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Abstract. The paper elaborates the principally new variant of finite element method in application to plate problem. It differs from 
classical FEM approach by, at least, three points. First, it uses the strong differential formulation rather than the weak one and suppose 
the approximate analytical solution of all differential equations. Second, it explicitly uses all geometrical and physical parameters in 
the procedure of solution, rather than some chosen ones, for example, displacement and angles of rotation as usually done in FEM 
formulation. Third, the conjugation between adjacent elements occurs between the adjacent sections rather than in polygon vertexes. 
These conditions require the continuity of displacements, angles, moments and forces. Each side of rectangular elements is character-
ized by 6 main parameters, so, at whole there are 24 parameters for each rectangular element. The right and upper sides’ parameters 
are considered as output ones, and they are related with lower and left sides ones by matrix equations, which allows to apply transfer 
matrix method for the compilation of the resulting system of equations for the whole plate. The numerical examples for the thin-walled 
and Mindlin plates show the high efficiency and accuracy of the method. 
Keywords: Method of matched sections, transfer matrix method, rectangular plate, Mindlin plate, boundary conditions, conjugation.

1. Introduction 

Plates are the basic construction elements used in 
various industries, and its proper analysis is a requirement 
of many standards. Yet theory of plate has tremendous sig-
nificance for the development of applied mathematics, in 
general, and partial differential equations, in particular. 
The solutions of plate bending problem led to the appear-
ance of brilliant mathematical methods, some of which are 
now indispensable in modern mathematical physics. The 
history of plate theory is intriguing and fascinated [1] and 
is very instrumental in understanding of solution methods 
for partial differential equations, PDE [2].  

The theoretical method of Navier was the first exam-
ple of application of double trigonometrical (Fourier) se-
ries to PDE; while the Levi method was the first one in re-
duction of PDE to the ordinary differential equation when 
the looking for function is considered as product of known 

function of one coordinate (due to specific boundary con-
ditions) by the unknown function of another coordinate [3]. 
These methods are considered as the exact ones, because 
each function of the general solution satisfies to the gov-
erning PDE. The exact methods are still popular in litera-
ture, yet their application is restricted to plate of particular 
form and type of loading [4], or they require the special 
procedure of treatment of rather simple boundary condi-
tions [5].  

The theory of plate has generated two versatile math-
ematical techniques both being proposed at the beginning 
of 20th century due to new challenges by ship building in-
dustry. They are – a) Ritz method [6]; b) Galerkin method, 
GM [7]. Both methods are approximate ones. GM operates 
by set of products of unknown coefficients on known trial 
functions which satisfy to boundary conditions. This set is 
inserted into resulting PDE, which gives so-called residual. 
The residual is consequently multiplied on each one trial 
function and integrated over the domain area, which give 
the corresponding system of linear equations. The generali- 
zation of Galerkin method gave rise to more general 
weighed residual methods [7]. Ritz method also operates 
by similar functions with unknown coefficients which are 
substituted in the energy functional (instead of governing 
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PDE as in GM) over the domain area. It contains the prod-
ucts of pairs of unknown coefficients. The minimization of 
functional gives the required system of equations. Both 
methods are very widely used in mathematical physics [8], 
in general, and are popular in plate analysis up to now [6, 
9, 10, 11], in particular.  

All above (semi-) analytical methods employ the 
functions which are continuous over the whole domain. 
They imply the cumbersome theoretical manipulation. Yet 
their main drawback is inability to handle problems with 
complicated boundaries, variable properties (initial, or 
changed due to complicated physical behavior) and geo-
metrical form, thickness, inclusions, cut-outs and so on. In 
this sense, the methods which operates by local functions 
defined within the local volumes, have indispensable ad-
vantages.  

The finite element method stemmed out from the 
Ritz method, where the whole domain is considered as as-
semblage of simple geometrical shapes (elements), sepa-
rated by nodes. The known specially constructed interpo-
lation functions (with the property of partition of unit) are 
defined within these small volumes. Within each element 
the solution is presented as a sum of products of interpola-
tion functions on the unknown geometrical positions of the 
nodes. In the treatment of plate, the most popular are rec-
tangular elements, which contains 12 known interpolation 
functions and 12 unknown node positions: each of four 
nodes is characterized by displacement and two (in 𝑥 di-
rection and 𝑦 direction) angles of rotation [12]. To provide 
better continuity between elements the more complicated 
interpolation functions are used, which accounts for larger 
number of assumed degrees of freedom at nodes. For ex-
ample, it was suggested to employ additional fourth degree 
of freedom at each node – mixed derivative with respect to 
both coordinates [13].  

FEM is very popular method; it is used in over-
whelming majority of engineering application. As to plate 
analysis it sometimes suffers from the locking phenomena 
for relatively thick (Mindlin) plate. This problem manifests 
itself as an overly stiff system when the plate thickness 
tends to zero, and related with inability of the interpolation 
functions to be able to represent the Kirchoff plate behavior 
[14]. Other drawback of conventional FEM plate element 
is its conjugation with different structural elements, for ex-
ample, beam element. This requires the development and 
justification of special variational procedures [15, 16] to 
avoid the spurious stress between the interface of plate and 
beam elements.  

Our goal is to develop a principally new FE ap-
proach for plate analysis. In contrast to conventional one, 
where the neighboring elements are conjugated only at 
nodes and only by some chosen in advance degrees of free-
dom (say, displacements and angles of rotation), our ele-
ments conjugates at neighboring sides and by all six de-
grees of freedom, which completely characterize the sec-
tion as a beam. They are: displacement, two angles of rota-

tion – normal to the section and tangential ones, two mo-
ments – normal and tangential (twisting) ones, and trans-
verse force. So, in contrast to the conventional (nodes 
matched) FEM (or NM-FEM), our method can be called as 
(section matched) SM-FEM, or for brevity – Method of 
Matched Sections, MMS. Other difference between con-
ventional FEM and MMS is that relations between kine-
matic and force parameters (so-called stiffness matrix) in 
NM-FEM is not evident and derived from variational prin-
ciple (minimization of functional), while in MMS the rela-
tionship is evident, is a beam-like one and is derived di-
rectly from physical equations of dependence of strains 
from stresses. 

2. Differential equations and their solution 

2.1. Differential equations for the Mindlin plate 

The peculiarity of our solution is that we do not com-
bine all partial differential equations together to form one 
governing equation with respect to one main parameter of 
the problem – we analyze and approximately solve each 
differential equation separately. So, we need to write them.  

Consider the rectangular element, Fig 1, with sides 
equal to a (along x direction) and b (along 𝑦 direction). All 
parameters and their positive directions are shown on Fig 1. 
Start from the force equilibrium equation:  

 
( ) ( ) ( )

, ,
,y xQ x y Q x y

p x y
y x

∂ ∂
+ =

∂ ∂
. (1a) 

Where xQ  and yQ  are the transverse shear forces, 

( ),p x y  is outer distributed loading, as shown on Fig. 1a.  
Consider the moment equilibria around 𝑦 axis: 

 ( ) ( ), ,y
x

x
M x y M x y

Q
x y

τ∂ ∂
= +

∂ ∂
. (1b) 

And around x axis:  

 
( ) ( ), ,x

y
y

M x y M x y
Q

y x
τ∂ ∂

= +
∂ ∂

. (1c) 

Where xM  and yM  are normal bending moment as shown 

on Fig. 1a, yMτ  and xMτ  are twisting bending moment and 
upper indexes indicate the plane of their application, Fig. 1a.  

Next step is compilation of the physical equations. 
For normal bending moments we have [12]: 

 ( ) ( ),, yx
x

x yx y
M D v

x y
∂θ ∂θ

= +  ∂ ∂ 
; (2a) 
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x y x y

M D v
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. (2b) 
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Where v is Poisson ratio, xθ  and yθ  are the angles 
of rotation of the normal to the middle surface of plate, 
Fig. 1b, and D is flexural rigidity of the plate: 

 ( )
2

212 1
Eh hD

v
⋅=
−

. (2c) 

Where h is the thickness of plate. For the twisting moments 
it can be written:   

 ( )
2 2

1
12

y yx Gh hM D v
x xτ

∂θ ∂θ⋅= = −
∂ ∂

; (2d) 

 ( )1y xM D v
yτ

∂θ= −
∂

. (2e) 

Where we used the known dependence between the con-
stants for isotropic material:  

 ( )2 1
EG

v
=

+
. (2f) 

The last set of governing equations are the geomet-
rical equations with shear force correction as in Timo-
shenko beam. The gain of displacement w in x direction, is:  

 ( ) ( ) ( ),
, ,x x

w x y
x y x y

x
∂

= θ + γ
∂

. (3a) 

Where the notion of the shear angle xγ  is intro-
duced, namely it makes the difference between thin-walled 
plate and a Mindlin plate. The value of xγ  is proportional 
to the shear transverse force xQ , as given by the following:  

 6
5

x
x

Q
hG

γ = − . (3b) 

In similar way write for gain of displacement w  in 𝑦 direc-
tion 

 y y
w
y

∂ = θ + γ
∂

. (3c) 

Where:  

 
6
5

y
y

Q
hG

γ = − . (3d) 

2.2. Idea of method 

The idea of method is inspired by analogy with the 
beam. The plate element is considered as two beams, one 
extending from the middle of the left side to the middle of 
the right side (in x direction), and second one is a beam 
extending from the middle of lower side to the upper side 
of plate (in y direction). X beam is characterized by 6 pa-
rameters, which depend only on x. All these parameters are 

related to the central line of this beam ,
2
bx 

 
 

. They are:  

– transverse displacement ( )xw x , where super-
script shows affiliation to the X beam;  

– angle of rotation of the beam ( )x
x xθ , and angle of 

twisting of the beam ( )x
y xθ ; 

– distributed moments applied to X beam: ( )xM x  – 
bending moment, which leads to the gain of angle of rota-
tion of beam sections, and twisting moment ( )xM xτ  which 
leads to the gain of angle of twisting; 

– distributed transverse force ( )xQ x . 
Analogously, Y beam is also characterized by 6 pa-

rameters, which depend only on 𝑦, and they pertain to the 

central line of this beam ,
2
a y 

 
 

. They are: displacement 

( )yw y ; angle of rotation of the beam ( )y
y xθ , and angle of 

twisting of the beam ( )y
x yθ ; distributed bending ( )yM y  

and twisting ( )yM yτ  moments; distributed transverse force 
( )yQ y . 

These 12 parameters change along the corresponding 

 
 a b 

Fig. 1. The general scheme of rectangular plate element: a) directions of force parameters, b) directions of kine-
matic parameters 
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axes according to above differential equations (1), (2), (3). 
Solve them and find the dependences of the parameters 
along the central lines.  

2.3. Procedure of solution of plate equations 

According to the main idea of two beam-like inter-
acting solutions, rewrite the differential equation (1a), as:  

 
( ) ( )y xQ y Q x

P
y x

∂ ∂
+ =

∂ ∂
. (4a) 

Where for each small element we can take that 
( ),p x y P= . Assume that:  

 ( )
1

xQ x
const A

x
∂

= =
∂

. (4b) 

Where 1A  is a constant to be determined later. Then, we 
get from (4b), that:  

 ( ) ,0 1x xQ x Q A x= + . (4c) 

And from (4a) and (4b), that:  

 ( ) ( ),0 1y yQ y Q P A y= + − . (4d) 

Where lower index “0” indicate the affiliation to the begin-
ning section of the corresponding beam, Fig. 1.  

Let us go up. Rewrite the differential equations with 
respect to moments according to the “beam” approxima-
tion:  

 ( ) ( ) ( )y
x

x
M x M y

Q x
x y

τ∂ ∂
= −

∂ ∂
; (5a) 

 
( ) ( ) ( )x

y
y

M y M x
Q y

y x
τ∂ ∂

= −
∂ ∂

. (5b) 

There are two still unknown functions in each of equations 
(5a) and (5b). So, we need to introduce two additional un-
known constants 2A , and 3A  for determination of twisting 
moments:  

 ( )
2

yM y
A const

y
τ∂

= =
∂

; (5c) 

 ( )
3

xM x
A const

x
τ∂

= =
∂

. (5d) 

Where from we get the approximate expressions for twist-
ing moments:  

 ( ) 2,0
y yM y M A yτ τ= + ; (5e) 

 ( ) ,0 3
x xM x M A xτ τ= + . (5f) 

Where as in above, the lower indexes “0” means that value 
pertains to the beginning section of the “beam”. Availabili- 

ty of twisting moments allows to find the bending mo-
ments. So, the integration of (5a) and (5b) gives:  

 ( )
2

,0 ,0 1 22x x x
xM x M Q x A A x= + + − ; (6a) 

 ( ) ( )
2

,0 ,0 1 32y y y
yM y M Q y P A A y= + + − − . (6b) 

By the way, note that the values of bending moments 
as integrally overaged (lover index “ovg”) or found at the 
center of each “beam” line (lover index “cnt”) will be used 
in subsequent calculation. Keeping in mind that 0 x a≤ ≤  
and 0 y b≤ ≤ , Fig. 1, we get for the values of moments in 
the middle points:  

2

, ,0 ,0 1 22 2 8 2x cnt x x x
a a a aM M M Q A A = = + + − 

 
; (6c) 

 , ,0 ,02 2y cnt y y y
b bM M M Q = = + + 

 
 

 ( )
2

1 38 2
b bP A A+ − − . (6d) 

In the similar way write the integrally overaged values of 
bending moments along the whole length of each “beam”. 
They are the following:  

 ( ), ,00

1 a
x ovg x xM M x dx M

a
= = +  

 
2

,0 1 22 6 2x
a a aQ A A+ + − ; (6e) 

 ( ), ,0 ,00

1
2

b
y ovg y y y

bM M y dy M Q
b

= = + +  

 ( )
2

1 36 2
b bP A A+ − −  (6f) 

Further proceed from already determined parameters 
to still undefined ones. Consider the physical equations for 
the twisting angles. According to adopted “beam” model 
they are rewritten from (2d) and (2e) in the form:  

 
( ) ( )

( )1

x x
y x M x
x D v

τ∂θ
=

∂ −
 (7a) 

 ( ) ( )
( )1

y y
x y M y
y D v

τ∂θ
=

∂ −
 (7b) 

Their integration gives the following expressions:  

 ( ) ( ) ( )
2

,0 3
,0 1 1 2

x
x x
y y

M A xx x
D v D v

τθ = θ + +
− −

 (7c) 

 ( ) ( ) ( )
2

,0 2
,0 1 1 2

y
y y
x x

M A yy y
D v D v

τθ = θ + +
− −

 (7d) 

Now consider the bending angles. Rewrite (2a) and (2b):  
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 ( ) ( )
( )

( )
( )2 21 1

yx x M yx M x
x D D

∂θ
= − ν

∂ − ν − ν
; (8a) 

 
( ) ( )

( )
( )

( )2 21 1
y y xy M y M x

v
y D v D v

∂θ
= −

∂ − −
. (8b) 

It is impossible to integrate directly these equations, be-
cause the right sides depend on two different variables. So, 
two options are possible. One is to take “alien” moments in 
the central points, and other – as overaged values. In first 
case we get the following expressions for the bending an-
gles:  

 ( ) ( )

2 3 2
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,0 2

2 6 2
1
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x x
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; (8c) 
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 ( )

2

,0 ,0 1 2

2
2 8 2
1

x x
a a aM Q A A

v y
D v

+ + −
− ⋅

−
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In second case, the expressions for bending angles are 
slightly different:  

 ( ) ( )
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v y
D v
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−
. (8f) 

And now proceed to the last step in integration of the 
plate equations. Get the expressions for displacements. Re- 
write the dependences (3), as below:  

 ( ) ( ) ( )6
5

x
xx

x
w x Q x

x
x hG

∂
= θ −

∂
; (9a) 

 ( ) ( ) ( )6
5

y
yy

y
Q yw y

y
y hG

∂
= θ −

∂
. (9b) 

Their integration leads to long but rather simple formulas: 
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2 3 4 3
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  (9d) 

Where the “alien” moments are taken in the central points. 
Alternatively, we get the following formulas:  

 

 ( ) ( )

2 3 4 3

,0 ,0 1 2
0 ,0 2

2 6 24 6
1

x xx x x
x

x x x xM Q A A
w x w x

D v

+ + −
= + θ + −
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( )

2
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,0 12
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  (9e) 
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  (9f) 

when the ‘alien” moments are taken as overaged values.  

3. Methodology of solution 

3.1. Field transfer matrix for element 

A few words about transfer matrix method, TMM. It 
is most suitable for 1-D problems and was thoroughly de-
scribed in [17]. It is very popular for one dimensional prob-
lems, in particular for solution of spatial beams. A lot of 
practical application of TMM is given in [18]. It is very 
instrumental in organization of the calculational process, 
and we will use some of its ideas in our calculations.  
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Turn out to our plate solution. As it follows from de-
rived solution (4)–(9), to calculate all parameters in any 
section of either of two “beams” we need to have 15 con-
stants: 6 main parameters of X-beam, 6 parameters of Y-
beam, and 3 auxiliary constants - 1A , 2A , and 3A . These 
3 auxiliary constants are found from 3 additional condi-
tions of coupling of two beams. They are the requirement 
of equality of displacement and angles of rotations in two 
“beams” in the central point: 

 
2 2

x ya bw w   =   
   

; (10a) 

 
2 2

x y
x x

a b   θ = θ   
   

; (10b) 

 
2 2

x y
y y

a b   θ = θ   
   

. (10c) 

In essence, these equations show the mechanism of “wel- 
ding” together two independent beams. Equations (10) al-
lows to express the coefficients 1A , 2A , and 3A  through 
the 12 main parameters (initial conditions at the left and 
lower sides of the plate (beginning of X-beam and begin-
ning of Y-beam). Schematically the solution of above equa-
tions (10) can be presented in the matrix form:  

1,0
1,1 1,2 1,11 1,121 1

2,0
2 2,1 2,2 1,11 2,12 2

3 33,1 3,2 3,12 3,12
12,0

; ; ;
; ; ;
; ; ;

Z
A

Z
A P
A

Z

 
 α α α α β    
     = α α α α + β     
      βα α α α     

 







. (10d) 

Where all coefficients ,i jα  and iβ  are known. Also in 
(10d) we for conveniency renumerate all 12 initial condi-
tions as:  

 0 1 ,0 2 ,0 3; ; ;x x x
x yw Z Z Z= θ = θ =  

 ,0 4 ,0 5 ,0 6; ;x
x xM Z M Z Q Zτ= = = . (11a) 

 7 8 90 ,0 ,0; ; ;y y y
y xw Z Z Z= θ = θ =  

 ,0 10 11 ,0 12,0; ;y
y yM Z M Z Q Zτ= = = . (11b) 

Then we are able to separately compile the equations 
for all six parameters, which characterize X-beam in each 
section x const= , they formally can be presented as:  

( )
( )

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1,01,1 1,2 1,11 1,121

2,02,1 2,2 1,11 2,122

12,06,1 6,2 6,12 6,126

; ; ;
; ; ;

.
; ; ;

Za x a x a x a xZ x
Za x a x a x a xZ x

Za x a x a x a xZ x

…    
    …    = +    …………………………………………         …     

 

 

( )
( )

( )

1

2

6

b x
b x

P

b x

 
 
 +  …
  
 

. (12a) 

Where for example, ( ) ( )1
xZ x w x= , ( ) ( )6 xZ x Q x=  

(enumerated as in (11a)). Evidently, the coefficients are 
such that ( ), 0 1m ma = , and all other coefficients are equal 

to zero at point 0x = , i.e., ( ), 0 0m ka =  and all ( )0 0mb =  . 
Analogously for six parameters, which characterize the 
state of Y-beam, it can be written:  

( )
( )

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1,01,1 1,2 1,11 1,127

2,02,1 2,2 1,11 2,128

12,06,1 6,2 6,12 6,1212

; ; ;
; ; ;

.
; ; ;

Zc y c y c y c yZ y
Zc y c y c y c yZ y

Zc y c y c y c yZ y

…    
    …    = +    …………………………………………         …     

 

 

( )
( )

( )

1

2

6

d y
d y

P

d y

 
 
 +  …
  
 

 (12b) 

Where for example, ( ) ( )7
yZ y w y=  (enumerated as in 

(11b)). Evidently, coefficients are such that ( ), 6 0 1m mc + = , 
and all other coefficients are equal to zero at point 0y = , 
i.e., ( ), 0 0m kc =  and all ( )0 0md = . 

According to the logic of TMM it is convenient to 
formally specify the set of auxiliary additional 12 unknown 
constants (which according to TMM can be easily elimi-
nated at further steps of calculation process). These con-
stants are the values of main parameters of two “beams” at 
their ends. So additional parameters for X-beam are the fol-
lowing:  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1,01,1 1,2 1,11 1,1213

2,02,1 2,2 1,11 2,1214

12,06,1 6,2 6,12 6,1218

; ; ;
; ; ;

.
; ; ;

Za a a a a a a aZ
Za a a a a a a aZ

Za a a a a a a aZ

…   
    …    = +    …………………………………………       …    

 

 

( )
( )

( )

1

2

6

b a
b a

P

b a

 
 
 +  …
  
 

. (13a) 

Where for example, ( )13
x x

eZ w x a w= = = , where the 
lower subscript “e” means the value of specific parameter 
at the end of the “beam”. In the same way introduce the set 
of 6 additional parameters at the end of Y-beam:  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1,01,1 1,2 1,11 1,1219

2,02,1 2,2 1,11 2,1220

12,06,1 6,2 6,12 6,1224

; ; ;
; ; ;

.
; ; ;

Zc b c b c b c bZ
Zc b c b c b c bZ

Zc b c b c b c bZ

+

…   
    …   =     …………………………………………       …    

 

 

( )
( )

( )

1

2

6

d b
d b

P

d b

 
 
 +  …
  
 

. (13b) 
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Where for example, ( )19
y y

eZ w y b w= = = .  
Equations (12) are termed as a field transfer matrix 

(or connection equations), which gives solution in any 
point ( ),x y  by knowing the state at initial (inlet) point. In 
particular, when considered points are the outlet points (up-
per or right sides) of plate, then equations (13) give relation 
of state in them with the inlet parameters at the beginning 
of plate (left and lower sides).  

3.2. Conjugation equations and the general algo-
rithm for the whole plate 

Let we have the “big” plate which is meshed by 
“small” elements, Fig. 2. First of all, we should enumerate 
the elements. In simplest case of rectangular plate, we have 
N rows and K columns, which are enumerated conse-
quently from bottom to top and from left to right. So, tra-
versal of elements is carried out from left to right with the 
subsequent transition to the next row. Thus, we adopt the 
following enumeration of elements:  

 .,   1 m k n K m KN= + ⋅ ≤ ≤  (14a) 

Where m is the number of element, k is number of column, 
n is number of row.  
 

 
Fig. 2. The scheme of the meshing 

Next step is enumeration of unknown parameters. 
Now for simplicity of explanation of the method we adopt 
that each element is characterized by 24 unknowns: 12 are 
inlet unknowns, and 12 are outlet ones, which are related 
with former by field transfer matrix (connection) equa-
tions. To underline that each unknown pertains to some 
particular element, introduce the upper additional indexes 
to them:  

 ,
24

k n m
t t t m lZ Z R R+ ⋅= = = ,     1 24 .l L KM≤ ≤ = ⋅  (14b) 

Where 1 24t≤ ≤  is the inner numeration within each ele-
ment, and lR  is particular designation of unknown for con-
tinuous numbering of unknowns.  

Now consider the conjugation equations (point 
transfer matrixes). Consider particular element ( ),k n . At 

its left side it borders with right side of element ( )1;k n−  
(the side is common for both). Evidently, at this side all 6 
parameters of two “beams” are the same. So, we can write 
six conjugation equations between them:  

 1, , 1, , 1, ,
13 1 14 2 18 6; ; .k n k n k n k n k n k nZ Z Z Z Z Z− − −= = =  (14c) 

In the same way we can write 6 conjugation equations for 
element ( ),k n  at its lower side:  

 , 1 , , 1 , , 1 ,
719 20 8 24 12; ; .k n k n k n k n k n k nZ Z Z Z Z Z− − −= = =  (14d) 

As we see, at each common side of two “beams” we 
have 6 equations. So, we can formally consider that for 
each side of each element we have 3 equations (6 equations 
for two sides). So, formally for all 4 border sides of each 
element we have 12 equations. If the particular side is sit-
uated on the boundary of the plate, then we have 3 bound-
ary conditions here. So, formally the number of conjuga-
tion and boundary conditions for each element is always 
the same –12.  

Thus, for each element we have 24 unknowns. We 
have 12 connection equations for them, as well as 12 con-
jugation and boundary conditions. Formally, the number of 
unknowns and number of equations are the same.  

The big number of unknowns used here (equal to 
24 KM⋅ ) is a not necessity in a practical MMS realization. 
It is given here mostly for the easiness of understanding of 
method. Actually, as we see, in each element the outlet pa-
rameters are actually redundant. This allows to decrease 
the number of unknowns by 2 times. Furthermore, in all 
inner elements the inlet parameters can be expressed 
through the inlet parameters of element placed at the left 
and bottom sides to them. Thus, so-called process of elim-
inations [17] of unknowns can be applied. Eventually, the 
number of unknowns theoretically can be reduced to six 
multiplied on the number of sides which are placed on 
boundaries. So, in this sense, MMS can be reorganized as 
the boundary element method.  

3.3. Boundary conditions 

In MMS the boundary conditions are formulated di-
rectly. There is no need to express some of notions through 
the other ones as usually done in the theoretical or other 
numerical method. MMS operates by all essential parame-
ters in explicit form. So, if say, the left or upper side of 
element is completely free, we put that all force parameters 
are zeroth:  

 4 5 6 0Z Z Z= = =  or 22 23 24 0Z Z Z= = = . (15a) 

If, for example, the lower side or right side is clamped, we 
have:  

 7 8 9 0Z Z Z= = =  or 13 14 15 0Z Z Z= = = . (15b) 
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If, the right side is simply supported, then:  

 13 15 16 0Z Z Z= = = . (15c) 

Which means that displacement, twisting angle and ben- 
ding moment are equal to zero.  

4. Examples of calculations 

In this paper we will show only few examples for 
static isotropic rectangular plates with straight borders par-
allel to Cartesian coordinates, their length is designated as 

xl  and height is yl , where for convenience take that x yl l≤ . 
Other capabilities, with respect to type of loading (dy-
namic, harmonical), form of plate (curvilinear boundaries), 
variable loading and properties within one element – will 
be analyzed in subsequent investigations. Here we demon-
strate the principal advantages, simplicity, consistence, and 
accuracy of the method on geometries with available exact 
solutions.  

4.1. Rectangular SSSS plate at uniform loading 

It is the simplest geometry, Fig. 3, which allow easy 
to get exact theoretical (Navier) solution. Among other, the 
theoretical results are given in book of Timoshenko [3]. 
First of all, demonstrate the consistency of results. Apply 
the different meshing and investigate the convergence and 
accuracy of results for particular plate with ratio of height 

yl  to length xl  equal to 1.5. The results of calculation for 

different dimensionless parameters 
4

( ;xl×=x x
qw w
D

2 ; xl×=x xM M q  2; xl= ×y yM M q  ; xl×=x xQ Q q  

)xl×=y yQ Q q  are given in Table 1.  

 
Fig. 3. SSSS plate at uniform loading 

It can be stated, that results are consistent, tend to the 
correct value for finer meshing and demonstrate the similar 
accuracy for both the geometrical and force parameters; 
while usually in theoretical or FEM analysis the geomet-
rical parameters are more accurate. So, even 3×3 meshing 
gives satisfactory results (withing 5% of accuracy). Note 
that for this meshing, practically, the task can be reduced 
only to 3×4=12 sides on boundaries with 6 unknowns each, 
so the task can be reduced to solution of problem with 
12×6=72 unknowns. In similar way, state that 7×7 meshing 
( 0.1%≈  of accuracy) can be reduced to solution of task 
with 7×4×6=168 unknowns. And 21×21 meshing can be 
reduced to calculations with 21×4×6=504 unknowns. Note, 
that in this example we did not apply the optimization pro-
cess and solve the problem with maximal number of un-
knowns, which is equal to 24N M× × .  

Now investigate the accuracy for the same task with 
different ratio of the plate height to its length. The meshing 
is fixed and taken as 21N M= = . Results of calculations 
are given in Table 2. The results confirm the above conclu-
sion as to method accuracy.  

Table 1. Comparison of results for uniformly loaded rectangular SSSS plate depending on the number of elements 

(   0. 3, 1.5)y

x

l
l

ν = =  

N N×  ,
2 2

yx
x

llw
 
 
 

 ,
2 2

yx
x

llM
 
 
 

 ,
2 2

yx
y

llM
 
 
 

 0,
2
y

x
l

Q
 
 
 

 ,0
2
x

y
lQ  

 
 

 

1x1 0.009558 0.098049 0.060641 0.392195 0.161708 
3x3 0.008193 0.085391 0.051558 0.431042 0.341498 
5x5 0.007889 0.082627 0.050570 0.423888 0.354777 
7x7 0.007808 0.081907 0.050228 0.424150 0.359175 

11x11 0.007758 0.081462 0.050002 0.423901 0.361967 
15x15 0.007742 0.081322 0.049929 0.423844 0.362902 
21x21 0.007733 0.081243 0.049887 0.423813 0.363442 

Exact [3] 0.00772 0.0812 0.0498 0.424 0.363 
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4.2. Rectangular CCCC plate at uniform 
loading, Fig. 4 

The results of calculation are presented in Table 2. 
The very good accuracy is attained for this relatively sim-
ple example for both displacement and bending moments.  

 

 
Fig. 4. The scheme of CCCC plate 

Let’s make the problem a little more difficult, which 
usually is not investigated in numerical methods, i.e., con-
sider the influence of the ratio between the elements di-
mensions.  

4.3. A very long SSSS plate, Fig. 5 

Take that the height of plate exceeds the length by 
1000 times, and length is equal to 1. Mesh the plate by 7 
columns of equal width (1/7). As to horizontal meshing we 
draw 5 equal rows of height of 1/5 near upper edge of plate, 
and the similar 5 rows at the lower edge. So, the height of 
the central strips is equal to 998, while the length of each 
is equal to 1/7. It means, that ratio of dimensions for central  

elements is equal to 998×7=6986 – it is enormous value, 
and our method copes with it without any problems. The 
results of calculations are given in Table 3, where calcu-
lated moments and displacement actually coincide with 
those for the SS beam. This reveals a great advantage of 
our method. 

 

 
 a b 

Fig. 5. A very long SSSS plate with 1000y

x

l
l

= : 

a) the scheme of plate; b) the scheme of meshing 

4.4. Mindlin SFSF plate 

There is an exact theoretical solution for it as for 
Levy type plate [19]. Here in equations (3a) and (3c) we 
consider the shear deformation of each section. The results 
of calculation and comparison with exact solution [19] for 
the square plate are given in Table 5. Evidently the corre-
spondence is very satisfactory and testify about the effi-
ciency of method. No any problem occurs with the locking 
phenomena at / 0xh l → . All our results are given for 
19×19 meshing.  

Table 2. Comparison of results for uniformly loaded rectangular SSSS plate (   0. 3)ν =  

/  y xl l   Method ,
2 2

yx
x

llw
 
 
 

 ,
2 2

yx
x

llM
 
 
 

 ,
2 2

yx
y

llM
 
 
 

 0,
2
y

x
l

Q
 
 
 

 ,0
2
x

y
lQ  

 
 

 

1 
Present (19x19) 0.004069 0.047950 0.047950 0.337492 0.337492 

Exact [3] 0.00406 0.0479 0.0479 0.338 0.338 

1.1 
Present (19x19) 0.004877 0.055559 0.049382 0.359783 0.346175 

Exact [3] 0.00485 0.0554 0.0493 0.36 0.347 

1.3 
Present (19x19) 0.006402 0.069476 0.050399 0.396344 0.357347 

Exact [3] 0.00638 0.0694 0.0503 0.397 0.357 

1.5 
Present (19x19) 0.007735 0.081261 0.049897 0.423820 0.363317 

Exact [3] 0.00772 0.0812 0.0498 0.424 0.363 

3 
Present (19x19) 0.012243 0.118931 0.040609 0.492755 0.367826 

Exact [3] 0.01223 0.1189 0.0406 0.493 0.372 
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Conclusion 

Principally new version of FEM for plate analysis, 
namely, Method of Matched Sections, is proposed. In con-
trast to conventional FEM, where the elements are matched 
at nodes, in this method the elements are matched by neigh-
boring sides. In fact, the element consists of two almost in- 

dependent beams – horizontal and vertical ones, each hav-
ing 6 degrees of freedom as the plane beam – 4 degrees for 
flexural beam and 2 degrees for the twisting rod. These two 
beams contain 3 auxiliary constants, which are determined 
from conditions of geometrical continuity between them – 
equality of displacement and two angles of rotation at the 
middle of the plate.  

1. The general methodology of numbering the un-
knowns in the whole system, compiling the equations and 
algorithm of their solution is proposed.  

2. The equations are numbered and compiled in the 
way convenient for application of transfer matrix method, 
which is able to drastically decrease the number of equa-
tions, and actually reduce the number of unknowns as in 
boundary element method.  

3. Calculations for simple plates show the good effi-
ciency, consistency and accuracy of the method. Further-
more, the plate elements are organically match with beam 
elements; the ratio of width to length of any element can be 
absolutely arbitrary.  

4. The Mindlin plate analysis shows the very good 
consistency of the method, which is absolutely free of the 
locking behavior. The comparison of our results with exact 
solution for Levy type plate demonstrates the good accu-
racy of our method for the Mindlin plate.  
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Застосування методу узгоджених січень для прямокутних тонкостінних 
пластин та пластин Міндліна 
І. Ориняк1, К. Даниленко1 
1  КПІ ім. Ігоря Сікорського, Київ, Україна 
Анотація. У статті розроблено принципово новий варіант методу скінченних елементів у застосуванні до задачі пластин. Він 
відрізняється від класичного методу скінченних елементів принаймні трьома пунктами. По-перше, він використовує сильну 
диференціальну постановку, а не слабку, і припускає наближений аналітичний розв'язок усіх диференціальних рівнянь. По-друге, 
він явно використовує всі геометричні та фізичні параметри в процедурі розв'язання, а не деякі вибрані, наприклад, переміщення 
та кути, як це зазвичай робиться у формулюванні МСЕ. По-третє, спряження між сусідніми елементами відбувається вздовж 
перерізів, а не у вершинах багатокутників. Ці умови вимагають неперервності переміщень, кутів, моментів і сил. Кожна сто-
рона прямокутних елементів характеризується 6 основними параметрами, таким чином, в цілому для кожного прямокутного 
елемента існує 24 параметри. Параметри правої та верхньої граней вважаються вихідними, а з параметрами нижньої та лівої 
граней вони по’вязані матричними рівняннями, що дозволяє застосувати метод початкових параметрів для складання резуль-
туючої системи рівнянь для всієї пластини. Чисельні приклади для пластини Міндліна показують високу ефективність і точ-
ність методу. 
Ключові слова: Метод узгоджених січень, метод початкових параметрів, прямокутна пластина, пластина Міндліна, гра-
ничні умови, спряження. 
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