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Abstract. By expansion into Fourier series along the circumferential coordinate, the problem for elastic thin-walled closed cylindrical 
shell is reduced to 8th order differential equation with respect to axial coordinate. In spite that the general structure of eigenvalues 
for this equation was known starting from 60-s of last century, they were derived only to some simplified versions of the shell theory. 
So, the main goal of paper consists in development of the general procedure for determination of the eigenvalues. The idea is based 
on that the theory of shell is actually formed by two much simple problems: the plane task of elasticity and the plate problem, each of 
them is reduced to much easily treated biquadratic equation. So, we start from either of two problems (main problem) while not taking 
into account the impact from another (auxiliary) problem. After computing its eigenfunctions, we gradually introduce the influence of 
auxiliary problem by presenting its functions as linear combination of functions for main problem. The results of calculation show the 
perfect accuracy of the method for any desired number of significant digits in eigenvalues. The comparison with known results for 
concentrated radial force shows the perfect ability to solve any boundary problem with any desirable accuracy.  
Keywords: decoupling, coupled problem, closed cylindrical shell, eigenfunction, iterative procedure, main homogeneous equation, 
auxiliary particular solution, concentrated force.

Introduction 

The problem of a cylindrical thin-walled shell under 
concentrated radial load can be considered as a coupling of 
two smaller and simpler problems: the plane (membrane) 
problem and a plate one. Indeed, due to the shell’s non-zero 
curvature, the radial force from the plate problem gives a 
projection in a circumferential direction, and, conversely, 
the circumferential force from the membrane problem 
gives a projection in a radial direction. Similarly, the equi-
librium equations for the membrane problem (in axial and 
circumferential directions) contain the radial displacement, 
and the equilibrium equation for the plate problem (in ra-
dial direction) contains the axial and circumferential dis-
placements. When the curvature tends to zero, these two 
problems become independent, uncoupled. The method we 
propose uses this approach: firstly it considers these two 

problems as independent ones, but then, for each of two 
problems, it gradually accounts for the impact of the sec-
ond “alien” problem.  

There exists a large number of different cylindrical 
thin-walled shell theories, each of them depending on dif-
ferent physical and geometrical assumptions. In any case, 
the most common approach for solving it is the expansion 
of all shell parameters in Fourier series in the circumferen-
tial direction, e.g. cosሺ𝑛𝜑ሻ, where n is a circumferential 
mode. It results in an 8th order ordinary differential equa-
tion with respect to the axial coordinate. At least 12 corre-
sponding characteristic equations pertaining to different 
theories were considered in work [1]. Their roots are com-
pared for few chosen values of n (n = 2, 3, 10), however, 
these roots are computed using a special procedure based 
on a solution of biquadric polynomial and generally cannot 
be expressed in a clear analytical form. 

Nonetheless, for some simplified theories these roots 
can be presented analytically, corresponding expressions 
are given in work [2] for Donnel’s simplified equation. In 
work [3] authors obtained the simple formulae for the roots 
of simplified Flugge’s equation. In [4], Morley introduced 
another simplified equation with a simple solution for ei-
genfunctions. As for more recent researches, the work [5] 
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is worth mentioning, where the differential equations were 
taken from [6]. 

These findings have the following peculiarities: 
1. All characteristic eight eigenfunctions can be pre-

sented in a general form: 

 ( )
( )
( )1,2,3 4

cos

sin
a x nn

,
n

b x
F x = e

b x

⋅


  (1a) 

 ( )
( )
( )1,2,3,4

cos

sin
c x nn

n

d x
Ф x = e

d x

⋅


  (1b) 

2. For small values of n ( 2n ≥ ), the roots of almost 
all shell characteristic equations are very close and can be 
separated into two different groups – short-wave group (1a) 
and long-wave group (1b) [7]. 

The long-wave (or simply long) solution got more 
importance in practice. It has obtained the independent sig-
nificance in literature, despite the fact that it is only a half 
of the general solution. It was introduced by Vlasov in 
1949 as a semi-membrane theory of shells. He introduced 
two hypotheses, which lead to minor inconsistency: 1) the 
circumferential strain is zero, and 2) the shear strain is zero. 
This contradicts to the understanding that the short solution 
is equally important: for instance, the problem of mitred 
bend under the inner pressure [8], [9], since “additional 
stress due to the presence of the miter is very localized” 
[10]. Nevertheless, Vlasov’s theory became very popular 
in literature. Its application was used in multiple works, 
such as calculation of end effects in toroidal shells [11], 
concentrated force [12], loss of bending instability [13], 
general buckling behaviour [14], vibration analysis of in-
termediate and short cylindrical shells [15], generalised 
beam behaviour [16]. 

Vlasov-like solution can be obtained using a differ-
ent premise. According to Goldenveizer [18], two main hy-
potheses can be substituted by only one: the solutions must 
change more quickly in circumferential direction than in 
axial one: 

 ( )22 2 2/ /d dx d RdΩ Ω ϕ , (1c) 

where Ω is any parameter of the shell problem. This idea 
was fundamental to present authors. By analogy we as-
sumed that, if the long 4th order solution satisfies the afore-
mentioned requirement, then the supplemental short 4th or-
der solution must exist, which must satisfy the opposite to 
this requirement: 

 ( )22 2 2/ /d dx d RdΩ Ω ϕ  (1d) 

Hence both long and short solutions have equal im-
portance. This idea was developed in our works [19], [20], 
[20] and eventually polished in [21], where it was ac-
counted that both long and short solutions produce all 8 
components (shell parameters) of the complete solution. 

In this work we suggest the iterative decoupling pro-
cedure for finding the roots of the characteristic equation 

of coupled problems. We start from simple roots of any out 
of 2 uncoupled problems (membrane problem and plate 
one) and slowly refine them by taking into account the in-
fluence of another, “alien” problem. It can be shown that 
the long solution corresponds to the membrane-generated 
problem, and the short solution – to the plate-generated 
problem.  

Governing equations 

Consider an infinite cylindrical shell. Fig. 1 depicts 
all coordinates (axial x, circumferential ϕ, radial r) and 
their positive directions; displacements in corresponding 
directions (axial u, circumferential v , radial w ); membrane 
forces xN , Nϕ , shear force L, transverse forces xQ , Qϕ ; 
bending moments xM , Mϕ , xM ϕ . 

 

 
Fig. 1. Directions of geometrical and force param-
eters: (a) 3D view of the element; (b) plane ( , rϕ ); 
(c) plane ( ,x r ) 

Form the commonly used equilibrium equations: 
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The above inner forces are related to strains (memb- 
rane ε , γ  and bending χ ) by physical equations: 

( )x xN H ϕ= − ε + με , ( )xN Hϕ ϕ= − ε + με , xL G hϕ=− ε  

( )x xM H ϕ= − δ χ + μχ , ( )xM Hϕ ϕ= − δ χ + μχ , 

( )1
2x x
HM ϕ ϕ

− δ= − μ χ  (2b) 

Here the common designations are used:  
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( )2/ 1H Eh= − μ , ( )( )/ 2 1G E= + μ , 2 /12hδ = , μ  

is Poisson’s ratio. 
The third set of equations is the geometrical one, it 

relates the displacements with strains. As for bending 
strains χ , it is accounted for the fact that the membrane 
strains ε  depend on variable radius and give contributions 
to the bending strains too [12]. Eventually we will use the 
following modified expressions for them: 
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The formula for xϕχ  can be simplified more (the er-
ror due to the following approximation is pretty small and 
does not exceed 1% [21]). We will use the next expression: 

 
22
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w

R xϕ
− ∂χ =

∂ϕ∂
 (2d) 

Expand unknown functions (shell parameters) in 
Fourier series along the circumferential coordinate. They 
can be presented as follows: 

( ) ( ){ } ( ) ( ){ } ( ), ; , ; cosn nw x u x w x u x nϕ ϕ = ⋅ ϕ ;  

 ( ) ( ) ( ), sinnv x v x nϕ = ⋅ ϕ  

( ) ( ) ( ) ( ) ( ){ }, ; , ; , ; , ; ,x x xN x N x Q x M x M xϕ ϕϕ ϕ ϕ ϕ ϕ =  

( ) ( ) ( ) ( ) ( ){ } ( ), , , , ,; ; ; ; cosx n n x n x n nN x N x Q x M x M x nϕ ϕ= ⋅ ϕ  

 ( ) ( ) ( ){ }xL x, ;Q x, ;M x, =ϕ ϕϕ ϕ ϕ  

 ( ) ( ) ( ){ } ( )n ,n x ,nL x ;Q x ;M x sin nϕ ϕ= ⋅ ϕ  (2e) 

In subsequent analysis we will mostly omit the lower 
index “n”, implying that all these parameters depend on 𝑛. 
One may notice that this notation for Fourier series expan-
sion factors coincides with basic notation of shell parame-
ters, but it will hardly ever lead to any confusion. If we 
want to use the basic notation for any function, we will ex-
plicitly state that this function depends on two coordinates, 
x and ϕ. Otherwise it will be implied that the function de-
pends solely on 𝑥, so this function is the expansion factor. 

Description of iterative decoupling procedure  

As mentioned before, the fundamental problem of a 
circular cylindrical shell is a coupling of two interdepend- 

ent problems: the plane (membrane) problem and a plate 
one. Due to the shell’s non-zero curvature, the radial force 
from the plate problem gives a projection in a circumferen-
tial direction, and, conversely, the circumferential force 
from the membrane problem gives a projection in a radial 
direction. The equilibrium equations in axial and circum-
ferential equations correspond to the membrane problem, 
and the equilibrium equation in radial direction corre-
sponds to the plate problem. 

In order to decouple our two coupled problems, first 
consider only one of them with no impact from the other, 
as though it is fully independent. It means that in corre-
sponding governing equation all terms containing func-
tions from another “alien” problem should be absent. Find 
eigenvalues and eigenfunctions of this chosen problem (it 
will be referred as a “main” one), and obtain the expres-
sions for unknown functions which characterise main prob-
lem. Now it is time to gradually account for the impact of 
another, “alien” problem. By slowly doing this, we gradu-
ally move from the solution of independent uncoupled 
problem to the solution of fully interconnected coupled 
problems, which we had in the beginning. That is the es-
sence of our method. First, use the governing equation of 
the second (“alien”, “auxiliary”) problem and find its par-
tial solution. It is possible, because all eigenfunctions and 
other unknown functions from the main problem are al-
ready known. Thus all the “alien” functions, which charac-
terise this auxiliary problem, become known too. The last 
step is actually introducing the impact of the “alien” prob-
lem: return to the governing equation of the main problem, 
but now do not neglect terms containing “alien” functions. 
Instead express them as linear combinations of terms from 
the “main” problem. It is possible too, since all these terms 
and functions consist of the same eigenfunctions. Such step 
allows to 1) turn non-homogeneous main equation into a  
homogeneous one, and 2) to take into account some impact 
from the “alien” problem. Now repeat all the steps above: 
keep finding eigenfunctions and keep introducing the in-
fluence of the “alien” problem until convergence is 
reached, until eigenfunctions stop changing. When fin-
ished, switch between main and auxiliary problems: let the 
auxiliary problem become a main one, and the main prob-
lem – an auxiliary one. 

Let us explain the decoupling procedure more 
clearly on a specific example of an infinite cylindrical shell 
under radial load. The equilibrium equations in axial, cir-
cumferential, and radial direction respectively are follow-
ing (the “alien” terms were moved to the right side of the 
equations): 
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Recall that the equations (3a)–(3b) constitute the 
membrane problem, and the equation (3c) makes up the 
plate problem. To achieve more compact form, denote co-
efficients next to unknown functions and their derivatives 
in the left side as 1vα , 0uα  for the first equation, 2vβ , 1uβ , 

0vβ  for the second equation, 4wγ , 2wγ , 0wγ  for the third 
equation. The decoupling procedure is ready to start. To 
find the first two eigenfunctions out of four, consider the 
membrane problem as a main one, and the plate problem 
as an auxiliary one. 

Step 1 – main problem. Suppose that in the previous 
iteration we found the expression of the right-side “alien” 
terms containing ( )w x  via left-side terms containing the 

“native” functions ( )u x , ( )v x . In other words, suppose 
we know such real numbers uC , vC , uD , vD  that: 

 1 u v
dw dvRS C u C

R dx dx
−μ= = +  (4a) 
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Recall that such presentation is possible because all 
unknown functions ( )w x , ( )u x , ( )v x  with their deriva-
tives are the linear combinations of the same eigenfunc-
tions – products of an exponent and a trigonometric func-
tion. Also keep in mind that in the first iteration all coeffi-
cients uC , vC , uD , vD  equal to zero (the “alien” impact 
is absent). Now, when both sides of membrane equations 
contain the same terms, we can reduce the like terms and 
simplify the equations: 

 ( ) ( )
2

1 02 0v v u u
d u dvC C u

dxdx
+ α − + α − =  (4c) 

 ( ) ( )
2

2 1 02 0v u u v v
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Combine these two differential equations into one, 
solve it and find its eigenvalues and eigenfunctions: 

 ,1,2m c diλ = − ± , 0c > , 0d >  (4e) 

 ( ) ( )1 coscxx e dx−Φ = , ( ) ( )2 sincxx e dx−Φ =  (4f) 

The coefficient 𝑐 must be negative, because we con-
sider an infinite shell – eigenfunctions must decay to zero 

when x approaches infinity. Also one important remark 
must be made regarding the value of the coefficient d: in 
some cases, d equals to zero, which makes eigenvalues real 
and changes the form of eigenfunctions. For instance, it 
happens in the very first iteration: the 2 roots of the char-
acteristic equation equal to /n R− . In such cases, force-
fully introduce a small complex perturbation: for example, 

0.001 /d n R= . 
Now, when the eigenfunctions are found, we can 

easily obtain “native” functions ( )u x  and ( )v x . In gene- 
ral, they equal to linear combinations of the eigenfunctions, 
and each eigenfunction must be multiplied by a coefficient 
computed from boundary conditions. However, our goal is 
to find eigenfunctions, and boundary conditions can be ap-
plied later. Therefore we can choose these coefficients ar-
bitrarily: ( ) ( ) ( )1 21 0u x x x= ⋅Φ + ⋅Φ , ( ) ( ),1 1vv x A x= ⋅Φ +  

( ),2 2vA x+ ⋅Φ , where the coefficients, ,1vA , ,2vA can be 
found from (4c). 

Step 2 – auxiliary problem. On the first step, we 
found the “native” functions for the main problem – dis-
placements ( )u x , ( )v x . Now let us find its “alien” func-

tion ( ) ( ) ( ),1 1 ,2 2w ww x A Ф x A Ф x= +  using the auxiliary 
problem, accounting for the new eigenvalues and eigen-
functions. In order to do this, substitute found functions 

( )u x , ( )v x  and the expression for unknown function 

( )w x  into the plate equation (3c). Find coefficients ,1wA , 

,2wA  – and thus, “alien” displacement ( )w x  becomes 
known. To close the iteration loop and start the next itera-
tion, express the “alien” terms of the main equation via its 
“native” terms – in other words, find such coefficients uC , 

vC , uD , vD  that expressions (4a) and (4b) hold true. 
Now step 2 and the whole iteration is ended, next iterations 
may start, where we refine all functions ( )w x , ( )u x , 

( )v x  and eigenfunctions ( )1 xΦ , ( )2 xΦ  until the conver-
gence is reached.  

When finished, switch between main and auxiliary 
problems: let the plate problem, which used to be an auxil-
iary problem, become a main one, and the membrane prob-
lem – an auxiliary one. The procedure of solving is similar 
to what we have described: find eigenvalues and eigenfunc-
tions of the main problem, find its “native” functions, find 
its “alien” functions using the auxiliary problem, and close 
the iteration loop by expressing “alien” terms via “native” 
ones. Thus the resting two out of four eigenfunctions will be 
found, and boundary conditions may finally be applied. 

Results 

First, we applied the decoupling procedure for the 
problem of cylindrical shell and computed its four eigen-
functions. Then we considered the action of concentrated 
radial force and applied boundary conditions:  
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 0 0xu = = , 0 0x x=γ = ,  

 ( ) ( ) ( )0 , , 2 cos
2x x
PQ P x x nx= = ϕ = δ , 0 0xL = =  (5a) 

Afterwards we computed values of most practical interest: 
radial displacement 𝑤 and bending moment xM  at 0x = . 
Specifically, as in our work [21], we found their dimen-
sionless values w  and xM , where: 

w
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MM
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52 4
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( )242 3 1

M
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At last, we compared obtained results with similar 
values calculated in [21] by exact Navier method in order 
to find the accuracy of our method (Tab. 1). 

As we see, the results are in very remarkable agree-
ment, while our present results can be considered as the 
most accurate ones. Also, as was noted in [21], the appli-
cation of Navier method is very restricted, whereas the pre-
sent method has much broader applications, especially if 
we will apply the ascending eigenfunctions too, which can 
be derived in the same way as considered here decaying 
eigenfunctions.  

By collecting more data points, it is possible to find 
an approximate analytical expression for dimensionless ra-
dial displacement ( )w x  and bending moment ( )xM x  at 

0x = . Tables 2 and 3 contain these computed values for 
various n and R/h. Let us focus on the most common case, 

Table 1. Dimensionless values of radial displacement w  and bending moment xM  at 0x =  for decoupling procedure and 

exact Navier method, /R h = 40. 

R/h = 40 Navier method Decoupling procedure 

n ( )0w  ( )0xM  ( )0w  ( )0xM  

2 1.81360 1.41821 1.813599 1.41829 

4 0.35259 1.49125 0.352586 1.49133 

6 0.14242 1.41783 0.142416 1.41791 

8 0.067831 1.21572 0.0677314 1.21575 

10 0.036151 1.02004 0.0361505 1.02011 

20 0.0046372 0.52752 0.00463717 0.52755 

40 0.00057952 0.26421 0.000579521 0.26423 

60 0.00017165 0.17614 0.000171649 0.17615 

Table 2. Dimensionless values of radial displacement 𝑤෥ሺ0ሻ for various n and 𝑅/ℎ 

R/h n = 2 n = 3 n = 4 n = 5 n = 6 n = 10 n = 20 n = 40 

20 1.85741 0.67359 0.34222 0.19366 0.11740 0.02631 0.00329 0.00041 

30 1.82996 0.66579 0.35283 0.21110 0.13371 0.03183 0.00402 0.00050 

40 1.81360 0.65636 0.35259 0.21747 0.14242 0.03615 0.00464 0.00058 

60 1.79556 0.64293 0.34659 0.21892 0.14889 0.04241 0.00566 0.00071 

80 1.78593 0.63471 0.34104 0.21665 0.14970 0.04647 0.00651 0.00082 

100 1.77996 0.62931 0.33685 0.21406 0.14887 0.04907 0.00724 0.00092 

150 1.77180 0.62159 0.33027 0.20907 0.14579 0.05199 0.00870 0.00112 

1000 1.75738 0.60715 0.31661 0.19656 0.13477 0.04877 0.01300 0.00265 

5000 1.75529 0.60499 0.31445 0.19442 0.13265 0.04682 0.01195 0.00321 
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2n = . Perform linear regression and find a polynomial 

function 
2 3
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the best fit for given values of displacement (the same ap-
plies to bending moment too). 
By doing this, obtain the following: 
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For both cases the coefficient of determination 2R  
is higher than 0.9999999, which signifies the very high ac-
curacy of regression. Figs. 2 and 3 demonstrate fitted 
polynomials and available data points of dimensionless ra-
dial displacement and bending moment. 

Conclusions 

In this work we presented the problem of a cylindri-
cal infinite shell under radial load as a coupling of two 
problems (membrane and plate), and introduced the itera-
tive decoupling method for solving these coupled prob-
lems. The idea of this method consists in gradual account-
ing for the impact of the “alien” problem on the “main” 
problem, starting from no impact at all. One of the prob-
lems is considered as a main one and is used to compute 
eigenfunctions. The other problem is considered as an aux-
iliary one and is used to introduce the impact on the main 
problem, and therefore to bring obtained solution closer to 
the solution of fully interconnected coupled problems. The 

Table 3. Dimensionless values of bending moment 𝑀෩௫ሺ0ሻ for various 𝑛 and 𝑅/ℎ 

R/h n = 2 n = 3 n = 4 n = 5 n = 6 n = 10 n = 20 n = 40 

20 1.47496 1.50764 1.45461 1.32187 1.17010 0.74241 0.37375 0.18686 

30 1.43896 1.48171 1.49566 1.43922 1.33193 0.89815 0.45738 0.22885 

40 1.41829 1.45523 1.49133 1.48096 1.41791 1.02011 0.52755 0.26423 

60 1.39592 1.41899 1.46141 1.48804 1.48080 1.19652 0.64407 0.32355 

80 1.38412 1.39721 1.43515 1.47048 1.48747 1.31092 0.74045 0.37350 

100 1.37685 1.38300 1.41557 1.45141 1.47806 1.38402 0.82326 0.41743 

150 1.36694 1.36277 1.38506 1.41517 1.44553 1.46605 0.98967 0.51061 

1000 1.34955 1.32521 1.32223 1.32539 1.33162 1.37243 1.47834 1.21030 

5000 1.34704 1.31961 1.31235 1.31010 1.30988 1.31695 1.35842 1.46474 

   
Fig. 2, 3. Results of linear regression for dimensionless radial displacement (left) and bending moment (right) at 0x =  
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iterative process is terminated when the change of eigen-
values and eigenfunctions becomes negligible.  

The results of calculation show the perfect accuracy 
of the method for any required number of significant digits 
in eigenvalues. The comparison with results of work [21] 
shows the perfect ability to solve any boundary problem 
with any desirable accuracy. Approximate analytical for-
mulae are suggested for dimensionless values of most prac-
tical interest – radial displacement w  and bending moment 

xM  at 0x = , the coefficient of determination shows very 
high accuracy of the regression. 

Finally, this procedure can be applied not only to the 
cylindrical shell, but, in general, to any coupled problems 
provided that it is possible to express the “alien” terms of 
the main equation via its “native” terms. This allows for 
further development of theory of thin-walled structures and 
other related theories too. 
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Ефективна процедура роз’єднання для виведення власних функцій 
замкненої циліндричної оболонки 
Г.Є. Юдін1  •  І.В. Ориняк1 

1 КПІ ім. Ігоря Сікорського, Київ, Україна  

Анотація. Шляхом розкладу в ряд Фурʼє за коловою координатою, задача пружної тонкостінної замкненої циліндричної обо-
лонки зводиться до диференціального рівняння 8-го порядку відносно осьової координати. Попри те, що загальна структура 
власних чисел для цього рівняння була відома ще з 60-х років минулого століття, вони були отримані лише для деяких спрощених 
версій теорії оболонок. Таким чином, основна ціль статті полягає в розробці загальної процедури для визначення власних чисел. 
Ідея базується на тому, що теорія оболонок насправді сформована двома значно простішими задачами: плоскою задачею те-
орії пружності та задачею про пластину, кожна з них зводиться до простого біквадратного рівняння. Метод починається з 
будь-якої з двох задач (головна задача), не враховуючи вплив іншої (допоміжної) задачі. Після обчислення власних функцій ми 
поступово вводимо вплив допоміжної задачі шляхом представлення її функцій як лінійних комбінацій функцій головної задачі. 
Результати обчислень показують чудову точність методу для будь-якого числа значущих цифр у власних числах. Порівняння з 
відомими результатами для зосередженої радіальної сили демонструє чудову здатність методу розв’язувати будь-які граничні 
задачі з довільною бажаною точністю. 
Ключові слова: роз’єднання, зв’язані задачі, замкнена циліндрична оболонка, власні функції, ітеративна процедура, головне 
однорідне рівняння, допоміжний часткове розв’язок, зосереджена сила. 
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