for twist-
ing moments:

MY (y)=My+ 4y ; (5e)

Mx(x)sz’0+A3x.

T

(59

Where as in above, the lower indexes “0” means that value
pertains to the beginning section of the “beam”. Availabili-

ty of twisting moments allows to find the bending mo-
ments. So, the integration of (5a) and (5b) gives:

2

X
MA@=MM+QM+43~@M (62)

2
M, (y)=M,o+0,0v+(P—4 )y?—A3y . (6b)
By the way, note that the values of bending moments
as integrally overaged (lover index “ovg”) or found at the
center of each “beam” line (lover index “cnt”) will be used
in subsequent calculation. Keeping in mind that 0 <x<a
and 0< y<b, Fig. 1, we get for the values of moments in

the middle points:
2

a a a a
M. =M |—|=M_,+ —+A4——A4,—; 6¢
x,cnt x(zj x,0 Qx,02 18 22 ( )

b b
My,cntzMy(Eszy,O'i_Qy,OE—i_
> b

HP-d) A (6d)

In the similar way write the integrally overaged values of
bending moments along the whole length of each “beam”.
They are the following:

1 ¢a
M, o :;.[0 M (x)dx=M,+

2

a a a
4O oot 4 -4 2 Ge
Qx,02 16 22 ( )
1 ¢b b
My»ovgzz,[o M, (y)dy=My,0+Qy,05+
b* b
+H(P—A) = 42 6
( ) P (69

Further proceed from already determined parameters
to still undefined ones. Consider the physical equations for
the twisting angles. According to adopted “beam” model
they are rewritten from (2d) and (2¢) in the form:

96, (x) _ M (x)

= 7
ox D(1-v) (7)
007 MY
oy D(1-v)
Their integration gives the following expressions:
M 4, X
0" (x)=0% g+ — 0 x— 3 7
»(%)=85 D(1—v)"  D(1-v) 2 (7e)
My A 2
0 (1) =0 +——yp—2 7d
(1) =85 D(1—v)”  D(-v) 2 (79

Now consider the bending angles. Rewrite (2a) and (2b):
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aex(x)_ Mx(x) -V My(y) . a
x o] o)
aﬁy(y)_ My(y) ) M, (x)
» o) o)

It is impossible to integrate directly these equations, be-
cause the right sides depend on two different variables. So,
two options are possible. One is to take “alien” moments in
the central points, and other — as overaged values. In first
case we get the following expressions for the bending an-
gles:

2 3 2
Mxox+Qx0L+A1L_A2L
0 (1) =04 02 e T
x x,0
’ D(l—vz)

b b* b
M,,+0,, E‘F(P_Al)?_/lsg
—v "X (8c)
D(l—vz)

2 3 2

My,oy+Qy,oL+(P—A1)L—A3L

0’ (v)=0" 2 6 2 _
y(y) vot 2
D(l—v )

M_ 40,5+ 4 < _ya

x,0 x,02 1 g 22

- D(l—vz) o

(8d)

In second case, the expressions for bending angles are
slightly different:

2 3 2

X X X

M@+ 0o+ A ==

Gi(x): ;0 + D(] 2) _
-V
b > b
Mo +0, 0 +(P—4)—— 4
2 6 2
-V X (8e)

D(1-v)

2 3 2
y y Y
My,0y+Qy,07+(P_Al)Z_A37_

0’ (y)=6i0 +

Y D(1-v*)
a a2 a
Mg+ Qo tAd-c=hs
-y Y. (8f)

D(1-v?)

And now proceed to the last step in integration of the
plate equations. Get the expressions for displacements. Re-
write the dependences (3), as below:

6
=e;(x)-—%;(Gx) :

ow" (x)
ox

(9a)

ow” () :ey(y)_6Qy(y) _

dy 7 5hG

(9b)

Their integration leads to long but rather simple formulas:

2 3 4 3
Mx,Ox?—f—Qx,O%-'—Al%_AZ%
wh (x)=wy +0% ox+ 5 -
' D(l—v )
b > b
Mo +0, 0 +(P—4) 4~ 2 2
2 8 2 X X
-y | O X+ 4 — |.
D(l—vz) 2 5hG{TT 2
(%¢)
2 3 4 3
M2 +0,0 L +(P-4)2 —4, 2
_ y T2 ) 24 6
w(y)=wy+8) v+ 5 -
D(1-v?)
a , ad a
Mx,0+Qx,07+A17_A27 2 6 2
_ 2 8 2y _ 5 P4\
v 5 Qy,0y+( l) .
D(l—v ) 2 5hG 2
(9d)

Where the “alien” moments are taken in the central points.
Alternatively, we get the following formulas:

x? % x* x
MX,07+QX,0Z+AIﬁ_A2Z
w" (x) =Wy +0) ox+ 5 -
D(l—v )

b b* b
My,o"'Qy,oE"‘(P_Al)Z_AsE 26 2
-V | O Xt 4 — |.

D(l—vz) 2 ShG| " 2
(%)
»? v’ vy
()= w467 My,07+Qy,0?+(P_Al)a_A3Z
w(y)=w)+6> v+ -
0o D(l—vz)
a az a
Mx0+Qx07+A17_A27 2 2
. "2 6 2.6 _ 1\
v ) Qy,0y+(P Al) .
D(1-?) 2 shG 2
9D

when the ‘alien” moments are taken as overaged values.

3. Methodology of solution
3.1. Field transfer matrix for element

A few words about transfer matrix method, TMM. It
is most suitable for 1-D problems and was thoroughly de-
scribed in [17]. It is very popular for one dimensional prob-
lems, in particular for solution of spatial beams. A lot of
practical application of TMM is given in [18]. It is very
instrumental in organization of the calculational process,
and we will use some of its ideas in our calculations.
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Turn out to our plate solution. As it follows from de-
rived solution (4)—(9), to calculate all parameters in any
section of either of two “beams” we need to have 15 con-
stants: 6 main parameters of X-beam, 6 parameters of Y-
beam, and 3 auxiliary constants - 4;, A4,, and 4;. These

3 auxiliary constants are found from 3 additional condi-
tions of coupling of two beams. They are the requirement
of equality of displacement and angles of rotations in two
“beams” in the central point:

S EANSIEAT
w (Zj—wy(zj, (10a)
MEARSTEAT

ex(zj_ei(zj, (10b)
0! (gj =6} (g] : (10¢)

In essence, these equations show the mechanism of “wel-
ding” together two independent beams. Equations (10) al-
lows to express the coefficients A4;, 4,, and A4; through

the 12 main parameters (initial conditions at the left and
lower sides of the plate (beginning of X-beam and begin-
ning of Y-beam). Schematically the solution of above equa-
tions (10) can be presented in the matrix form:

. . . Zl’o
4 Oy 1506y 550 Oy 11500y 12 B,
2,0
Ay |=700,1500 5.0 1150 1) +P| B, (10d)
4 031503 95-+. 003175003 15 7 Bs
12,0

Where all coefficients o, ; and [; are known. Also in

(10d) we for conveniency renumerate all 12 initial condi-
tions as:

X . X . X — .
wo =2y 0y 0=2y; 0)0=25;

M, ,=24 Mf,ozzs; Ovo=2- (11a)
wy =Z7; 9“;,0 =2Zg; 9?0 =Zy;
M,,=Z Mig=Zy; 0,0=2. (11b)

Then we are able to separately compile the equations
for all six parameters, which characterize X-beam in each
section x = const , they formally can be presented as:

Zl(x) al,l(x);al,Z(X);"'al,ll(x);al,n(x) Z
Z,(x) _ @y (%)@ (x)s5..eapyy (X)say05 () || Zap
Zg(x) a61(x);a6’2(x);.. %12(")”6,12(") Zisy
bl(x)
+p| 2 %) (12a)
bg (x)

Where for example, Z (x)=w"(x), Zs(x)=0,(x)
(enumerated as in (11a)). Evidently, the coefficients are

such that a,,, (0)=1, and all other coefficients are equal

to zero at point x=0, i.e., a,,, (0)=0 andall 5, (0)=0 .

Analogously for six parameters, which characterize the
state of Y-beam, it can be written:

Z7(y) Cl,l(J’);Cl,z()’)Q-~-C1,11(y);cl,12(y) Zip
Zs(J/) _ CZ,I(y);CZ,Z(y);"'Cl,ll(y);CZ,IZ(y) 220 n
le(y) 06,1(y);cs,z(J’);-~~Cé,12(J’)§C6,1z(J’) Zig
dl(y)
ool 20 (12b)
ds()’)

Where for example, Z;(y)=w"(y) (enumerated as in

(11b)). Evidently, coefficients are such that c,, ,,.¢(0) =1,
and all other coefficients are equal to zero at point y =0,
ie., ¢, (0)=0 andall d,(0)=0.

According to the logic of TMM it is convenient to
formally specify the set of auxiliary additional 12 unknown
constants (which according to TMM can be easily elimi-
nated at further steps of calculation process). These con-
stants are the values of main parameters of two “beams” at
their ends. So additional parameters for X-beam are the fol-
lowing:

Zy3 al’l(a);am (a);...alj”(a);am (a) |( Zio

Zyy _ az,l(a);az,z(a);---a1,11(a);az,1z(a) Zyy +
Zyg aé,l(a)Q%,z(a)§---a<),12(a)§a<>,12(a) Zio
by (a)

b
wp| 2@ (13a)
bs(a)
Where for example, Z;=w"(x=a)=w,, where the

[Tt}

lower subscript “e” means the value of specific parameter
at the end of the “beam”. In the same way introduce the set
of 6 additional parameters at the end of Y-beam:

Zyg €1 (b);cl,z(b);'”cl,ll(b);cl,u(b) Zy

Zyy _ (b);cz,z(b);~~-01,11(b);cz,12(b) 230
Zyy C6,1(b);c6,2(b);"‘c6,12(b);c6,12(b) Z120
d, (b)
d, (b
wp| 0] (13b)

4, (b)
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Where for example, Z,o =w” (y=b)=w) .

Equations (12) are termed as a field transfer matrix
(or connection equations), which gives solution in any
point (x,y) by knowing the state at initial (inlet) point. In

particular, when considered points are the outlet points (up-
per or right sides) of plate, then equations (13) give relation
of state in them with the inlet parameters at the beginning
of plate (left and lower sides).

3.2. Conjugation equations and the general algo-
rithm for the whole plate

Let we have the “big” plate which is meshed by
“small” elements, Fig. 2. First of all, we should enumerate
the elements. In simplest case of rectangular plate, we have
N rows and K columns, which are enumerated conse-
quently from bottom to top and from left to right. So, tra-
versal of elements is carried out from left to right with the
subsequent transition to the next row. Thus, we adopt the
following enumeration of elements:

m=k+n-K, 1<m<KN. (14a)

Where m is the number of element, & is number of column,
n is number of row.

9
N (N;K)
n (n; k)
1 | @y Lz
1 --- k --- K

Fig. 2. The scheme of the meshing

Next step is enumeration of unknown parameters.
Now for simplicity of explanation of the method we adopt
that each element is characterized by 24 unknowns: 12 are
inlet unknowns, and 12 are outlet ones, which are related
with former by field transfer matrix (connection) equa-
tions. To underline that each unknown pertains to some
particular element, introduce the upper additional indexes
to them:

Z8"=Z" =Ry, =R, 1<I<L=24-KM.(14b)

Where 1<¢<24 is the inner numeration within each ele-
ment, and R, is particular designation of unknown for con-

tinuous numbering of unknowns.

Now consider the conjugation equations (point
transfer matrixes). Consider particular element (k,n) . At

its left side it borders with right side of element (k —1n)

(the side is common for both). Evidently, at this side all 6
parameters of two “beams” are the same. So, we can write
six conjugation equations between them:

zitr =z it =2zl = ZE . (14¢)
In the same way we can write 6 conjugation equations for
element (k,n) at its lower side:

Zih =z 2y =28 25 =250 (14d)

As we see, at each common side of two “beams” we
have 6 equations. So, we can formally consider that for
each side of each element we have 3 equations (6 equations
for two sides). So, formally for all 4 border sides of each
element we have 12 equations. If the particular side is sit-
uated on the boundary of the plate, then we have 3 bound-
ary conditions here. So, formally the number of conjuga-
tion and boundary conditions for each element is always
the same —12.

Thus, for each element we have 24 unknowns. We
have 12 connection equations for them, as well as 12 con-
jugation and boundary conditions. Formally, the number of
unknowns and number of equations are the same.

The big number of unknowns used here (equal to

24- KM ) is a not necessity in a practical MMS realization.
It is given here mostly for the easiness of understanding of
method. Actually, as we see, in each element the outlet pa-
rameters are actually redundant. This allows to decrease
the number of unknowns by 2 times. Furthermore, in all
inner elements the inlet parameters can be expressed
through the inlet parameters of element placed at the left
and bottom sides to them. Thus, so-called process of elim-
inations [17] of unknowns can be applied. Eventually, the
number of unknowns theoretically can be reduced to six
multiplied on the number of sides which are placed on
boundaries. So, in this sense, MMS can be reorganized as
the boundary element method.

3.3. Boundary conditions

In MMS the boundary conditions are formulated di-
rectly. There is no need to express some of notions through
the other ones as usually done in the theoretical or other
numerical method. MMS operates by all essential parame-
ters in explicit form. So, if say, the left or upper side of
element is completely free, we put that all force parameters
are zeroth:

Zy=Zs=Zg=0or Zyy=Zy =2y, =0. (15a)

If, for example, the lower side or right side is clamped, we

have:

Zy=Zg=Zy=0 or Zi3=2,=25=0. (I5b)
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If, the right side is simply supported, then:

Z3=2,5=2,,=0. (15¢)
Which means that displacement, twisting angle and ben-
ding moment are equal to zero.

4. Examples of calculations

In this paper we will show only few examples for
static isotropic rectangular plates with straight borders par-
allel to Cartesian coordinates, their length is designated as
I, and height is /,, where for convenience take that /, </, .
Other capabilities, with respect to type of loading (dy-
namic, harmonical), form of plate (curvilinear boundaries),
variable loading and properties within one element — will
be analyzed in subsequent investigations. Here we demon-
strate the principal advantages, simplicity, consistence, and
accuracy of the method on geometries with available exact
solutions.

4.1. Rectangular SSSS plate at uniform loading

It is the simplest geometry, Fig. 3, which allow easy
to get exact theoretical (Navier) solution. Among other, the
theoretical results are given in book of Timoshenko [3].
First of all, demonstrate the consistency of results. Apply
the different meshing and investigate the convergence and
accuracy of results for particular plate with ratio of height
I, to length /, equal to 1.5. The results of calculation for

4
different dimensionless parameters (w,=w, X%;
Mx:]lequxz; My:A_lqulxz; Qx=éx><qlx;

0,= Qy xgql.) are given in Table 1.

OI lﬂ? |
I |

X
»
!

Fig. 3. SSSS plate at uniform loading

It can be stated, that results are consistent, tend to the
correct value for finer meshing and demonstrate the similar
accuracy for both the geometrical and force parameters;
while usually in theoretical or FEM analysis the geomet-
rical parameters are more accurate. So, even 3x3 meshing
gives satisfactory results (withing 5% of accuracy). Note
that for this meshing, practically, the task can be reduced
only to 3x4=12 sides on boundaries with 6 unknowns each,
so the task can be reduced to solution of problem with
12%6=72 unknowns. In similar way, state that 7x7 meshing
(=0.1% of accuracy) can be reduced to solution of task
with 7x4x6=168 unknowns. And 21x21 meshing can be
reduced to calculations with 21x4x6=504 unknowns. Note,
that in this example we did not apply the optimization pro-
cess and solve the problem with maximal number of un-
knowns, which is equal to N XM %24 .

Now investigate the accuracy for the same task with
different ratio of the plate height to its length. The meshing
is fixed and taken as N =M =21. Results of calculations
are given in Table 2. The results confirm the above conclu-
sion as to method accuracy.

Table 1. Comparison of results for uniformly loaded rectangular SSSS plate depending on the number of elements

!
(v= 0.3,11 =1.5)

X

= lx ly i lx ly \/ lx ly N ly N lx
NxN wx[?gj M{E,Ej M},[?E] QX(O,EJ 0,(50)
1x1 0.009558 0.098049 0.060641 0.392195 0.161708
3x3 0.008193 0.085391 0.051558 0.431042 0.341498
5x5 0.007889 0.082627 0.050570 0.423888 0.354777
7x7 0.007808 0.081907 0.050228 0.424150 0.359175
11x11 0.007758 0.081462 0.050002 0.423901 0.361967
15x15 0.007742 0.081322 0.049929 0.423844 0.362902
21x21 0.007733 0.081243 0.049887 0.423813 0.363442

Exact [3] 0.00772 0.0812 0.0498 0.424 0.363
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Table 2. Comparison of results for uniformly loaded rectangular SSSS plate (v = 0.3)

I, /1, Method W(g‘lzy] M, [2‘2] M, [l;lzy] Qx[o,lzy] 0, (%0)
Present (19x19) 0.004069 0.047950 0.047950 0.337492 0.337492
: Exact [3] 0.00406 0.0479 0.0479 0.338 0.338
. Present (19x19) 0.004877 0.055559 0.049382 0.359783 0.346175
Exact [3] 0.00485 0.0554 0.0493 0.36 0.347
Present (19x19) 0.006402 0.069476 0.050399 0.396344 0.357347
a Exact [3] 0.00638 0.0694 0.0503 0.397 0.357
s Present (19x19) 0.007735 0.081261 0.049897 0.423820 0.363317
Exact [3] 0.00772 0.0812 0.0498 0.424 0.363
X Present (19x19) 0.012243 0.118931 0.040609 0.492755 0.367826
Exact [3] 0.01223 0.1189 0.0406 0.493 0.372

4.2. Rectangular CCCC plate at uniform
loading, Fig. 4

The results of calculation are presented in Table 2.

The very good accuracy is attained for this relatively sim-
ple example for both displacement and bending moments.

L/

\

! lﬂ? |
! 1

Fig. 4. The scheme of CCCC plate

Let’s make the problem a little more difficult, which
usually is not investigated in numerical methods, i.e., con-
sider the influence of the ratio between the elements di-
mensions.

4.3. A very long SSSS plate, Fig. 5

Take that the height of plate exceeds the length by
1000 times, and length is equal to 1. Mesh the plate by 7
columns of equal width (1/7). As to horizontal meshing we
draw 5 equal rows of height of 1/5 near upper edge of plate,
and the similar 5 rows at the lower edge. So, the height of
the central strips is equal to 998, while the length of each
is equal to 1/7. It means, that ratio of dimensions for central

elements is equal to 998x7=6986 — it is enormous value,
and our method copes with it without any problems. The
results of calculations are given in Table 3, where calcu-
lated moments and displacement actually coincide with
those for the SS beam. This reveals a great advantage of
our method.

Ya Y
- .
r _|
: |
|
| |
l, | P I,
-
|
L _| P
~ o l > v ;:L’
T 0 g
S — b
a b

I
Fig. 5. A very long SSSS plate with ll =1000 :

X
a) the scheme of plate; b) the scheme of meshing

4.4. Mindlin SFSF plate

There is an exact theoretical solution for it as for
Levy type plate [19]. Here in equations (3a) and (3¢c) we
consider the shear deformation of each section. The results
of calculation and comparison with exact solution [19] for
the square plate are given in Table 5. Evidently the corre-
spondence is very satisfactory and testify about the effi-
ciency of method. No any problem occurs with the locking
phenomena at s// — 0. All our results are given for

19x19 meshing.
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Table 3. Comparison of results for uniformly loaded rectangular CCCC plate (V = 0.3)

ly/lx Method wx[%’%] Mx [E?%j My [%’%] Mx[lx’%] My (%’ly]
| Present (19x19) 0.00127010 —0.022962 —0.022962 0.051327 0.051327
Timoshenko [3] 0.00126 0.0231 0.0231 -0.0513 —0.0513
12 Present (19x19) 0.00173121 —0.030048 —0.022888 0.063941 0.055330
Timoshenko [3] 0.00172 0.0299 0.0228 —0.0639 —0.0554
) Present (19x19) 0.00253912 —0.041213 —0.015780 0.082931 0.056549
Timoshenko [3] 0.00254 0.0412 0.0158 —0.0829 —0.0571

Table 4. Comparison of results for uniformly loaded rectangular SSSS plate with extreme sides ratio (V=0.3)

1 (1 _ (11 (1 _
] /[X W i,l M| =2 M i’l 0,i =0
y Method "(2 2} |\ 277 122 Oc| 05 %15
1000 Present 0.013041 0.125000 0.037229 0.500000 0.337707
oo Timoshenko [3] 0.01302 0.1250 0.0375 0.500 0.372

Table 5. Comparison of results for uniformly loaded
square SFSF Mindlin Plate (v=0.3)

hil Method 7 {Zi ll] 2 (li / j
X X 2 2 2 X 2 > y
0.10 Present 0.013460 0.015541
exact [19] 0.01346 0.01560
0.15 Present 0.013908 0.016048
exact [19] 0.01391 0.01616
0.20 Present 0.014535 0.016729
exact [19] 0.01454 0.01690
0.25 Present 0.015341 0.017581
exact [19] 0.01536 0.01781
0.30 Present 0.016324 0.018604
exact [19] 0.01633 0.01889
Conclusion

Principally new version of FEM for plate analysis,
namely, Method of Matched Sections, is proposed. In con-
trast to conventional FEM, where the elements are matched
at nodes, in this method the elements are matched by neigh-
boring sides. In fact, the element consists of two almost in-
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3acTocyBaHHSI METOAY Y3TOKEHHX CiYeHb JJsl NMPSAMOKYTHMX TOHKOCTIHHHX
ILUIACTHH Ta miacTu MiHasiina

I. Opunsnx’, K. lanuaenko!

U KIII im. Izopsa Cixopcokozo, Kuis, Ykpaina

Anomauin. Y cmammi po3pobiieHo npuHyUno80 HO8UL 8apianm mMemoody CKiHUeHHUX eleMenmis y 3acmocyeéanti 0o 3adayi niacmut. Bin
BIOPI3HAEMBCAL 8I0 KIACUUHO20 MEMOOY CKIHUEHHUX eleMenmie npunaimui mpvoma nynkmamu. I[lo-nepute, 6in 6UKOPUCMOBYE CUNLHY
Jughepenyianviy nOCManosKy, a ne ciaoky, i npUNYCcKkae HAOIUNCEHUN AHARIMUYHUL PO36'S30K YCix ugepenyianorux pisusnb. Tlo-opyee,
8IH SI8HO BUKOPUCMOBYE BCL 2eOMEMPUYHT Ma (I3UUHI napamempu 8 npoyedypi po36'a3anHs, a He 0esiKi BUOPaHi, HanPUKIAo, nepemiuents
ma Kymu, sk ye 3azeudail pooumcs y popmyniosanni MCE. Tlo-mpeme, cnpsisicenHst Midic CyCIOHIMU eremMenmamu 8i00y8acmbCst 830084C
nepepizis, a ne y epuiunax bazamoxymuuxis. L{i ymosu sumazaromo Henepepernocmi nepemiujern, Kymis, momenmis i cun. Kooicna cmo-
POHA NPSIMOKYMHUX €/IeMEeHMI6 Xapakmepuzyemocsi 6 OCHOGHUMU NAPAMEMPAMU, MAKUM YUHOM, 8 YIIOMY OJisi KOJICHO2O NPSIMOKYMHO20
enemenma icnye 24 napamempu. Ilapamempu npagoi ma eepxmuvoi epamneti 68aicaomvbCsi GUXIOHUMU, A 3 NAPAMEMPAMU HUNCHLOL MA T80T
epaHell 60HU NO '6A3AHI MAMPUYHUMU DIBHAHHAMU, WO 00380JIAE 3ACTNOCYB8AMU MEMOO NOYAMKOBUX NAPAMEMPIE OJid CKIA0AHHS pe3)b-
myiouoi cucmemu pignsans 05 eciei niacmunu. Qucenvhi npukiadu ons naacmunu Minonina nokazyloms ucoky epexmusHicms i mou-
Hicmb Memooy.

Knrwuogi cnosa: Memoo y3e00cenux ciuensb, Memoo noYamkosux napamempis, npamMoKymua niacmuna, niacmuna Minoniuna, epa-
HUYHI YMOBU, CHPAICEHHS.
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