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Implicit direct time integration of the heat
conduction problem in the Method of
Matched Sections

L. Orynyak' e A. Tsybulnyk' e K. Danylenko! e A. Oryniak?

Received: 15 February 2024 / Revised: 10 March 2024 / Accepted: 19 March 2024

Abstract: The paper is devoted to further elaboration of the Method of Matched Sections as a new branch of finite element method in
application to the transient 2D temperature problem. The main distinction of MMS from conventional FEM consist in that the
conjugation is provided between the adjacent sections rather than in the nodes of the elements. Important feature is that method is
based on approximate strong form solution of the governing differential equations called here as the Connection equations. It is
assumed that for each small rectangular element the 2D problem can be considered as the combination of two 1D problems — one is
x-dependent, and another is y-dependent. Each problem is characterized by two functions — the temperature, T, and heat flux Q . In
practical realization for rectangular finite elements the method is reduced to determination of eight unknowns for each element — two
unknowns on each side, which are related by the Connection equations, and requirement of the temperature continuity at the center of
element. Another salient feature of the paper is an implementation of the original implicit time integration scheme, where the time step
became the parameter of shape function within the element, i.e. it determines the behavior of the Connection equations. This method
was early proposed by first author for number of 1D problem, and here in first time it is applied for 2D problems. The number of tests
for rectangular plate exhibits the remarkable properties of this “embedded” time integration scheme with respect to stability, accuracy,
and absence of any restrictions as to increasing of the time step.

Keywords: Method of Matched Sections, implicit time integration, time step dependent shape functions, rectangular plate, transient

temperature.

1. Introduction

Transient heat conduction is a common phenomenon
in many natural and engineering systems [1]. Its analysis
requires the application of the time integration methods.
During the past decades, many kinds of numerical and ana-
lytical methods have been proposed for analysis of the prac-
tical transient heat transfer engineering problem [2]-[4].
These applications require numerous and accurate repeated
calculation with the aim of optimization of the shape and
technology parameters [5] or restoring the impact of un-
known heat source in inverse problems [6], [7].

Analytical methods are capable to grasp the physical
insight of the problem, determine the role and significance
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of each inner or outer parameter of the problem, to formu-
late the dimensionless combinations of essential parame-
ters which predetermines the solution behavior. The most
available and popular is the classical method of separation
of variables [8], which can be easily applied to the easily
applied to bodies of the canonical form (circular, rectangu-
lar). More advanced analytical methods are based on
Green’s function method [9]-[11], the integral transform
method [12], [13]. Nevertheless, the analytical methods are
mainly limited to problems with simple geometries and
boundary conditions, and mostly used for verification of
various numerical approaches [14].

So mostly various numerical methods are adopted
for solution of practical task. Among them are the bounda-
ry element method [15], [16], meshless method [17] and
the finite element method [19] as the most effective tool
realized in various commercial software.

On the other hand, the thermal transient solution is
often only a prerequisite for performing the thermal stress
and deformation analysis of mechanical structures. The
mechanical and temperature tasks are handled by the same
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researchers, the similar methods are used for both tasks
[20] and presented in the same textbooks [21].

This paper is generalization of our “mechanical” ex-
perience for application to transient heat conduction prob-
lem. Two main ideas will be described below. First one is
related with the Method of Matched Sections as a variant
of FEM. The second one is concerned with the time inte-
gration in MMS.

1. Classical FEM present the structure as consisting
of large number of finite elements where the degrees of
freedom (unknowns) are related with some parameters at
the nodes. Other parameters of the problem are related with
them by the application of the procedure of minimization
of the energy functional or by Galerkin minimization pro-
cedure. The drawback of classical FEM is that equilibrium
is satisfied in a weak sense, i.e. “they are not in equilibrium
with the body forces and do not have tractions that equili-
brate with the static boundary conditions and are not con-
tinuous between elements” [22]. The same is noted by au-
thors of [23], who emphasized that Newton’s third law is
therefore violated at the boundaries between elements.

The main idea of works [24], [25] is that solution
within small 2D rectangular element can be presented as
combination of two separate 1D problems, each of them is
dependent only from one coordinate x or y . Two separate

problems are united by continuity condition in the middle
of element. For 2D plate deformation the solutions with re-
spect of any coordinate axis closely resemble that for 1D
beam problem, so we titled our method [24] as a “beam-
like approach”. Here for the temperature task, there is no
beam analogy, but the essence of the method remains the
same: we attribute two sets of physical unknowns (temper-
ature, 7 and heat flux, Q) at the middle of each side and
consider that these values are functions of only one coordi-
nate axis which is directed normally to the side considered.

2. The second novelty of the paper is related with
specific direct time integration procedure. It is known that
the standard finite element method is not very effective for
the solution of wave propagation problems [21], [26]. For
example, for harmonic wave solution the accuracy of solu-
tion noticeably deteriorates with increasing wave number
[27]. As a remedy for this problem, it is suggested to use in
the element interpolation functions the additional degrees
of freedom corresponding to very quickly changed within
element the harmonical functions [26]. Interesting to note,
that enriched element interpolation functions as given in
[26] were used in analysis of wave propagation in a rod
[28]. Alternative idea was proposed in our works [29], [30]
where time step in implicit central difference scheme is
used directly in element interpolation schemes. The similar
idea (without realization) was expressed by Reddy in the
textbook [31]. The integration method was named in 1D
problem as the semianalytical one [29]. With application to
2D problems in MMS, as it will be shown below, the value
of time step is directly used in approximate analytical so-
lution within the element. So, the procedure of MMS rema-
ins the same for static and dynamic cases, while affecting
on the “element interpolation functions”.

2. Basic ideas of MMS in application to heat
conduction.

2.1. Governing equations of MMS

Consider the rectangular element. Consider the heat
conduction task as a combination of two independent prob-
lems in two perpendicular directions — x and y . To dis-
tinguish them introduce the notions 7* (x) and Q*(x) as
functions related to the temperature and heat flux in x di-
rection, and 77 (y) and Q% () as the functions in y di-
rection. Upper indexes x and y show that the respected

values are attributed to the sides which are perpendicular
to the axes x and y correspondently, Figl. Write down

the governing Fourier heat conduction equations in two
perpendicular directions [1]:

0" (x,t) i dedECx,l) ’ (1a)
y

0’ (y.t)=—k" a2t (y’t), (1b)
dy

Where ¢ — is the time variable and k* and k” are heat
conduction coefficients and the local coordinates in the el-
ement are within the ranges 0 <x<a,and 0<y <bh.

Fig 1. The main parameters in the rectangular
element

As the next governing equation consider the law of
heat energy conservation. In absence of outer heat sources,

we have [1]:
00(x, y,t) . 90 (x, y,1) e oT (x,y,1) 2a)

ox oy ot

where ¢ and p are heat capacity and density. We have the

derivative with respect to time in the right side of equation
(2a). Apply the implicit finite difference scheme to the time
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derivative and account for that heat flux consists of two
separate functions of x and y:

dQ; (x) , 49! (v) _ ok (.3) =T (x.7)

dx dy A

(2b)

Where A is the time step used and lower index i desig-
nates the i -th time iteration. Equation (2b) cannot be used
directly in MMS, because this equation contains both space
variables x and y. So, we need to separate this single

equation into two ones, each should contain only one space
variable. With this goal present the temperature in time i,

T (x,y) ,as
T(xy)=T"(x)+ T/ (»)-T.;, (2c)

Where 7, ; is the value of the temperature at the time ¢, in

the central point of element C, Fig 1, and is related with
two “independent” temperatures as:
T, =T (x=al/2)=T"(y=b/2), (2d)
The equation (2d) is an important continuity equa-
tion which “glue” two solutions in the perpendicular direc-
tions.

Present the temperature, 7;_, (x, ), at previous mo-

ment of time i —1 as the polynomial expansion:

202, 022
Ty (xy)= 11+a 1x+a1 1y+a X aly

= al \ 04 Za 0 x™m +Za10 ]fyk (2¢)

Note, that we the degree of this polynomial expan-
sion should be no less than 1, i.e. it should be capable to
grasp the static solution [29]. In given work we take that
degree of polynomial expansion is equal to 2. Thus substi-
tute the temperature presentations (2¢)—(2e) into right side
of (2b), we get:

do? (x) . do? (v) . (I;x (x)- a\x-al ?xz)
dx dy A

02 2 0,0
—aly-alty ) (Tc,i+ai—l)

(3a)

Now we are able to separate the governing equation
(2f) into two coordinates independent equations:

a0 (v) (17 (%) -ar—aw® ) =(T., +al + 4)
dc P A
(3b)
; T (v)-aty—aliy? )+ 4,
do; (y):—cp( (¥)-a’ 1 ) 30)

dy A

Where we introduced the auxiliary constant A,

which account for the possible redistribution of the heat
flux within the element between two “independent” direc-
tions.

To sum up this subchapter 2.1 note, that equations
(1a) and (1b) as well as (3b) and (3c¢) are two groups of the
main governing equations of the transient heat conduction
problem by MMS.

2.2. General solution of the main equations by MMS

Substitute equations (1a) and (1b) into (3b) and (3¢)
correspondently. This gives two 2™ degree differential in-
homogeneous equations with respect two independent

functions 7;* (x) and 77" (y):

1

dsz
TILD o () (a2 vl a2 47, + )
dx '
(4a)
d’TY (y
#-b}%]}y(y)z—b;( a™ly+a’?y? - A,.) (4b)
dy
Where the following designations are introduced:
p =P ; p =P (4¢)
TOAK TARY

Obtain their general solution. Start from general so-
lution of the homogeneous part of equation (4a), i.e. get the
x general solution of the below equation:

d°T;* (x)

2 (5a)

- bf T (x)=
Introduce the generalized Krylov’s functions which
have the remarkable properties in the point x =0

K, (x)=ch(xb,), K,(x)=sh(xb,)/b, (5b)

Then the general solution, 7;* (x) , is given by the

1

following formula:

T (x) = CK, (x)+C,K, (x)

1

(5¢)

Accounting for the initial values of the temperature
and the heat flux at the beginning of the element in the hor-
izontal direction, i.e. in point x =0 we can write:

. __xde(xzo)_
O (x—O)— k —dx =

X
i,0°

(5d)

T (x=0)=T5,

Where from the general solution of the homogene-
ous equation is presented as:

(5¢)
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After that find the usual particular solution, 7;* (x),
of (4a):

1

5 24 20
T*(x)= [°?+ e +al({x+a12?x2+Tc’[+Aij (6a)

X

Since the partial solution must satisfy zero initial
conditions (in point x = 0), then find the supplemental (ze-
roth) particular solution for the temperature:

2,0

f}x(x)=[a?_’?+zz LT, +A}
x(1-K; (x))+

8 (- K o)) 2
The complete solution, 7;* (x), is the sum of general

(6b)

and supplemental particular solutions, so the expression for

it has the form:
K 24>0
2(x)+ a™) + LT, 4 4
k* b?

T;x (x) = TijcoKl (x)—Qfo

><(1 -K,; (x))+

Similarly, the complete solution for heat flux, O} (x), is

1
X

all;(i (x—K2 (x))+al2 (l)x2 (6¢)

found from (1a):

OF (x) = -k B{TK, (x) + QoK (x) + Kby Ky (%)
2,0
x[af’? + 22[2,1 +T,; + Ai]—kxa;’_? (1-K, (x))-2k"a)x

X

(6d)

In similar manner get the complete solution for the
temperature and heat distribution in the y direction:

K, (y) |24t
M

x(l—Kl(y))+aiO;11 (y_Kz (y))JFazo %yz (7a)
Qiy(y)z_kybyszo 2 (v )+Qf0K1(y)+kyb§K2(y)
0,2
{2‘;21 —A} Kal (1-K,(y))-2k"aliy*  (7b)

2.3. Algorithm of solution

Equations (6¢), (6d) and (7a), (7b) is the main result
of the analytical model. Yet they contain the unknown co-
efficient 4; and the temperature in the center of element

which hinder the direct application of the method. To

Cl >
eliminate them from consideration, apply two conditions
(2d) at the center of element. Substituting in them the so-
lutions (6¢) and (7a) we get the explicit expressions for
these constants:

K (a/2
Ai —_ Yy l(a )+Yx (83)
2-K,(a/2)-K,(b/2)

C(rKi(ar2)+y, ) (1=K, (6/2))
i = 2-K (a/2)-K(b/2)

+y,  (8b)

Where the auxiliary constants y, and vy, are given

by the following expressions:

Vx :TifCOKl(a/z) (0 0

(a/2)
=

2,0
00 24 ]

i-1 2
b.X'

(1 Kl(a/Z))+a (l /12— Kz(a/Z))+a (a/2)
(8¢)
Kz(b/2
k”
+apy (b/2-K,(b/2)) + a7}

v, =ThK (b12) -

2a07
), 5 L(1-K,(b/2))
¥

(b2 6
So, formally the constants 4; and 7, ; are the linear

combinations of the initial parameters 7}, O;, — at the

left inlet left side, and 7}, O/, — at the inlet lower side of

the element; as well as the coefficients aik_’{” (2¢), which

are “inherited” from the previous time step analysis.

Thus, substituting the expressions (8a) and (8b)
again into equations (6¢), (6d) and (7a), (7b) we get the
complete solution for all these four functions withing the
considered element:

T;x (X) (11,1 (x), 0‘1,2 (x), 03 (X), 0,1’4 (X) T;-’Ox
0" (x) _ )% (x): opn(x)s ap3(x); oy (x)|| Q"
()| % (D) a5 (v)s oa3()s os4(y) Lo
o' (v)) % (0w (¥) g3 (v); aaa(y) 00"

b (x)

k.m b2k’m (x)

+Yak ©a)
k,zm 1 3k’m (y)
(

The derived matrix equation is called as a Connec-
tion equation. Substituting instead x and y their values at

the outlet border (side) of the element, we get the relation
between the inlet values of the main parameters and the
outlet values:

3
=
Q
RS
o

©
)
=
Q
[3°]
=]
ul\)
[38]
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blk,m(a)
bk’m(a)
+> gk 2 9b
kZ | ko ) (9b)
b ()

Where the special designation for main parameters
at the outlet sides are introduced 77, =T7;"(a),

Qz‘,‘e = sz (a) > T;,J:? = T;‘y (b) > iJ,}e = Qiy (b) > Flg 1

Now it is easy to formulate the general algorithm of
solution, which is identical to this one proposed in our
works [24], [25] except the number of main parameters of
the problem (number of unknowns). So, repeat it in short.
First of all, we break out the whole structure on number of
elements, say, G . Then introduce 8 unknowns for each el-
ement, which are 2 parameters on each of 4 sides of ele-
ment. At the whole, there G -8 =8G unknowns.

This number should be equal to the number of equa-
tions. Count them. At each border between two elements
there are two continuity equations (Conjugation), which
state that temperatures and fluxes at both conjugated sides
are the same. Formally, this means that for each border pro-
vides 1 equation for each element. In case if the side of the
element is the boundary of the whole body, then 1 bound-
ary condition should be formulated for it. So, the general
rule that 1 side gives 1 equation still hold. So, for each el-
ement we have 4 Conjugation (boundary) equations, at the
whole for the structure they are equal to 4G . Other 4G are
derived as 4 Connection equations (9b) for each element.
So, the number of equations and number of unknowns does
coincide, and algorithm of solution reduces to a) proper
meshing the structure; b) proper organization of bypass
through the structure and numbering the elements; c)
proper numbering the unknowns; d) compilation and solu-
tion of the matrix equation; e) presentation of results inside
each element. All these essential steps were explained in
our works [24], [25].

3. Presentation of the solution from the pre-
vious moment of time.

This part of work relates to the treatment of the ob-
tained solution at the i time step and the preparation of
data for the problem solution at the next i+1 time step. So,
the task is to get the presentation of the temperature in a
form:

0,22

T; (x,y) = al_o,o +al-l’0x+ a?’1y+al-2’0x2 +a;"y" (10a)

With some small amendment we repeat here the pro-
cedure given in [29], [30]. First of all, note that availability

i ime i X OF Yy 0F
of solution at the time i means that 7}, 0;, and 7}, 07

are already known, and according to relations (6¢) and (7a)
the distribution of the temperatures can be presented as:

T (x) = Biy Ky (%) + B K (x) + T (x)

T’ (J’) = BZIKI (y)+ Biy,sz (J’)+fiy (y)

(10b)
(10c)

Where B j» and By ; are known coefficients and

7" (x) and 7 () are known polynomials of the second
degree, see for example (6a). The next step is the expansion
of the functions K. , (xory) into polynomial series of

the second degree [29]. The integrally averaged procedure
is suggested to use. According to it we present, for exam-
ple, K, (x) as:

K, (x)=ch(xb, )= f + fi'x+ f3'x (11a)

Then consequently multiplying both sides of (11a)
by 1, x,and x?, and integrating it over x from x =0, to
x = a we get the system of three equations which gives the
values of coefficients fy', /", f5 as the function of value

(ab, ) . In similar way we can get the expansion of X, (x) as:

K, (x) = sh(bxbx)

X

X X x 2
=& t& Xt &x

(11b)

Thus, it is easy to see that accounting for (6a), (11a)
and (11b) the function 7;* (x) can be presented as second-

degree polynomial:

T (x) =T + T x+ T2 x° (12a)

Similarly the distribution of the temperature in y
direction can be written as:

L () =T + T,y + 15y (12b)

The last step we should do, and which was absent in
1D wave propagation problem [29] is to merge two inde-
pendent solutions into a general one. Recall the formal
presentation of temperature within the element (2¢). Find
the temperature in the center of the element according to
each of two presentations (12a) and (12b):

E?Cc:];‘?x"'Ti}xa/z"'Ti,zx(a/z)z; (12¢)
C
0, ol 2 2
EfvczTi,y+];',yb/2+7;a”(b/2) ’

Then consider the conventional temperature at the
center from the previous time stem as the semi-sum of 7,
and 7;.. Apply the general rule of the temperature presen-

tation (2c), so we get:

0 0
T+ T,

2
(s (-4
b b’
1 2 2
*ﬂw(y‘zj+ﬂv[y ‘2:}

T (x,y)=
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The comparison of (2e) with (12d) allows to get the
required values of a™* . So, all data are available to pro-

ceed to the next time iteration.

4. Example of the solution.

4.1. Problem statement

Consider the rectangular plate 0<x<L,,

0<y<L,,whichsides are the same L, = L, and equal to 5.
Take that all physical coefficients are constants and equal
to 1,s0 c=p=k* =k” =1. Assume that heat transfer is

absent at all plate sides, thus:

aa—i(x:Lx,y,t)zo (13a)

oT oT
5(x,y:0,t):0, 5(x,y:Ly,t):0 (13b)

Consider that initial temperature distribution,
Ty (x,y,¢ =0) is given by two dimensional Gauss function

with the following parameters p, =2.5, p, =2.5, and

2 2
Ty (3.) = exp| (“‘"J +[y;“yJ (130)

O, y

The initial temperature distribution is shown on Fig 2

Temperature at the momentt =0

0.8

<
0.6
0.4 >

0.2

3
X-axis ® - 0

Fig 2. Initial temperature distribution, ¢ =0

4.2. Analytical solution

This task allows the exact solution by classical Fou-
rier method of separation of variables. So, the looking for
temperature is presented as:

T(x,p,t)=X(x)Y(»)U(t) (14a)

The general solution with accounting for the simple
boundary conditions (13a) and (13b) can be presented as [8]:

nmX mmy
= COS——COS——
Z Oz =0 nm Lx Ly

2 2 2
X eXp SN 2 B 3 U (14b)
cp L, L,

At initial (zero) time the temperature is given by the
following expression:

mmy
Ty ( Zn OZ 0Cnmcos cosL—
L ¥

T(xy,

(14c)

To find the unknown coefficients C,,, we need to

consequently multiply both sides of (14c) for any combi-
nations of integer (n,m) on the shape functions

nmx  mmy
COS——COS——,

x y
Note that left side of (14c) is equal to initial distribution
(13c). This allows to find C,,, and then apply (14b) for the

temperature determination at any moment of time ¢. The
right hand of (14c¢) is integrated analytically. To perform
the integration of left side take 450x450 evenly distributed

for all

and integrate them over the plate area.

point within the plate area and determine Cnm

0<n<30=N and 0<m<30=M , at the whole 900 co-
efficients are determined.

The demonstration of the accuracy of the Fourier
presentation is given in Table 1. Here in initial time the
theoretically calculated temperatures (right side of (14c))
are compared with initial distribution (13¢) for some cho-
sen plate points. As we see there is a very good correspond-
ence. Some difference is related with absence of higher
terms of Fourier expansion. But these higher terms accord-
ing to (14b) decays very quickly with time. This will be
demonstrated later. So, for any intermediate moments of time
the 30x30 Fourier solution can be considered as exact one.

Table 1. Comparison between initial given temperature
and calculated one by Fourier method with application of
450x450 integration points and 30x30 analytical terms

(x, Yy ) \T Exact values /::;;r};?ii)i Difference
(2.5,2.5) 1.0 0.999739 0.000261
(3.5,2.5) 0.606531 0.606317 0.000214
(4.5,2.5) 0.135335 0.135119 0.000216
(3.5,3.5) 0.367879 0.367716 0.000163
(4.5,4.5) 0.018316 0.018262 0.000054

The availability of analytical solution allows to build
the dependence of temperature with time, for example, in
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the central point of plate (x=2.5,y=2.5), Fig 3. Evi-

dently, the temperature changes most drastically at the mo-
ment of time ¢ = 0.25, so it will be mostly taken for com-
parison with our direct time integration procedure in MMS.

Theoretical results of calculation for chosen plate
points at the intermediate moments of time are presented in
Table 2. They are absolutely the same at application two
different number of integration points and number of ex-
pansion terms. So, we can state that analytical results are
exact for given number of significant digits. So, the com-
parison with them will allow to judge about the accuracy
of our method.

Where D, is the maximum allowable argument of

exponential function in the numerical calculation due to
machine error. This criterion establishes the requirement to
the minimum time step A when the element size a is al-

ready chosen:
2
Al L
Dy

To illustrate the above consideration, perform the
calculations for two points of plate at time ¢ = 0.25 for dif-
ferent time steps A with application of 15x15 meshing.

(15b)

L A -
~N @ v O

Temperature Uix, ¥)
=
[#3]

0.5
T
s
0.4 S
.-
0.3 —
~— .
0.0 0.5 1.0 1.5 2.0 2.5

Time t

Fig 3. The theoretical distribution of the temperature in the central point, x = 2.5, y =2.5

Table 2. The analytically calculated temperature for two different meshing and number of terms: a) 450x450 points, 30x30

terms, b) 300x300 points and 20x20 terms

(e, )\T 0.25 0.5 0.75 1.0 1.5 25 5

(2.5,2.5) 0.666695 0.501525 0.407017 0.349554 0.290220 0.254108 0.245295
(3.5,2.5) 0.478584 0.396065 0.343811 0.310239 0.273981 0.250976 0.245236
(4.5,2.5) 0.198708 0.229727 0.242338 0.246779 0.247710 0.245908 0.245140
(3.5,3.5) 0.343550 0.312781 0.290420 0.275346 0.258650 0.247883 0.245177
(4.5,4.5) 0.059225 0.105228 0.144288 0.174222 0.211427 0.237973 0.244985

4.3. Our results and comparison

Analyze the results obtained by our method. First of
all, note that our method employs the functions of the form
ch(xb, ). This function become very large within the ele-

ment when the value of ab, exceed some number. So, the

machine mistake might occur. This was already analyzed
in our work [29], where it was suggested to restrict the up-
per value of ab,, by, say number of 10. Recalling the ex-

pression for b, we can write

(15a)

The results are given in Table 3. Evidently, the accuracy is
becoming better with taking less time step. But when the
time step become very small the argument of exponential
function become very large, so the solution diverges. As
we see from Table 3 it is expedient to restrict the values of
D, by value of 10. So, in all subsequent analysis we will

follow this restriction.

Perform the similar analysis for two different more
refined meshing, 45x45 and 65x65. The results are shown
in Tables 4 and 5. Evidently, the accuracy become better
with refining the space meshing as well with decreasing the
time step. Furthermore, namely the decreasing the length
the element allows to decrease the time step.



94

Mech. Adv. Technol., Vol. 8, No. 1, 2024

Table 3. Calculated temperature at time 0.25 for different time step A with application of 15x15 meshing

D 33.3334 | 14.9071 10.5409 | 6.6667 4.7140 3.3334 2.1082 1.4907 0.6667
(x, J’) \A| Fourier 0.0001 0.0005 0.001 0.0025 0.005 0.01 0.025 0.05 0.25
(2.5,2.5) |0.666695 | 1.473361| 0.667471 | 0.667621 | 0.668067| 0.668805| 0.670266| 0.674543|0.681338 | 0.724307
(4.5,2.5) | 0.198708 | 0.52406 | 0.198216 | 0.198180 | 0.198073| 0.197894| 0.197542| 0.196520|0.194924 | 0.185486

Table 4. Calculated temperature at time 0.25 for different time step A with application of 45x45 meshing

D 11.1111 4.9690 3.5136 22222 1.5713 1.1111 0.7027 0.4969 0.2222
(st’)\A Fourier | 0.0001 0.0005 0.001 0.0025 0.005 0.01 0.025 0.05 0.25
(2.5,2.5) |0.666695 | 0.666800 | 0.666919 | 0.667068 |0.667514 |0.668254 | 0.669720| 0.674012 | 0.680831| 0.723948
(4.5,2.5) [0.198708 | 0.198647 | 0.198618 | 0.198581 |0.198472 | 0.198292 | 0.197935| 0.196901| 0.195286| 0.185743

Table 5. Calculated temperature at time 0.25 for different time step A with application of 65x65 meshing

D 7.6923 3.4401 2.4325 1.5385 1.0879 0.7692 | 0.4865 0.3440 0.1538
(x,y)\A Fourier | 0.0001 0.0005 0.001 0.0025 0.005 0.01 0.025 0.05 0.25
(2.5,2.5) [0.666695 | 0.666761 | 0.666880 | 0.667029 | 0.667475 | 0.668215 |0.669681 | 0.673974 | 0.680795|0.723920
(4.5,2.5) [0.198708 | 0.198675 | 0.198645 | 0.198609 | 0.198500 | 0.198319 | 0.197962 | 0.196927 | 0.195311|0.185762

So, the question is which parameter of integration —
the spatial or temporal ones have the larger influence on
the accuracy? In work [29] for 1D problem the answer was
that the time step predetermines the accuracy of the numer-
ical scheme, while significance of the space meshing is in
controlling the allowable value of D (argument of expo-
nential function).

To give the answer introduce the measure of accu-
racy, M, , by the following expression:

M, =log|Ty, —T,

exact |

(16a)

This measure will be presented in dependance with
logarithm of inverse of applied time step, A,

A, =log(1/A) (16b)

The generalized graph of dependence of accuracy
from the time step is shown on Fig 4. To construct it we
apply the different combinations of spatial meshing and
time steps.

As in works [29], [30] we can state that time step is
the main parameter which control the accuracy. As to spa-
tial meshing the linear size of element should be small

enough to exclude the mashing error of calculation of ex-
ponential functions at large arguments.

It is of interest to compare the accuracy of our MMS
with traditional FEM results. Fig 5 shows the lower en-
velop of our results (for very fine spatial mesh) as well as
the results obtained by ABAQUS with use of CPS4T ele-
ment. Note that numbers in parentless show the number of
elements along one side. As we see our results give better
accuracy especially for small time steps. All above show
the high accuracy of the method.

One another question about the accuracy of our
method remains unanswered. It might be argued that the
demonstrated accuracy was attained only in two points and
only in one moment of time, ¢ = 0.25 . To answer this ques-
tion, we recalculate by our MMS the values of temperature
in the same time and space points as in Table 2. Adopt the
intermediate space meshing 65x65 and time step
A =0.001 and present the difference of calculated and ex-
act temperatures in Table 6. So, the very good correspond-
ence is achieved for all space points and the moments of
time. Other important peculiarity of the method is that results
at large time converge to the correct value of temperature.
This means that occurs no numerical dissipation of energy.
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Fig. 4: Dependence of the measure of accuracy, M, , with logarithm of inverse of time step, A, for different
spatial meshing
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Fig 5. Comparison accuracy attained by MMS and by ABAQUS

Table 6. Difference of results obtained by MMS with exact ones for different time and space points

(. y)\T 0.25 0.5 0.75 1.0 15 2.5 5
(2.5,2.5) 0.334 0.296 0.233 0.177 0.099 0.029 0.001
(3.5,2.5) 0.102 0.127 0.115 0.096 0.058 0.019 0.001
(4.52.5) 0.099 0.093 0.062 0.034 0.006 0.002 0
(3.5,3.5) 0.002 0.039 0.046 0.041 0.026 0.008 0
(4.54.5) 0.023 0.013 0.044 0.058 0.053 0.022 0.001
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Conclusion

This work expands the application of the original
method of matched section to the heat conduction prob-
lem. The gist of the method is an approximate solution
of the governing differential equations, so the solution
is presented in strong form rather than in weak one as in
traditional FEM. In first time it considers the transient
2D problem by original implicit time integration
method, where the element interpolation functions ex-
plicitly depend on the time step. The task for redistribu-
tion of the temperature within the rectangular plate is
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HesiBHe mpsiMe iHTerpyBaHHsl 3a 4acoM 3aJadvi TeIJIONPOBIAHOCTI B MeTOi
Y3rOoJKeHMX nepepisin

I. Opunsix! o A. [uoyabnuk' e K. lannnenxo' o A. Opunsk?

U KIII im. Izops Cikopcewkozo, Kuie, Yrpaina
2 [IAT “Yxpmpancnagpma”, Kuis, Yrpaina

Anomauia. Cmamms npucesuena nooarbuomy po3gumKy Memooy y32004CeHUX nepepisie Kk H08020 HANPSAMY Memoody CKIHUeHHUX eile-
Menmis y 3acmocyeanti 00 nepexionoi 2D memnepamypnoi 3adaui. Ocnosna giominnicmo MYII 6i0 mpaouyiiinozo MCE nonseae 6 momy,
WO CHPANCEHHsL 30IUCHIOEMbCS MIJIC CYCIOHIMU nepepizamu, a He 'y 8y31ax eiemeHmis. Baoicnueow ocobrusicmio memody € me, wo it
6a3yemvcsi HA HAOIUICCHOMY PO3B'SA3KY 8 CUNbHITE POPMI BUSHAUANLHUX OUDEPEeHYIANbHUX PIGHAHb, SKI MYM HA3UBAIOMbCS PIGHAHHAMU
38'a3ky. [lepedbauacmobcs, o 015k KOJICHO20 MAL020 NPSIMOKYIMHO20 eleMEeHma 0808UMIPHY 3a0ayy MONCHA PO3NA0AMU SIK KOMOIHAYIIO
060X 0OHOBUMIPHUX 340ay - OOHA 3 HUX 3ANEHCUMb 610 X, d iHwa - 610 Y. Koocha 3a0aua xapaxmepusyemocsi 060Ma (YHKYisMU - memne-
pamypoio , ma menioguM NOMOKOM . Y npaxmuuniil peanizayii 01 NPAMOKYMHUX CKIHUEHHUX efleMeHmi6 Menoo 3600Umbcsl 00 GU3HA-
YEHHS 80COMU HEBIOOMUX OJiS KOHCHO20 elleMenma - No 08a HeBIOOMUX 3 KOHCHO20 OOKY, AKI N08 A3aHI PIBHAHHAMU 38 A3KY, MA 8UMO2010
HenepepsHoCcmi memMnepamypu 8 yenmpi enemenma. IHWO0 8adxicIuBoI0 ocodbaugicmio pobomu € peanizayis opuinatbHOi Hesa8HOI cxemu
iHMezPYBaHHs 3a HaCOM, e KPOK 3 4aACOM CIAE Napamempom Qyukyii popmu 8 medicax enemenma, moomo 8UsHa4ac NOGEOIHKY PIBHANDL
36’53Ky. Leti memoo 6ye enepuie 3anponoHo8aHutl agmopom 0ist pdy 0OHOMIPHUX 3a0ay, d MYm 6nepuie 3acnoCco8anull 015 O80BUMIPHUX
3a0au. Pao mecmisé onsa npAamokymmoi niacmunu 0eMoHcmpye uy0osi enacmusocmi yiei “66y0oeanoi” cxemu iHmeepy8ants 3a 4acom
w000 cmilikocmi, MOYHOCMI Ma 6i0CymHocmi 6y0b-AKUX 00MedxHceHb Wo00 30iNbUeHHs KDOKY 3a YACOM.

Kniouosi cnosa: Memoo y3eoddicenux nepepiszie, nessne inmezpyeans 3a 4acom, 3a1exicHi 810 KPOKY 3a yacom Qynxyii popmu, npsi-
MOKYMHA NIACMUHA, Nepexiona memnepamypa.
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