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Abstract. Cutting processes are carried out in an elastic machining system, which is multi-mass with negative and positive loop control 
with a delay in construed mathematical models. Its behavior during the cutting process is entirely determined by dynamic properties 
and an adequate parameters of mathematical model is necessary to control the process. The paper proposes a method for identifying 
such dynamic parameters of the machining system, which include natural vibration frequencies, vibration damping coefficients, and 
stiffness of the replacement model of single-mass system in the direction of the machine-CNC coordinate axes. 
It is proposed to identify such parameters as a result of experimental modal analysis by impacting the elements of the tool and 
workpiece with an impact hammer and processing the impulse signal with a fast Fourier transform. It is proposed to adapt the results 
obtained to the adopted mathematical model of the machining system, presented in the form of two masses, each with two degrees of 
freedom, according to the equivalence of the spectrum signal power or its spectral density. The cutting force model in the form of a 
linearized dependence on the area of undeformed chips needs to be clarified by the coefficient using experimental oscillograms 
obtained during milling of a workpiece mounted on a dynamometer table. Based on the identified parameters of the machining system, 
a stability diagram was constructed in the “spindle speed – feed” coordinates and experiments were carried out under conditions in 
the zone of stable and unstable cutting. Evaluation of the roughness of the machined surface confirmed the correspondence to the 
location of the stability lobes diagram constructed using the identified parameters, which indicates the effectiveness of the proposed 
identification method. 
Keywords: machining system, identification of dynamic parameters, experimental modal analysis.

1. Introduction 

The production of machine parts in subtractive tech-
nologies is carried out on metal-cutting machines during 
the cutting process, which is quasi-stationary. The trend to-
wards increasing productivity by increasing the rate of 
stock removal and forming reveals serious problems asso-
ciated with machining dynamics. These problems can be 
divided into two: the first is related to the dynamics of the 
execution of control program commands by the drives of a 
CNC machine tool, and the second is the dynamics of the 
cutting process itself in an elastic machining system. The 
article discusses the second problem, since it is the most 
general and affects the machining results on any machine. 

Dynamic phenomena during the cutting process al-
ways lead to the occurrence of regenerative vibrations, 
which are the main reason for limiting productivity. De-
spite the importance of such problems, the dynamics of cut-
ting processes remains poorly understood, which leads in 
practice to the use of empirical methods for determining 
acceptable machining parameters that ensure stability. 

All processes occurring in an elastic machining sys-
tem are analog in nature, and to analyze them using modern 
signal machining methods, it is desirable to obtain their 
digital twin. Therefore, to control the process in order to 
suppress regenerative oscillations, it is necessary to focus 
on a mathematical model that adequately describes the real 
processes occurring during cutting in a dynamic system. 
An analysis of research in this area shows that it is desira-
ble to obtain the result with the simplest model with a mini- 
mum number degrees of freedom. 

This choice always involves a trade-off between 
model complexity and representation accuracy. Moreover, 
practice shows that increasing the complexity of the model 
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by increasing the number degrees of freedom does not al-
ways lead to increased accuracy. Therefore, models with 
one or two degrees of freedom are most often used, alt-
hough the representation of the cutting process between the 
interaction of the tool system and the workpiece system re-
quires a more complex two-mass model, each with two de-
grees of freedom [1]. 

After choosing the model structure, it is necessary to 
identify its parameters, which include the natural fre-
quency of each mode, stiffness in the direction of the shap-
ing axis, vibration damping coefficient and cutting force 
coefficients [2]. For identification, experimental methods 
of modal analysis are used, which usually give frequency 
responses that differ from the accepted structure of the 
model. Therefore, it is necessary to develop a way to adapt 
the experimental results to the adopted model, both in fre-
quency responses and in stiffness and damping. This article 
is devoted to solving these problems that are relevant for 
designing management strategies. 

2. Problem status analysis 

System identification is the process of creating a 
mathematical model of a dynamic system based on mea- 
sured data. In the identification process, at the first stage, 
the structure of the system, the type and order of differen-
tial equations connecting input and output quantities are 
adopted in accordance with its physical structure. Next, ex-
periments are carried out to determine the parameters of the 
adopted structure and mathematical description. The next 
step is to check the resulting model for adequacy, and if the 
answer is insufficient, the process is repeated, starting with 
clarifying the structure. The process is completed when 
model verification produces acceptable results. Common 
estimation methods are least squares, instrumental varia-
ble, maximum likelihood, etc. [3] 

To identify dynamic systems, the most widely used 
methods are modal analysis, which, based on experimental 
results, make it possible to determine the structure and dy-
namic parameters of the system [2], [3]. Such results are 
presented in the form of frequency responses, which are the 
response of a dynamic system to kinematic or force excita-
tion by a harmonic signal. The actual task is usually to de-
termine the Frequency Response Function (FRF) for the 
system of interest and then define the model by performing 
a modal approximation of the measured data. 

To solve this problem, the machining system is usu-
ally loaded using an electrodynamic vibrator or a special 
impact hammer. When loaded with a vibrator, a force is 
created, the frequency of which is changed in the required 
range and the response of the system is recorded in the 
form of elastic movement of the machine unit of interest. 
The Frequency Transfer Function (FTF) is determined, for 
example, in the form of a Nyquist diagram on the complex 
plane or in the form of the real and imaginary parts of the 
frequency function combined in frequency [4]. 

Such experiments require complex equipment and 
cannot be implemented for all types of processing and ma-
chine configurations. Therefore, a more flexible method of 
experimentally determining frequency responses using an 
impact hammer is used. The impact hammer creates an im-
pulse effect on the system in the desired direction, and the 
reaction is recorded in the form of an Impulse Frequency 
Response (IFR). 

There are several approaches to finding modal pa-
rameters. Experimental modal analysis (EMA) has proven 
its effectiveness when the machine is stopped. The excita-
tion achieved using an impulse hammer or shaker, as well 
as the excitation response at several locations, are measu- 
red. Alternatively, operational modal analysis (OMA) can 
be used to determine modal parameters during operation. 
Here, only the arousal responses resulting from work are 
measured. Modal parameters are mathematically identified 
based on the measured signals in both cases, but using dif-
ferent methods. 

In paper [5] discusses the extent to which both ap-
proaches (EMA and OMA) can lead to reliable identifica-
tion of machine natural frequencies during milling. For 
EMA, the focus is on capturing perturbation. It can be as-
sumed that procedural forces are the most significant per-
turbation. However, in addition to process forces, there are 
other sources of excitation (for example, actuators, hydrau-
lic and pneumatic units), which, according to this assump-
tion, are considered part of the disturbances that have con-
sequences for the identification of modal parameters. 

The dynamics of machine tools can differ signifi-
cantly from the results obtained by traditional static EMA, 
which leads to the demand for a method of operational 
identification. However, due to the lack of the ability to 
measure the input excitation, it is impossible to obtain the 
frequency response, which in the classical sense is the ratio 
of the output signal to the input signal as a function of 
frequency. Therefore, a method for estimating FRF for 
OMA based on random cutting excitation methods is pro-
posed [6]. The cutting force data is used, which is the input 
signal, based on the results of the process simulation. In 
such an experiment, the cutting speed will change and in 
order to evaluate this effect on the cutting force, a special 
function is introduced into the forecast. The simulated re-
sulting cutting force is then synchronized with the meas-
ured responses before it is used to estimate the FRF. 

Realizing the importance of the dynamic properties 
of a machine tool for accurate process modeling and chatter 
prevention, most researchers come to the need to determine 
frequency responses using OMA. However, the problem of 
identifying the input excitation as a function of the cutting 
process remains. Therefore, a modified OMA based on 
transfer function is proposed, which assumes a constant 
mode shape for the spindle assembly to monitor changes in 
the natural frequency and damping ratio of the spindle. The 
solution based on the transfer function only considers the 
relative vibrations between two sensors mounted on the 
spindle body when the machine tool is excited by cutting 
forces during machining [7]. 
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Although real-world machining systems have multi-
ple degrees of freedom (MDOF) and some degree of non-
linearity, they can usually be thought of as a superposition 
of linear single degree of freedom (SDOF) models [8]. To 
accurately predict the dynamic behavior of their real-world 
counterparts, these models need to be identified, meaning 
that the values of the physical model’s involved parameters 
must be found by comparing the model with the measured 
data of its real-world counterpart. However, procedures for 
bringing to equivalence MDOF with SDOF which are in 
mathematical model have not been developed. 

To identify machining systems using OMA methods, 
it is proposed to measure the frequency response using 
periodic test signals [9]. Typically, sinusoidal signals of 
fixed frequencies are used, but other periodic signals can 
also be used, such as e.g. rectangular, trapezoidal or trian-
gular signals. 

To identify the dynamics of machining systems, it is 
mandatory to identify cutting force coefficients. Work [10] 
presents a generalized model for identifying the cutting 
force coefficient, applicable for processing both isotropic 
and anisotropic materials. The basis is a general mechani-
cal model applicable to any machining operation. Cutting 
force coefficients are evaluated in the frequency domain, 
taking into account the dependence of fiber orientation in 
composites or the runout effect in isotropic alloys. 

The goal of identification research is to develop digi- 
tal models of all stages of parts production. The intersec-
tion of tool and workpiece along the tool path is evaluated 
in discrete steps, which are then used to calculate chip area, 
cutting load, torque, power and energy consumed by the 
machine tool, and detected the occurrence of vibration. The 
dynamics of the CNC system are included in the digital 
model to estimate the true tangential feed and machining 
cycle time [11]. 

Digital twins are one of the components of creating 
automatic machining modules and are already having a sig-
nificant impact on the manufacturing industry [12]. Auton-
omous digital twin technologies presented also include vi-
bration prediction and control, as well as adaptive feed rate 
control. The proposed Digital Twin machining system is 
implemented on a large-sized CNC machine designed for 
high-speed machining of aircraft parts. 

When performing studies to identify the dynamic 
properties of machine tools, it must be borne in mind that 
during standard experiments the machine does not perform 
cutting, and its components do not move relative to each 
other. The actual spectrum and frequency range of these 
forces are unknown. Experimental data obtained from dif-
ferent types of tests clearly show the difference in dynamic 
compliance of the same machine tool when cutting and 
idling. When dynamic testing of machine tools using vari-
ous types of external exciting devices, the conditions of 
real load and interaction of moving parts, including the cut-
ting process itself and external sources of vibration, are not 
taken into account [13]. 

When using vibrators, it must be kept in mind that  

since it is attached to a structure, in experimental studies 
mass is added to the dynamic system being studied [14]. 
This leads to errors in determining frequency responses. 

The review of research in the field of dynamics of 
machining systems shows that, as a rule, they are repre-
sented by second-order dynamic models with one or two 
degrees of freedom. However, practical results from EMA 
or OMA yield frequency responses that correspond to 
multi-mass dynamic systems [4]. Therefore, when model-
ing machining systems, the problem arises of adapting the 
obtained experimental results to a SDOF model, which will 
be equivalent to the real system in terms of the experi-
mental frequency response. In addition, the problem arises 
of identifying the stiffness, vibration damping coefficient 
and cutting force coefficient. The article presents the au-
thors’ experience in solving such pressing problems of 
identifying the machining system of a milling CNC-ma-
chine. 

3. The aim and objectives of the study 

The purpose of this work is to create a methodology 
for identifying the dynamic parameters of machining sys-
tems using the example of a CNC milling machine, which 
is based on experimental modal analysis, experimental re-
sults of determining the components of cutting force, stiff-
ness and reduction to an equivalent SDOF model, which 
will allow assigning a cutting mode that ensures maximum 
performance with minimal vibration. 

To achieve the goal, it is necessary to solve the fol-
lowing problems: 

– construction a diagram of an experimental modal 
analysis of the machining system of a milling machine in 
its representation in the form of a model with two masses, 
each of which has two degrees of freedom; 

– develop a methodology for determining the dy-
namic parameters of a model based on the equivalence of 
its frequency response to the results of experimental modal 
analysis; 

– conduct experimental testing of the developed 
methodology and check its effectiveness. 

4. The study materials and methods 

The object of the study is the machining system of a 
CNC milling machine, and the subject of the study is the 
dynamic properties of the system, on the basis of which a 
vibration-free cutting mode is determined, providing the 
highest possible productivity with the required quality. The 
cutting process is considered during its implementation in 
a machining system, when to determine its components it 
is necessary to use the dynamic responses of the elastic sys-
tem and the results of EMA. 

To implement the methodology for identifying the 
dynamics of the machining system, experimental modal re-
search schemes were drawn up using an impact hammer 
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Impact Hammer Model 086D05, Multicomponent sensor 
MCS10, a dual-beam storage oscilloscope model XDS 
3202E, accelerometer RSV 353B15, amplifier ClipX BM40 
and corresponding signal processing programs and their 
representations in digital format. To process digital signals 
of modal tests, a special program was compiled, which pro-
vides Fast Fourier Transform (FFT) and determination of 
the natural frequency and oscillation damping coefficient 
of an equivalent SDOF dynamic system. 

The identification results obtained were used to 
solve the problem of determining the vibration-free cutting 
mode during end milling on a CNC machine [15], which 
confirmed the effectiveness of the proposed identification 
technique. 

5. Results of identification machining system 
for end milling  

5.1. Model of machining system  

A mathematical model of the milling process is nec-
essary to calculate the vibration-free cutting mode, opti-
mize the process and assumes the preliminary identifica-
tion of all components, including the cutting process and 
the dynamic parameters of the elastic system. The mathe-
matical model of the machining system for 2D milling 
must take into account the closedness of the cutting pro-
cess, control by two inputs (cutting depth and feed) and 
machining along the traces. The cutting process involves 
two dynamic systems of the tool and the workpiece, which 
interact through the cutting process (Fig. 1). 

 

 
Fig. 1. Blok-diagram of machining system 

Machining along the trace in two coordinates is rep-
resented by a delay link, where τ is the tooth passing pe-
riod, s is the Laplace operator. The cutting process is de-
scribed by dependencies that involve modeling by numeri-
cal methods [16]: 
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where CP, k are the empirical coefficient and exponent, ai 
is the cutting thickness, δBi is the width of the elementary 
section along the Z coordinate, γ is the rake angle of the 

mill cutter flute, z is the number of cutter tooth, n is the 
number of sections along the milling width. 

From formulas (1) and (2) it is clear that the calcula-
tion is performed by representing the cutter as a set of ele-
mentary cylindrical cutters along the milling width along 
the Z coordinate. The cutting thickness for each elementary 
cutter is determined by the well-known formula: 

 Sini t ia f= ϕ , (3) 

where ft is the feed per cutter tooth, φi is the angle of the 
cutting arc in the corresponding section.  

To identify the cutting process, it is necessary to fo-
cus on the experimental results that are obtained when mil- 
ling a workpiece installed on the Multicomponent sensor 
MCS10. Since the cutting force model is based on a mech-
anistic approach, only two values CP, k need to be identi-
fied. Such experiments are constructed according to a well-
known planning scheme with the results assessed by the 
average value of the cutting force, taking into account the 
intermittency of the cutting process [16]. 

It is advisable to represent the dynamic systems that 
make up the machining system in the form of SDOF elastic 
systems with one degree of freedom along each coordinate. 
In this case, the transfer functions of the cutter and work-
piece system are represented at each coordinate.  

Transfer functions of the “cutter” system: 
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where kcy, kcx – rigidity of the system along the Y axis and 
X axis, ωcy, ωcx – frequency of natural vibrations along the 
Y axis and X axis, ξcy, ξcx – vibration damping coefficients 
along the Y axis and X axis, δcy, δcx – elastic displacements 
along the axis Y and X axis. 

Transfer functions of the “workpiece” system: 
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where kwy, kwx – rigidity of the system along the Y axis and 
X axis, ωwy, ωwx – frequency of natural vibrations along the 
Y axis and X axis, ξwy, ξwx – vibration damping coefficients 
along the Y axis and X axis, δwy, δwx – elastic displacements 
along the axis Y and X axis. 

Equations of closure of the machining system ac-
cording to Fig. 1: 
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where Ha, Hc are the actual and commanded cutting depth 
in the Y coordinate, fa, fc are the actual and commanded 
feed in the X coordinate. 

Thus, to identify the dynamic parameters of the ma-
chining system presented in (4) and (5), it is necessary to 
conduct an EMA and reduce the actual results to equivalent 
single-mass systems. 

5.2. Experimental Modal Analysis  

To carry out the modal analysis, an experimental 
technique was used based on the study of a dynamic system 
in a static state separately for the cutter system and the 
workpiece system using an impact hammer. 

Experimental modal analysis of the workpiece sys-
tem was performed on a workpiece mounted on the MCS10 
dynamometer table (Fig. 2). An accelerometer is attached 
to the workpiece, connected through an amplifier to the in-
put of the oscilloscope. The impact hammer is also con-
nected to the second input of the oscilloscope, and the im-
pact is performed in the direction of one of the coordinate 
axes. The result of recording the received signals on the 
oscilloscope screen is shown: the accelerometer signal is 
indicated by line 1, the impact hammer signal is indicated 
by line 2. 

 

 
Fig. 2. Experimental setup for determining the 
IRF of the “workpiece” system  

To determine the IRF in the direction of another axis, 
the location of the accelerometer and the direction of the 
impact are changed. This is how an experimental modal 
analysis of the “workpiece” system was carried out in a 
static state. The oscilloscope generates a digital file that can 

be saved to flash memory in *.txt format. Such a file pro-
vides sufficient information to identify a dynamic system 
(Fig. 3 a). In addition, using the second channel of the os-
cilloscope, you can observe the impulse response of the im-
pact hammer, which is important for selecting a tip to ex-
cite the required frequency spectrum in the machining sys-
tem under study. 

 

 
a 

 
b 

Fig. 3. Results of the modal experiment system 
“Workpiece”: a – IRF; b – FRF 

Using the FFT, a discrete spectrum of the TFT signal 
was constructed in the form of amplitudes of the frequency 
response (Fig. 3 b). It can be seen that the dynamic machin-
ing system is multi-mass and can be represented as a vari-
ety of single-mass systems. To identify the necessary pa-
rameters of a single-mass system adopted in the mathemat-
ical model (5), one can use the principle of energy equiva-
lence. Energy of the discrete spectrum according to the re-
sults of EMA: 
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where ωi, Ai is the frequency and amplitude of each har-
monic in the discrete spectrum, n is the number of selected 
harmonics. 

Then the frequency of natural oscillations of a sin-
gle-mass system, equivalent by energy: 
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discrete spectrum. 
This frequency (402.3 Hz) for the “workpiece” sys-

tem is shown by line 1 in Fig. 3 b.  
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In addition, given the somewhat stochastic nature of 
the process, it is useful to estimate the frequency of the re-
placement mass using the spectral density of the power sig-
nals. With this approach, the frequency of the replacement 
mass is: 

 2
SDOF
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π

, (9) 
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The frequency (581.2 Hz) determined by formula (9) 
for the “workpiece” system is shown by line 2 in Fig. 3 b. 
The final decision in the simulation can be made as an av-
erage, taking into account the third frequency value calcu-
lated by the oscilloscope and presented in the digital data 
file (Fig. 4). Given some discrepancies in the data, experi-
ments must be carried out several times and the average 
result must be taken into the model. 

 

  
Fig. 4. Digital impulse response file  

For the experimental modal analysis of the “cutter” 
system, the accelerometer was mounted on a milling cutter, 
and the hammer was also struck in two directions to obtain 
impulse responses, which were used to perform a modal 
analysis of the dynamic system (Fig. 5). 
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1 2 

 
b 

Fig. 5. Results of the modal experiment “cutter” 
systems: a – IRF; b – FRF 

As one would expect, the spectrum has shifted to the 
region of high frequencies, and the frequencies of the re-
placement equivalent mass for model (4) are determined by 
the same formulas as for the “workpiece” system. The fre-
quency based on spectrum energy equivalence is 2103.4 Hz 
(line 1 in Fig. 5 b), and the frequency calculated from spec-
tral density is 3803.4 Hz (line 2 in Fig. 5 b). 

Oscillation damping coefficients are calculated from 
the impulse response using the well-known formula [15]: 

 
( ) ( )( )ln A t A t T

T
+

ξ = , (10) 

where ( )A t  is the amplitude of the IRF at time t, ( )A t T+  
is the amplitude of the IRF at time t T+ , where T is the 
period. 

To identify a dynamic machining system, it is nec-
essary to determine the stiffness of both the “cutter” system 
and the “workpiece” system (see formulas (4) and (5)). The 
determination of all stiffnesses was carried out experimen-
tally according to the scheme for measuring the stiffness of 
the “cutter” system, presented in Fig. 6. For measurements, 
a dial indicator with a division value of 0.001 mm is used, 
which measures the elastic displacement on the cutter. 
Loading is performed by manually moving the CNC sys-
tem of the machine tables through the encoder when the 
cutter is in contact with the workpiece during transverse 
(X-axis) and longitudinal (Y-axis) feed. The magnitude of 
the force is indexed on the computer screen to which the 
outputs of the dynamometer amplifiers are connected. 

 

 
Fig. 6. Measuring schemas of workpiece stiffness 

Loading was carried out to a force of 1000 N in both 
directions, while the stiffness was calculated using a linear 
relationship as the ratio of force to elastic displacement rec-
orded on the indicator. To measure the stiffness of the 
“workpiece” system, the indicator was placed in contact 
with the workpiece, and loading was performed according 
to the same scheme. 
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Identification of the entire machining system in ac-
cordance with the block diagram of Fig. 1 also involves de-
termining the coefficient in the cutting force formula. To 
do this, you can first use the data from reference books [16] 
with subsequent refinement based on the results of experi-
ments [17]. 

5.3. Approbation of results 

The results of the identification of the machining 
system were used in modeling the milling process to deter-
mine the chatter-free cutting mode in the end milling  
operation. The chatter-free mode was determined from the 
stability lobes diagram, which was designed automatically, 
similar to the procedure presented in [18]. In the stability 
lobes diagram, part of which is shown in Fig. 7, the cutting 
modes corresponding to the chatter-free mode (points 1 and 3) 
and the mode in the unstable cutting zone (point 2) are se-
lected. All areas are processed at the same feed rate of  
700 mm/min, but with different spindle speeds: point 1 – 
900 rpm, point 1 – 1400 rpm, point 1 – 1800 rpm. 

 

 

instable 

stable 

1 2 3 

 
Fig. 7. Experimental modes on the stability dia-
gram  

In such modes, one side of a square workpiece in-
stalled on the machine table along with a dynamometer was 
mashined (Fig. 2, Fig. 6) to comply with all the conditions 
under which identification was carried out. Cutting was 
carried out in three sections of the workpiece side with 
stops to change the mode. The vibration level was assessed 
based on the roughness of the treated surfaces. The exper-
imental results are presented in Fig. 8, which shows a photo 
of the machined side of the workpiece and profilograms of 
the corresponding surfaces. 

It is known that the roughness profile of a machined 
surface consists of deterministic and random components. 
The deterministic component is determined by the geomet-
ric interaction of the cutter blade and the workpiece in the 
process of relative movements in accordance with the cut-
ting mode, and the random component (chatter) is deter-
mined by the level of vibration. The results of profile meas-
urements and evaluation of the Ra parameter show that 
when machining with a cutting mode corresponding to 
point 2 (unstable cutting area), an anomalous increase in 
this parameter is observed (Fig. 8). So, if we assume a linear 

dependence of Ra on the spindle speed, then when machi- 
ning with mode at point 2, this parameter should be 
2.75 μm, but in fact it is 1.5 times larger. This effect en-
tirely depends on the location of the diagram on the “spin-
dle speed – feed” plane and is completely determined by 
the dynamic parameters of the machining system. Thus, the 
adequacy of the identification studies performed has been 
experimentally proven. 

 
 

1: f=700 mm/min, s=900 rpm  

2: f=700 mm/min, s=1400 rpm  

3: f=700 mm/min, s=1800 rpm  
 

Fig. 8. Roughness of machined surfaces 

6. Discussion on identifying the dynamic pa-
rameters of the processing system 

The control strategy for end milling, like any other 
cutting process, is based on a mathematical model of the 
processing system. The mathematical model represents a 
closed elastic system with negative feedback for elastic 
shear and positive feedback for lagging argument for depth 
of cut and feed. An elastic system is usually composed of 
single-mass dynamic systems [2], [3], interconnected, and 
the cutting process itself is described by a mechanistic 
model [17]. 

All machining systems are prone to the occurrence 
of regenerative vibrations, which hinders the increase in 
productivity at the required quality [1] and one of the most 
effective control methods is to ensure a chatter-free cutting 
mode based on the stability lobes diagram (SLD). The SLD 
divides the entire range of possible values of spindle speed 
and feed into two zones: stable and unstable cutting. The 
required cutting mode in a stable zone is easily realized 
when machining on a CNC machine. 

However, to construct a stability diagram, it is ne-
cessary to identify the following parameters of the machin-
ing system: frequency of natural vibrations of the single-
mass model, stiffness, vibration damping coefficient, and 
coefficient of the linearized cutting force model. All these 
parameters must be identified in the direction of two or 
three axes, depending on the 2D or 3D milling scheme. 
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The greatest difficulty is in identifying the natural 
frequency of oscillations of the replacing equivalent single-
mass model. Manipulation procedures using the experi-
mental modal analysis method make it possible to solve 
such a problem [4], [6], [7]. Since the machining system 
model is represented as two masses, each with two degrees 
of freedom, interacting through the cutting process, modal 
analysis was performed for each mass separately. The ex-
periment is carried out using an impact hammer and an ac-
celerometer attached to the system under study, and the im-
pulse response was recorded in a storage oscilloscope. 

The main task is to adapt the resulting frequency re-
sponse to a single-mass model. To solve this problem, two 
methods are proposed in the work: to carry out adaptation 
according to the power of the experimental signal and ac-
cording to its spectral density (8) and (9). In addition, the 
oscilloscope automatically determines the frequency of the 
main harmonic during FFT of the IRF. As practice shows, 
all these three frequencies differ from each other and de-
pend on the impact conditions, therefore, to obtain reliable 
information on modal analysis, it is necessary to carry out 
the experiment multiple times to obtain a stable result. 

When measuring stiffness, an original testing method 
was proposed directly using the CNC system control of the 
machine. The system was loaded by drives along each co-
ordinate using manual displacement encoders, and the 
force was recorded by a dynamometer. The stiffness is de-
termined come relation entre this values. 

The presented study uses the method of experi-
mental modal analysis and requires the use of fairly com-
plex measuring equipment and computer programs. There-
fore, in practice, the use of such a progressive method for 
determining the cutting mode from the stability diagram is 
hindered. The authors see the development of this tech-
nique in the use of OMA [5], as well as in the creation of a 
special program for automatic on-line determination of all 
those necessary for modeling the dynamic parameters of 
the machining system. Such a program built into the com-

puter of the CNC machine rack will be able to quickly ad-
just the cutting mode assigned during preparation of the 
process in the direction of increasing productivity with the 
required quality. 

7. Conclusion 

1. A technique has been developed for identifying the 
dynamic parameters of the machining system, which pro-
vides for the experimental determination of natural oscilla-
tion frequencies, oscillation damping coefficients, and stiff-
nesses of the “cutter” and “workpiece” systems in the direc-
tion of all coordinate axes. A method is also proposed for 
measuring the stiffness of the system when it is loaded by 
machine drives with control of manual movement encoders 
and recording of the force by a dynamometer installed on 
the machine table. The coefficient of the linearized depend-
ence of the cutting force on the area of undeformed chips 
is refined based on the experimental results of the compo-
nents of the cutting force measured by a dynamometer. 

2. It is proposed to adapt the frequency responses ob-
tained as a result of EMA and FFT to the parameters of a 
single-mass model with two degrees of freedom. An adap-
tation approach is presented based on the equivalence of 
the model and the real system in terms of spectral power 
and its spectral density. 

3. The adequacy of the proposed method was con-
firmed as a result of milling the workpiece with modes cor-
responding to stable and unstable cutting, which were de-
termined from a stability diagram constructed with system 
parameters identified using the developed method. Meas-
urements of the roughness of the machined surfaces fully 
confirmed the validity of the proposed solutions: the rough-
ness of the surface machined under the regime in the unstab- 
le zone of the diagram showed an excess of 1.5 times from 
the expected value compared to the roughness of the sur-
faces machined under the regime in the stable cutting zone. 
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Ідентифікація динаміки обробних систем 
Ю. В. Петраков1  •  О. А. Охріменко1  •  М. О. Сікайло1   
1  КПІ ім. Ігоря Сікорського, Київ, Україна 

Анотація. Процеси обробки різанням здійснюються в пружній обробній системі, яка є мультимасовою з негативними та по-
зитивними із запізненням зворотними зв’язками за заданими режимами різання. Її поведінка у процесі різання цілком визначає- 
ться динамічними властивостями, а для управління процесом необхідна адекватна математична модель. У роботі запропоно-
вано методику ідентифікації таких динамічних параметрів обробної системи, до яких відносяться частоти власних коливань, 
коефіцієнти загасання коливань, жорсткості заміщаючої моделі в напрямку осей координат верстата. Такі параметри запро-
поновано ідентифікувати в результаті експериментального модального аналізу впливом на елементи інструменту та загото-
вки ударним молотком та обробці імпульсного сигналу швидким перетворенням Фур’є. Отримані результати запропоновано 
адаптувати до прийнятої математичної моделі обробної системи, представленої у вигляді двох мас, кожна з двома ступенями 
свободи, за еквівалентністю потужності сигналу спектра або його спектральної щільності. Модель сили різання у вигляді 
лінеаризованої залежності від площі недеформованої стружки потребує уточнення коефіцієнта за експериментальними осци-
лограмами, отриманими при фрезеруванні заготовки, встановленої на столі динамометра. За ідентифікованими параметрами 
обробної системи було побудовано діаграму сталості в координатах “швидкість шпинделя – подача” та проведені експеримен- 
ти при режимах у зоні сталого та несталого різання. Оцінка шорсткості обробленої поверхні підтвердила відповідність роз-
ташування діаграми, побудованої за ідентифікованими параметрами, що свідчить про ефективність запропонованої методики 
ідентифікації. 
Ключові слова: система обробки, ідентифікація динамічних параметрів, експериментальний модальний аналіз. 
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