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Abstract: The paper is devoted to further elaboration of the Method of Matched Sections as a new branch of finite element method in 
application to the transient 2D temperature problem. The main distinction of MMS from conventional FEM consist in that the 
conjugation is provided between the adjacent sections rather than in the nodes of the elements. Important feature is that method is 
based on approximate strong form solution of the governing differential equations called here as the Connection equations. It is 
assumed that for each small rectangular element the 2D problem can be considered as the combination of two 1D problems – one is 
x-dependent, and another is y-dependent. Each problem is characterized by two functions – the temperature, T, and heat flux Q . In 
practical realization for rectangular finite elements the method is reduced to determination of eight unknowns for each element – two 
unknowns on each side, which are related by the Connection equations, and requirement of the temperature continuity at the center of 
element. Another salient feature of the paper is an implementation of the original implicit time integration scheme, where the time step 
became the parameter of shape function within the element, i.e. it determines the behavior of the Connection equations. This method 
was early proposed by first author for number of 1D problem, and here in first time it is applied for 2D problems. The number of tests 
for rectangular plate exhibits the remarkable properties of this “embedded” time integration scheme with respect to stability, accuracy, 
and absence of any restrictions as to increasing of the time step. 
Keywords: Method of Matched Sections, implicit time integration, time step dependent shape functions, rectangular plate, transient 
temperature.

1. Introduction 

Transient heat conduction is a common phenomenon 
in many natural and engineering systems [1]. Its analysis 
requires the application of the time integration methods. 
During the past decades, many kinds of numerical and ana- 
lytical methods have been proposed for analysis of the prac-
tical transient heat transfer engineering problem [2]–[4]. 
These applications require numerous and accurate repeated 
calculation with the aim of optimization of the shape and 
technology parameters [5] or restoring the impact of un-
known heat source in inverse problems [6], [7]. 

Analytical methods are capable to grasp the physical 
insight of the problem, determine the role and significance 

of each inner or outer parameter of the problem, to formu-
late the dimensionless combinations of essential parame-
ters which predetermines the solution behavior. The most 
available and popular is the classical method of separation 
of variables [8], which can be easily applied to the easily 
applied to bodies of the canonical form (circular, rectangu-
lar). More advanced analytical methods are based on 
Green’s function method [9]–[11], the integral transform 
method [12], [13]. Nevertheless, the analytical methods are 
mainly limited to problems with simple geometries and 
boundary conditions, and mostly used for verification of 
various numerical approaches [14].  

So mostly various numerical methods are adopted 
for solution of practical task. Among them are the bounda- 
ry element method [15], [16], meshless method [17] and 
the finite element method [19] as the most effective tool 
realized in various commercial software.  

On the other hand, the thermal transient solution is 
often only a prerequisite for performing the thermal stress 
and deformation analysis of mechanical structures. The 
mechanical and temperature tasks are handled by the same 

  K. Danylenko 
k.a.danylenko@gmail.com 

1  Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine  
2  Public Joint Stock Company “Ukrtransnafta”, Kyiv, Ukraine 



88 Mech. Adv. Technol., Vol. 8, No. 1, 2024 

researchers, the similar methods are used for both tasks 
[20] and presented in the same textbooks [21].  

This paper is generalization of our “mechanical” ex-
perience for application to transient heat conduction prob-
lem. Two main ideas will be described below. First one is 
related with the Method of Matched Sections as a variant 
of FEM. The second one is concerned with the time inte-
gration in MMS.  

1. Classical FEM present the structure as consisting 
of large number of finite elements where the degrees of 
freedom (unknowns) are related with some parameters at 
the nodes. Other parameters of the problem are related with 
them by the application of the procedure of minimization 
of the energy functional or by Galerkin minimization pro-
cedure. The drawback of classical FEM is that equilibrium 
is satisfied in a weak sense, i.e. “they are not in equilibrium 
with the body forces and do not have tractions that equili-
brate with the static boundary conditions and are not con-
tinuous between elements” [22]. The same is noted by au-
thors of [23], who emphasized that Newton’s third law is 
therefore violated at the boundaries between elements.  

The main idea of works [24], [25] is that solution 
within small 2D rectangular element can be presented as 
combination of two separate 1D problems, each of them is 
dependent only from one coordinate x  or y . Two separate 
problems are united by continuity condition in the middle 
of element. For 2D plate deformation the solutions with re-
spect of any coordinate axis closely resemble that for 1D 
beam problem, so we titled our method [24] as a “beam-
like approach”. Here for the temperature task, there is no 
beam analogy, but the essence of the method remains the 
same: we attribute two sets of physical unknowns (temper-
ature, T and heat flux, Q) at the middle of each side and 
consider that these values are functions of only one coordi-
nate axis which is directed normally to the side considered.  

2. The second novelty of the paper is related with 
specific direct time integration procedure. It is known that 
the standard finite element method is not very effective for 
the solution of wave propagation problems [21], [26]. For 
example, for harmonic wave solution the accuracy of solu-
tion noticeably deteriorates with increasing wave number 
[27]. As a remedy for this problem, it is suggested to use in 
the element interpolation functions the additional degrees 
of freedom corresponding to very quickly changed within 
element the harmonical functions [26]. Interesting to note, 
that enriched element interpolation functions as given in 
[26] were used in analysis of wave propagation in a rod 
[28]. Alternative idea was proposed in our works [29], [30] 
where time step in implicit central difference scheme is 
used directly in element interpolation schemes. The similar 
idea (without realization) was expressed by Reddy in the 
textbook [31]. The integration method was named in 1D 
problem as the semianalytical one [29]. With application to 
2D problems in MMS, as it will be shown below, the value 
of time step is directly used in approximate analytical so-
lution within the element. So, the procedure of MMS rema-
ins the same for static and dynamic cases, while affecting 
on the “element interpolation functions”.  

2. Basic ideas of MMS in application to heat 
conduction. 

2.1. Governing equations of MMS 

Consider the rectangular element. Consider the heat 
conduction task as a combination of two independent prob-
lems in two perpendicular directions – x  and y . To dis-

tinguish them introduce the notions ( )xT x  and ( )xQ x  as 
functions related to the temperature and heat flux in x  di-
rection, and ( )yT y  and ( )yQ y  as the functions in y  di-
rection. Upper indexes x  and y  show that the respected 
values are attributed to the sides which are perpendicular 
to the axes x  and y  correspondently, Fig1. Write down 
the governing Fourier heat conduction equations in two 
perpendicular directions [1]: 

 ( ) ( ),
,

x
x x dT x t

Q x t k
dx

= − , (1a) 

 ( ) ( ),
,

y
y y dT y t

Q y t k
dy

= − , (1b) 

Where t  – is the time variable and xk  and yk  are heat 
conduction coefficients and the local coordinates in the el-
ement are within the ranges 0 x a≤ ≤ , and 0 y b≤ ≤ .  

 

 
Fig 1. The main parameters in the rectangular 
element 

As the next governing equation consider the law of 
heat energy conservation. In absence of outer heat sources, 
we have [1]:  

 
( ) ( ) ( ), , , , , ,Q x y t Q x y t T x y t

c
x y t

∂ ∂ ∂
+ = − ρ

∂ ∂ ∂
 (2a) 

where c  and ρ  are heat capacity and density. We have the 
derivative with respect to time in the right side of equation 
(2a). Apply the implicit finite difference scheme to the time 
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derivative and account for that heat flux consists of two 
separate functions of x  and y :  

 
( ) ( ) ( ) ( )1, ,x y

i i i idQ x dQ y T x y T x y
c

dx dy
−

∆
−

+ = − ρ , (2b) 

Where ∆  is the time step used and lower index i  desig-
nates the i -th time iteration. Equation (2b) cannot be used 
directly in MMS, because this equation contains both space 
variables x  and y . So, we need to separate this single 
equation into two ones, each should contain only one space 
variable. With this goal present the temperature in time i , 
( ),iT x y , as: 

 ( ) ( ) ( ) ,, x y
i i i c iT x y T x T y T= + − , (2c) 

Where ,c iT  is the value of the temperature at the time it  in 
the central point of element C , Fig 1, and is related with 
two “independent” temperatures as: 

 ( ) ( ), / 2 / 2x y
c i i iT T x a T y b= = = = , (2d) 

The equation (2d) is an important continuity equa-
tion which “glue” two solutions in the perpendicular direc-
tions.  

Present the temperature, ( )1 ,iT x y− , at previous mo-
ment of time 1i −  as the polynomial expansion:   

 ( ) 0,0 1,0 0,1 2,0 2 0,2 2
1 1 1 1 1 1,i i i i i iT x y a a x a y a x a y− − − − − −= + + + +  

 1

2 2
0,0 ,0 0,

1 1
1 1

m m k k
i i i

m k
a a x a y− − −

= =

= + +∑ ∑ . (2e) 

Note, that we the degree of this polynomial expan-
sion should be no less than 1, i.e. it should be capable to 
grasp the static solution [29]. In given work we take that 
degree of polynomial expansion is equal to 2. Thus substi-
tute the temperature presentations (2c)–(2e) into right side 
of (2b), we get: 

 
( ) ( ) ( )( )1,0 2,0 2

1 1
xx y

i i ii i
T x a x a xdQ x dQ y

c
dx dy

− −

∆

− −
+ = − ρ  

 
( )( ) ( )0,1 0,2 2 0,0

,1 1 1
y

i c ii i iT y a y a y T a− − −+ − − − +
 (3a) 

Now we are able to separate the governing equation 
(2f) into two coordinates independent equations: 

 

( ) ( )( ) ( )1,0 2,0 2 0,0
,1 1 1

xx
i c i ii i ii

T x a x a x T a AdQ x
c

dx
− − −

∆

− − − + +
= − ρ  

  (3b) 

 
( ) ( )( )0,1 0,2 2

1 1
yx

i ii ii
T y a y a y AdQ y

c
dy

− −− −

∆

+
= − ρ  (3c) 

Where we introduced the auxiliary constant iA , 
which account for the possible redistribution of the heat 
flux within the element between two “independent” direc-
tions.  

To sum up this subchapter 2.1 note, that equations 
(1a) and (1b) as well as (3b) and (3c) are two groups of the 
main governing equations of the transient heat conduction 
problem by MMS.  

2.2. General solution of the main equations by MMS 

Substitute equations (1a) and (1b) into (3b) and (3c) 
correspondently. This gives two 2nd degree differential in-
homogeneous equations with respect two independent 
functions ( )x

iT x  and ( )y
iT y :  

( ) ( ) ( )
2

2 2 0,0 1,0 2,0 2
,1 1 12

x
i x

x i x c i ii i i
d T x

b T x b a a x a x T A
dx − − −− = − + + + +  

  (4a) 

( ) ( ) ( )
2

2 2 0,1 0,2 2
1 12

y
i y

y i y ii i
d T y

b T y b a y a y A
dy − −− = − + −  (4b) 

Where the following designations are introduced:  

 2
x x

cb
k
ρ

=
∆

;          2
y y

cb
k
ρ

=
∆

 (4c) 

Obtain their general solution. Start from general so-
lution of the homogeneous part of equation (4a), i.e. get the 
x  general solution of the below equation:  

 ( ) ( )
2

2
2 0

x
i x

x i
d T x

b T x
dx

− =  (5a) 

Introduce the generalized Krylov’s functions which 
have the remarkable properties in the point 0x = :  

 ( ) ( ) ( ) ( )1 2,     /x x xK x ch xb K x sh xb b= =  (5b) 

Then the general solution, ( )x
iT x , is given by the 

following formula:  

 ( ) ( ) ( )1 1 2 2
x

iT x C K x C K x= +  (5c) 

Accounting for the initial values of the temperature 
and the heat flux at the beginning of the element in the hor-
izontal direction, i.e. in point 0x =  we can write: 

 ( ) ,00x x
i iT x T= = ,   ( ) ( )

,0
0

0
x

x x x
i i

dT x
Q x k Q

dx
=

= = − = , 

  (5d) 

Where from the general solution of the homogene-
ous equation is presented as:  

 ( ) ( ) ( )2
,0 1 ,0

x x x
i i i x

K x
T x T K x Q

k
= −  (5e) 
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After that find the usual particular solution, ( ) ,x
iT x  

of (4a):  

( )
2,0

0,0 1,0 2,0 21
,1 1 12

2x i
i c i ii i i

x

a
T x a a x a x T A

b
−

− − −

 
= + + + + +  
 

  (6a) 

Since the partial solution must satisfy zero initial 
conditions (in point 0x = ), then find the supplemental (ze-
roth) particular solution for the temperature:  

 ( )
2,0

0,0 1
,1 2

ˆ 2x i
i c i ii

x

a
T x a T A

b
−

−

 
= + + +  
 

 

 ( )( ) ( )( )1,0 2,0 2
1 21 11 i iK x a x K x a x− −× − + − +  (6b) 

The complete solution, ( )x
iT x , is the sum of general 

and supplemental particular solutions, so the expression for 
it has the form:  

( ) ( ) ( ) 2,0
2 0,0 1

,0 1 ,0 ,1 2
2x x x i

i i i c i iix
x

K x a
T x T K x Q a T A

k b
−

−

 
= − + + + +  

 
 

 ( )( ) ( )( )1,0 2,0 2
1 21 11 i iK x a x K x a x− −× − + − +  (6c) 

Similarly, the complete solution for heat flux, ( )x
iQ x , is 

found from (1a): 

 ( ) ( ) ( ) ( )2 2
,0 2 ,0 1 2

x x x x x
i x i i xQ x k b T K x Q K x k b K x= − + +  

( )( )
2,0

0,0 1,0 2,01
, 11 1 12

2
1 2x xi

c i ii i i
x

a
a T A k a K x k a x

b
−

− − −

 
× + + + − − −  
 

 

  (6d) 

In similar manner get the complete solution for the 
temperature and heat distribution in the y  direction: 

 ( ) ( ) ( ) 0,2
2 1

1,0 ,0 2
2y yy i

i ii i y
y

K y a
T y T K y Q A

k b
−

 
 = − + −
 
 

 

 ( )( ) ( )( )0,1 0,2 2
1 21 11 i iK y a y K y a y− −× − + − +  (7a) 

 ( ) ( ) ( ) ( )2 2
2 1 2,0 ,0

y yy y y
i y yi iQ y k b T K y Q K y k b K y= − + +  

 ( )( )
0,2

0,1 0,2 21
11 12

2
1 2y yi

i i i
y

a
A k a K y k a y

b
−

− −

 
 − − − −
 
 

 (7b) 

2.3. Algorithm of solution 

Equations (6c), (6d) and (7a), (7b) is the main result 
of the analytical model. Yet they contain the unknown co-
efficient iA  and the temperature in the center of element 

,c iT , which hinder the direct application of the method. To 
eliminate them from consideration, apply two conditions 
(2d) at the center of element.  Substituting in them the so-
lutions (6c) and (7a) we get the explicit expressions for 
these constants:  

 
( )

( ) ( )
1

1 1

/ 2
2 / 2 / 2

y x
i

K a
A

K ba K
γ + γ

= −
− −

 (8a) 

 
( )( ) ( )( )

( ) ( )
1 1

,
1 1

/ 2 1 / 2

2 / 2 / 2
y x

c i y

a bK K
T

Ka bK

γ + γ −
= + γ

− −
 (8b) 

Where the auxiliary constants xγ  and yγ  are given 

by the following expressions:  

 ( ) ( ) 2,0
2 0,0 1

,0 1 ,0 1 2

/ 2 2
/ 2x x i

x i i ix
x

K a
T K Q a

b
a

k
a −

−

 
γ = − + +  

 
 

 ( )( ) ( )( ) ( )21,0 2,0
1 21 11 / 2 / 2 / 2 / 2xi iK a l K aa a a− −× − + − +

  (8c) 

( ) ( ) ( )( )
0,2

2 1
1 1,0 ,0 2

/ 2 2
/ 2         1 / 2  y y i

y i i y
y

K b a
T K b Q K b

k b
−γ = − + −  

 ( )( ) ( )20,1 0,2
21 1  / 2 / 2     / 2i ia b K bb a− −+ − +  (8d) 

So, formally the constants iA  and ,c iT  are the linear 

combinations of the initial parameters ,0
x

iT , ,0
x
iQ  – at the 

left inlet left side, and ,0
y

iT  ,0
y
iQ  – at the inlet lower side of 

the element; as well as the coefficients ,
1

k m
ia −  (2e), which 

are “inherited” from the previous time step analysis.  
Thus, substituting the expressions (8a) and (8b) 

again into equations (6c), (6d) and (7a), (7b) we get the 
complete solution for all these four functions withing the 
considered element:  

( )
( )
( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,01,1 1,2 1,3 1,4

,02,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4 ,0

4,1 4,2 4,3 4,4 ,0

; ; ;
; ; ;
; ; ;
; ; ;

xx
ii

xx
ii

yy
ii

yy
ii

TT x x x x x
QQ x x x x x

y y y y TT y
y y y y QQ y

   α α α α        α α α α =     α α α α     
    α α α α      

 

 

( )
( )
( )
( )

,
1

,
2,

1 ,
, 3

,
4

k m

k m
k m
i k m

k m
k m

b x

b x
a

b y

b y

−

 
 
 

+  
 
 
 

∑  (9a) 

The derived matrix equation is called as a Connec-
tion equation. Substituting instead x  and y  their values at 
the outlet border (side) of the element, we get the relation 
between the inlet values of the main parameters and the 
outlet values:  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, ,01,1 1,2 1,3 1,4

, ,02,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4, ,0

4,1 4,2 4,3 4,4, ,0

; ; ;
; ; ;
; ; ;
; ; ;

x x
i e i

x x
i e i

y y
i e i

y y
i e i

T Ta a a a
Q Qa a a a

b b b bT T
b b b bQ Q

   α α α α        α α α α =    α α α α    
    α α α α       
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( )
( )
( )
( )

,
1

,
2,

1 ,
, 3

,
4

k m

k m
k m
i k m

k m
k m

b a

b a
a

b b

b b

−

 
 
 

+  
 
 
 

∑  (9b) 

Where the special designation for main parameters 
at the outlet sides are introduced ( ),

x x
i e iT T a= , 

( ),
x x
i e iQ Q a= , ( ),

y y
i e iT T b= , ( ),

y y
i e i bQ Q= , Fig 1.  

Now it is easy to formulate the general algorithm of 
solution, which is identical to this one proposed in our 
works [24], [25] except the number of main parameters of 
the problem (number of unknowns). So, repeat it in short. 
First of all, we break out the whole structure on number of 
elements, say, G . Then introduce 8 unknowns for each el-
ement, which are 2 parameters on each of 4 sides of ele-
ment. At the whole, there 8 8G G⋅ =  unknowns.  

This number should be equal to the number of equa-
tions. Count them. At each border between two elements 
there are two continuity equations (Conjugation), which 
state that temperatures and fluxes at both conjugated sides 
are the same. Formally, this means that for each border pro-
vides 1 equation for each element. In case if the side of the 
element is the boundary of the whole body, then 1 bound-
ary condition should be formulated for it. So, the general 
rule that 1 side gives 1 equation still hold. So, for each el-
ement we have 4 Conjugation (boundary) equations, at the 
whole for the structure they are equal to 4G . Other 4G  are 
derived as 4 Connection equations (9b) for each element. 
So, the number of equations and number of unknowns does 
coincide, and algorithm of solution reduces to a) proper 
meshing the structure; b) proper organization of bypass 
through the structure and numbering the elements; c) 
proper numbering the unknowns; d) compilation and solu-
tion of the matrix equation; e) presentation of results inside 
each element. All these essential steps were explained in 
our works [24], [25].   

3. Presentation of the solution from the pre-
vious moment of time. 

This part of work relates to the treatment of the ob-
tained solution at the i  time step and the preparation of 
data for the problem solution at the next 1i +  time step. So, 
the task is to get the presentation of the temperature in a 
form:  

 ( ) 0,0 1,0 0,1 2,0 2 0,2 2,i i i i i iT x y a a x a y a x a y= + + + +  (10a) 

With some small amendment we repeat here the pro-
cedure given in [29], [30]. First of all, note that availability 
of solution at the time i  means that ,0 ,0,x x

i iT Q  and ,0 ,0,y y
i iT Q  

are already known, and according to relations (6c) and (7a) 
the distribution of the temperatures can be presented as:  

 ( ) ( ) ( ) ( ),1 1 ,2 2
x x x x

i i i iT x K x K x T x= β +β +   (10b) 

 ( ) ( ) ( ) ( )1 2,1 ,2
y yy y

i ii iT y K y K y T y= β +β +   (10c) 

Where , j
x
iβ , and , j

y
iβ  are known coefficients and 

( )x
iT x  and ( )y

iT y  are known polynomials of the second 
degree, see for example (6a). The next step is the expansion 
of the functions ( )1,or, 2    K xor y  into polynomial series of 
the second degree [29]. The integrally averaged procedure 
is suggested to use. According to it we present, for exam-
ple, ( )1K x  as:  

 ( ) ( ) 2
1 0 1 2

x x x
xK x ch xb f f x f x= = + +  (11a) 

Then consequently multiplying both sides of (11a) 
by 1, x , and 2x , and integrating it over x  from 0x = , to 
x a=  we get the system of three equations which gives the 
values of coefficients 0 1 2, ,x x xf f f  as the function of value 
( )xab . In similar way we can get the expansion of ( )2K x  as:  

 ( ) ( ) 2
1 0 1 2

s x x x x

x

h xb
K x g g x g x

b
= = + +  (11b) 

Thus, it is easy to see that accounting for (6a), (11a) 
and (11b) the function ( )x

iT x  can be presented as second-
degree polynomial:  

 ( ) 0 1 2 2
, , ,

x
i i x i x i xT x T T x T x= + +  (12a) 

Similarly the distribution of the temperature in y  
direction can be written as:  

 ( ) 0 1 2 2
, , ,

y
i i y i y i yT y T T y T y= + +  (12b) 

The last step we should do, and which was absent in 
1D wave propagation problem [29] is to merge two inde-
pendent solutions into a general one. Recall the formal 
presentation of temperature within the element (2c). Find 
the temperature in the center of the element according to 
each of two presentations (12a) and (12b):  

 
( )
( )

20 1 2
, , , ,

20 1 2
, , , ,

/ 2 / 2

/ 2 / .2

;x
i c i x i x i x

y
i c i y i y i b

T T T a T a

T T T b T b

= + +

= + +
 (12c) 

Then consider the conventional temperature at the 
center from the previous time stem as the semi-sum of ,

x
i cT  

and , . y
i cT  Apply the general rule of the temperature presen-

tation (2c), so we get:  

 ( )
0 0 2
, , 1 2 2

, ,4
,

2 8
i x i y

i i x i x
T T a aT x y T x T x

+   = + − + −       
 

 
2

1 2 2
, , 84i y i y

b bT y T y
  + − + −       

 (12d) 
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The comparison of (2e) with (12d) allows to get the 
required values of ,m k

ia . So, all data are available to pro-
ceed to the next time iteration.  

4. Example of the solution. 

4.1. Problem statement 

Consider the rectangular plate 0 xx L≤ ≤ , 
0 yy L≤ ≤ , which sides are the same x yL L=  and equal to 5. 

Take that all physical coefficients are constants and equal 
to 1, so 1x yc k k= ρ = = = . Assume that heat transfer is 
absent at all plate sides, thus:  

 ( )0, , 0T x y t
x

∂
= =

∂
,   ( ), , 0x

T x L y t
x

∂
= =

∂
 (13a) 

 ( ), 0, 0T x y t
y

∂
= =

∂
,     ( ), , 0y

T x y L t
y

∂
= =

∂
 (13b) 

Consider that initial temperature distribution, 
( )0 , , 0T x y t =  is given by two dimensional Gauss function 

with the following parameters 2.5xµ = , 2.5,yµ =  and 
2 2 1x yσ = σ = : 

 ( )
22

0
1, exp
2

yx

x y
T

yx
x y

   −µ −µ  = − +       σ σ      

 (13c) 

The initial temperature distribution is shown on Fig 2 
 

 
Fig 2. Initial temperature distribution, 0t =  

4.2. Analytical solution 

This task allows the exact solution by classical Fou-
rier method of separation of variables. So, the looking for 
temperature is presented as:  

 ( ) ( ) ( ) ( ), ,T x y t X x Y y U t=  (14a) 

The general solution with accounting for the simple 
boundary conditions (13a) and (13b) can be presented as [8]:  

 ( ) 0 0
, , cos cosN M

n
yx

mn m
n x m yT y

L
x

L
t C

= =

π π
= ∑ ∑  

 
222

exp x y

x y

n mk k t
L Lc

    π  × − +       ρ      

 (14b) 

At initial (zero) time the temperature is given by the 
following expression:  

 ( )0 0 0
, cos cosN M

n
y

mn
x

m
n x m yT x y
L L

C
= =

π π
= ∑ ∑  (14c) 

To find the unknown coefficients nmC  we need to 
consequently multiply both sides of (14c) for any combi-
nations of integer ( ,n m ) on the shape functions 

cos cos
x y

n
L

x m
L

yπ π , and integrate them over the plate area. 

Note that left side of (14c) is equal to initial distribution 
(13c). This allows to find nmC  and then apply (14b) for the 
temperature determination at any moment of time t . The 
right hand of (14c) is integrated analytically. To perform 
the integration of left side take 450×450 evenly distributed 
point within the plate area and determine nmC  for all 
0 30n N≤ ≤ =  and 0 30m M≤ ≤ =  , at the whole 900 co-
efficients are determined.  

The demonstration of the accuracy of the Fourier 
presentation is given in Table 1. Here in initial time the 
theoretically calculated temperatures (right side of (14c)) 
are compared with initial distribution (13c) for some cho-
sen plate points. As we see there is a very good correspond-
ence. Some difference is related with absence of higher 
terms of Fourier expansion. But these higher terms accord-
ing to (14b) decays very quickly with time. This will be 
demonstrated later. So, for any intermediate moments of time 
the 30×30 Fourier solution can be considered as exact one.  

Table 1. Comparison between initial given temperature 
and calculated one by Fourier method with application of 
450×450 integration points and 30×30 analytical terms 

The availability of analytical solution allows to build 
the dependence of temperature with time, for example, in 

( ), \x y T  Exact values 
Analytical 
expansion 

Difference 

(2.5,2.5) 1.0 0.999739 0.000261 

(3.5,2.5) 0.606531 0.606317 0.000214 

(4.5,2.5) 0.135335 0.135119 0.000216 

(3.5,3.5) 0.367879 0.367716 0.000163 

(4.5,4.5) 0.018316 0.018262 0.000054 
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the central point of plate ( 2.5,  2.5)x y= = , Fig 3. Evi-
dently, the temperature changes most drastically at the mo-
ment of time t = 0.25, so it will be mostly taken for com-
parison with our direct time integration procedure in MMS.  

Theoretical results of calculation for chosen plate 
points at the intermediate moments of time are presented in 
Table 2. They are absolutely the same at application two 
different number of integration points and number of ex-
pansion terms. So, we can state that analytical results are 
exact for given number of significant digits. So, the com-
parison with them will allow to judge about the accuracy 
of our method.  

4.3. Our results and comparison  

Analyze the results obtained by our method. First of 
all, note that our method employs the functions of the form 

( )xch xb . This function become very large within the ele-
ment when the value of xab  exceed some number. So, the 
machine mistake might occur. This was already analyzed 
in our work [29], where it was suggested to restrict the up-
per value of xab , by, say number of 10. Recalling the ex-
pression for xb  we can write  

 0
c aD a D

k
ρ

= = ≤
∆ ∆

 (15a) 

Where 0D  is the maximum allowable argument of 
exponential function in the numerical calculation due to 
machine error. This criterion establishes the requirement to 
the minimum time step ∆  when the element size a  is al-
ready chosen: 

 
2

0

a
D

 
∆ ≥  

 
 (15b) 

To illustrate the above consideration, perform the 
calculations for two points of plate at time t = 0.25 for dif-
ferent time steps ∆  with application of 15×15 meshing. 

The results are given in Table 3. Evidently, the accuracy is 
becoming better with taking less time step. But when the 
time step become very small the argument of exponential 
function become very large, so the solution diverges. As 
we see from Table 3 it is expedient to restrict the values of 

0D  by value of 10. So, in all subsequent analysis we will 
follow this restriction.  

Perform the similar analysis for two different more 
refined meshing, 45×45 and 65×65. The results are shown 
in Tables 4 and 5. Evidently, the accuracy become better 
with refining the space meshing as well with decreasing the 
time step. Furthermore, namely the decreasing the length 
the element allows to decrease the time step. 

 
Fig 3. The theoretical distribution of the temperature in the central point, 2.5,   2.5x y= =  

Table 2. The analytically calculated temperature for two different meshing and number of terms: a) 450×450 points, 30×30 
terms, b) 300×300 points and 20×20 terms 

( ), \x y T  0.25 0.5 0.75 1.0 1.5 2.5 5 

(2.5,2.5) 0.666695 0.501525 0.407017 0.349554 0.290220 0.254108 0.245295 

(3.5,2.5) 0.478584 0.396065 0.343811 0.310239 0.273981 0.250976 0.245236 

(4.5,2.5) 0.198708 0.229727 0.242338 0.246779 0.247710 0.245908 0.245140 

(3.5,3.5) 0.343550 0.312781 0.290420 0.275346 0.258650 0.247883 0.245177 

(4.5,4.5) 0.059225 0.105228 0.144288 0.174222 0.211427 0.237973 0.244985 
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So, the question is which parameter of integration – 
the spatial or temporal ones have the larger influence on 
the accuracy? In work [29] for 1D problem the answer was 
that the time step predetermines the accuracy of the numer-
ical scheme, while significance of the space meshing is in 
controlling the allowable value of D  (argument of expo-
nential function). 

To give the answer introduce the measure of accu-
racy, Mε , by the following expression:  

 MMS exactM log T Tε = −  (16a) 

This measure will be presented in dependance with 
logarithm of inverse of applied time step, ε∆   

 ( )1/logε = ∆∆  (16b) 

The generalized graph of dependence of accuracy 
from the time step is shown on Fig 4. To construct it we 
apply the different combinations of spatial meshing and 
time steps.  

As in works [29], [30] we can state that time step is 
the main parameter which control the accuracy. As to spa-
tial meshing the linear size of element should be small 

enough to exclude the mashing error of calculation of ex-
ponential functions at large arguments.  

It is of interest to compare the accuracy of our MMS 
with traditional FEM results. Fig 5 shows the lower en-
velop of our results (for very fine spatial mesh) as well as 
the results obtained by ABAQUS with use of CPS4T ele-
ment. Note that numbers in parentless show the number of 
elements along one side. As we see our results give better 
accuracy especially for small time steps. All above show 
the high accuracy of the method.  

One another question about the accuracy of our 
method remains unanswered. It might be argued that the 
demonstrated accuracy was attained only in two points and 
only in one moment of time, 0.25t = . To answer this ques-
tion, we recalculate by our MMS the values of temperature 
in the same time and space points as in Table 2. Adopt the 
intermediate space meshing 65×65 and time step 

0.001∆ =  and present the difference of calculated and ex-
act temperatures in Table 6. So, the very good correspond-
ence is achieved for all space points and the moments of 
time. Other important peculiarity of the method is that results 
at large time converge to the correct value of temperature. 
This means that occurs no numerical dissipation of energy. 

Table 3. Calculated temperature at time 0.25 for different time step ∆  with application of 15×15 meshing 

D   33.3334 14.9071 10.5409 6.6667 4.7140 3.3334 2.1082 1.4907 0.6667 

( ), \x y ∆  Fourier 0.0001 0.0005 0.001 0.0025 0.005 0.01 0.025 0.05 0.25 

(2.5,2.5) 0.666695 1.473361 0.667471 0.667621 0.668067 0.668805 0.670266 0.674543 0.681338 0.724307 

(4.5,2.5) 0.198708 0.52406 0.198216 0.198180 0.198073 0.197894 0.197542 0.196520 0.194924 0.185486 

Table 4. Calculated temperature at time 0.25 for different time step ∆  with application of 45×45 meshing 

D   11.1111 4.9690 3.5136 2.2222 1.5713 1.1111 0.7027 0.4969 0.2222 

( ), \x y ∆  Fourier 0.0001 0.0005 0.001 0.0025 0.005 0.01 0.025 0.05 0.25 

(2.5,2.5) 0.666695 0.666800 0.666919 0.667068 0.667514 0.668254 0.669720 0.674012 0.680831 0.723948 

(4.5,2.5) 0.198708 0.198647 0.198618 0.198581 0.198472 0.198292 0.197935 0.196901 0.195286 0.185743 

Table 5. Calculated temperature at time 0.25 for different time step ∆  with application of 65×65 meshing 

D   7.6923 3.4401 2.4325 1.5385 1.0879 0.7692 0.4865 0.3440 0.1538 

( ), \x y ∆  Fourier 0.0001 0.0005 0.001 0.0025 0.005 0.01 0.025 0.05 0.25 

(2.5,2.5) 0.666695 0.666761 0.666880 0.667029 0.667475 0.668215 0.669681 0.673974 0.680795 0.723920 

(4.5,2.5) 0.198708 0.198675 0.198645 0.198609 0.198500 0.198319 0.197962 0.196927 0.195311 0.185762 
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Fig. 4: Dependence of the measure of accuracy, Mε , with logarithm of inverse of time step, ε∆  for different 

spatial meshing 

 
Fig 5. Comparison accuracy attained by MMS and by ABAQUS 

 

Table 6. Difference of results obtained by MMS with exact ones for different time and space points 

( ), \x y T  0.25 0.5 0.75 1.0 1.5 2.5 5 

(2.5,2.5) 0.334 0.296 0.233 0.177 0.099 0.029 0.001 

(3.5,2.5) 0.102 0.127 0.115 0.096 0.058 0.019 0.001 

(4.5,2.5) 0.099 0.093 0.062 0.034 0.006 0.002 0 

(3.5,3.5) 0.002 0.039 0.046 0.041 0.026 0.008 0 

(4.5,4.5) 0.023 0.013 0.044 0.058 0.053 0.022 0.001 
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Conclusion 

This work expands the application of the original 
method of matched section to the heat conduction prob-
lem. The gist of the method is an approximate solution 
of the governing differential equations, so the solution 
is presented in strong form rather than in weak one as in 
traditional FEM. In first time it considers the transient 
2D problem by original implicit time integration 
method, where the element interpolation functions ex-
plicitly depend on the time step. The task for redistribu-
tion of the temperature within the rectangular plate is 

considered in detail. It is shown that method is stable for 
all time step irrespective the spatial mesh. The only re-
striction is related with that argument in exponential in-
terpolation function (inner solution) is inversely propor-
tional to square root of time step. So, at very small time 
step the interpolation function became incontrollable 
large due to machine errors and results became incor-
rect. It is shown that main parameter in MMS which 
control accuracy is a time step. As to spatial meshing the 
linear size of element should be small enough to exclude 
the mashing error of calculation of exponential func-
tions at large arguments. 
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Неявне пряме інтегрування за часом задачі теплопровідності в методі 
узгоджених перерізів 
І. Ориняк1  •  А. Цибульник1  •  К. Даниленко1  •  А. Ориняк2   

1  КПІ ім. Ігоря Сікорського, Київ, Україна 
2  ПАТ “Укртранснафта”, Київ, Україна 

Анотація. Стаття присвячена подальшому розвитку методу узгоджених перерізів як нового напряму методу скінченних еле-
ментів у застосуванні до перехідної 2D температурної задачі. Основна відмінність МУП від традиційного МСЕ полягає в тому, 
що спряження здійснюється між сусідніми перерізами, а не у вузлах елементів. Важливою особливістю методу є те, що він 
базується на наближеному розв'язку в сильній формі визначальних диференціальних рівнянь, які тут називаються рівняннями 
зв'язку. Передбачається, що для кожного малого прямокутного елемента двовимірну задачу можна розглядати як комбінацію 
двох одновимірних задач - одна з них залежить від x, а інша - від y. Кожна задача характеризується двома функціями - темпе-
ратурою , та тепловим потоком . У практичній реалізації для прямокутних скінченних елементів метод зводиться до визна-
чення восьми невідомих для кожного елемента - по два невідомих з кожного боку, які пов’язані рівняннями зв’язку, та вимогою 
неперервності температури в центрі елемента. Іншою важливою особливістю роботи є реалізація оригінальної неявної схеми 
інтегрування за часом, де крок за часом стає параметром функції форми в межах елемента, тобто визначає поведінку рівнянь 
зв’язку. Цей метод був вперше запропонований автором для ряду одномірних задач, а тут вперше застосований для двовимірних 
задач. Ряд тестів для прямокутної пластини демонструє чудові властивості цієї “вбудованої” схеми інтегрування за часом 
щодо стійкості, точності та відсутності будь-яких обмежень щодо збільшення кроку за часом. 
Ключові слова: Метод узгоджених перерізів, неявне інтегрування за часом, залежні від кроку за часом функції форми, пря-
мокутна пластина, перехідна температура. 
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