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Abstract. The paper continues the series of authors’ works on the elaboration of a principally new variant of the finite element method, 
FEM, for the treatment of various problems of mathematical physics, namely the method of matched section, MMS. The elastic plane 
body under static loading is considered here. As in FEM, the whole body is meshed into the small elements of, preferably, rectangular 
form. The main peculiarity of the method consists in the introduction of a set of main parameters dependent only on one coordinate 
variable, i.e. either x or y. So, any differential equilibrium equation with two partial derivatives concerning x or y is broken out into 
two relatively simple equations concerning only one independent variable. This leads to the introduction of one additional constant 
showing the interchange between these two equations. The introduced constants can be derived from the equation of continuity of 
kinematic parameters in the center of each element. The main, for example, x-dependent parameters are: vx(x) and ux(x) displacements 
in vertical (y-) and horizontal (x-) directions, respectively; normal Nx(x) and tangential (shear) Lx (x) forces in x direction, and y 
direction, respectively; and bending moment Mx (x) and angle of rotation θ(x). Similar parameters are established for y-direction. 
Based on the methodology of the transfer matrix method the analytical matrix-form dependence between these parameters in any point 
x or y and those at the lower and/or left border of the element are established. For the treatment of oblique and curvilinear boundaries, 
the right triangular element as a special degenerate case of the rectangular element is derived. The resulting system of linear equations 
is formulated for unknown values of all parameters specified at the border of all elements. The efficiency and the superb accuracy of 
the MMS are demonstrated in the classical examples of bending of a long rectangular body (beam-like geometry) and tension at infinity 
of a 2D body with a small circular hole. . 

Keywords: Method of matched sections, transfer matrix method, elastic plane body, triangular element, boundary conditions, plate 
with a circular hole.

1. Introduction 

The paper is a further development of the method of 
matched section, MMS, [1]–[4] as a new branch of finite 
element method, FEM, in application to plane body prob-
lem. Like FEM it supposes that the whole domain is repre-
sented as a mesh of simple elements; algebraic relations 
between main physical and geometrical parameters are es-
tablished from the governing differential equations; these 
relationships are compiled locally for all elements and then 
assembled into one global matrix.  

Nevertheless, MMS has the following distinctive 
features:  

A) It explicitly operates by all geometrical and phys-
ical parameters of the considered problem, rather than, say, 
by displacements through which all others are expressed. 
The unknowns are prescribed to the central line between 
two opposite sides of the element, rather than to its vertices 
(nodes) as in FEM. They are equally important in the com-
pilation of a global matrix of equations. The matrix coeffi-
cients result from approximate analytical solution of all 1D 
differential equations, instead of minimization of some 
functional or residual. 

B) Analytical solutions are reduced to the solution of 
a set of ordinary 1D differential equations concerning each 
local independent variable. If the governing equilibrium 
equation is the partial differential equation with respect to 
2 (in 2D case) independent variables (𝑥 and 𝑦), then it is 
broken out into two ordinary differential equations each 
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concerning either of 𝑥 or 𝑦 variable with introducing one 
additional unknown constant for accounting the interaction 
between them. This constant will be further determined 
through the supplemental requirement of continuity of ge-
ometrical parameters in the element center. The 1D analyt-
ical solutions (connection equations) within each element 
are written in the form of a transfer matrix between inlet 
and outlet parameters, where the unknowns at the left and 
lower sides of the element are considered as the inlet and 
those at the upper and right sides – as the outlet ones.   

C) The continuity conditions (conjugation equa-
tions) between different elements are provided at the sides 
of the neighboring elements by equating all corresponding 
governing parameters. Another significance of them con-
sists in the possibility to introduce the outer force between 
them, imposed jumps of kinematic parameters.  

It is often argued that FEM is strictly based on the 
minimization procedure for weighted residuals or some 
functional. We think that it is not so. Early development of 
FEM was based on a matrix structural analysis which com-
pletely stemmed from the analogy with the beam and rod 
behavior [5], [6]. Furthermore, in explaining the essence of 
FEM the authors of famous textbooks often say that the 
goal of the auxiliary minimization procedure is to get sim-
ilar relations between the kinematic and force parameters 
in 2D and 3D cases similarly as in the known solutions for 
beams and rods [7].  

For 1D structures, the same (exact or approximate) 
analytical solution can be considered as a foundation for 
either FEM (or stiffness method) or transfer matrix 
method. The difference is in the way of presentation of 
the solution matrix [8], [9]. If the dependencies are given 
as those between the inlet (left side) and outlet parame-
ters, then we have the transfer matrix method solution 
[9]–[12]. If the force parameter on the left and right sides 
are expressed through left and right sides kinematic pa-
rameters, then the FEM (or stiffness method) is to be ap-
plied [14]–[16].  

Employment of analytical solutions in MMS has an-
other obvious advantage. One always can guess what to ex-
pect from the method: its accuracy, means, and phenomena 
to be addressed. For example, if some parameter or effect 
is accounted for in the analytical solution it always would 
lead to predictable output results without any locking ef-
fects or artificial loss of stability. For example, if the shear 
deformation is explicitly included in the governing differ-
ential equations, then the solution will never exhibit the 
shear locking, and for the small thickness-to-length plate 
ratio it will converge to the thin plate results [1].  

The primary requirement for MMS is that it is con-
structed in such a way that equilibrium equations are ex-
actly satisfied on the boundary of the element. Considering 
that they exactly match on the borders between elements, 
one can conclude that equilibrium is fulfilled for the whole 
body too. The requirement for keeping the equilibrium is 
the most important in mechanics (“Equilibrium is Essen-
tial, Compatibility is Optional” [17]). Yet most commercial 

software does not provide the fulfillment of this require-
ment [18], so alternative FEM approaches which keep the 
equilibrium at the sides between the neighboring elements 
are recently intensively developed within hybrid or mixed 
formulations [18]–[20]. So, MMS satisfies recent trends in 
computational mechanics.  

MMS can be easily enhanced by the employment of 
more sophisticated physical models and their solutions as 
connection equations. An example is the transient heat con-
duction analysis by MMS where the connection equations 
contain the time step as a model parameter [3]. In that work 
[3], it realizes 2D geometry the Bathe's idea that basic func-
tions within an element could be time-dependent ones [21], 
[22]. A similar enhancement within MMS was made for 
the plate transverse vibration analysis [4], where the solu-
tion was given with explicit accounting for the unknown 
natural frequency, so the solution was derived as the 2D 
spectral one.  

This work is restricted to the elastic plane body static 
analysis. The main goal is to show the applicability of the 
MMS to this problem, where MMS has the same salient 
features as in previous applications – it allows to use the 
drastically different ratio of properties and dimensions. 
Contrary to work [1] the technical emphasis is made on the 
development of the right triangular element with the ability 
to account for its deformation with subsequent analysis of 
the curvilinear boundaries. 

2. Differential equations for the 2D plane 
body 

The peculiarity of the proposed solution is that all 
partial differential equations are not combined to form one 
governing equation. They are to be considered individu-
ally. On the other hand, in contrast to the transverse plate 
problem [1] where all equations are already written in the 
textbooks in the beam-like digestible form, here we need 
to reformulate the governing differential equations in a 
similar beam-like manner for two different directions.  

2.1. Main parameters and notions 

The classical plane problem operates by two dis-
placements and three stresses. Following the general beam-
like methodology we introduce here 6 main parameters on 
each side of the element, Fig 1. Take the rectangular ele-
ment of length 𝑎 (along the x-axis), and height 𝑏 (along the 
y-axis) as the basic geometrical element of the analysis. In-
troduce the local coordinate system originated at the left-
lower edge, Fig 1. Let us consider the element as if it were 
formed by two perpendicular beams – one in 𝑡ℎ𝑒 𝑥 direc-
tion (𝑥-beam) and the other one in 𝑡ℎ𝑒 𝑦 direction (𝑦-
beam). Introduce the set of main notions and parameters. 
Note, that upper indexes “𝑥” or “𝑦” characterize the sides 
(or another word – the beams) they are related to, while for 
parameters shown in Fig 1 the lower index “0” means that 
it pertains to the origin of a “beam”.  
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Fig 1. The scheme and designations for a rectan-
gular element 

Start from 𝑥-beam. It is characterized by 6 governing 
scalar parameters. They are related to the central line along 
the 𝑥 direction, i.e. to 𝑦 ൌ 𝑏/2, and are the following, 
Fig 1:  

- Vectorial concentrated force 𝐹⃗௫ሺ𝑥ሻ  which consists 
of two scalar components: normal force 𝑁௫ሺ𝑥ሻ (acting in 
𝑥 direction) and tangential (shear) force 𝐿௫ሺ𝑥ሻ (directed to-
ward 𝑦-axis), Fig 1, i.e.: 

 𝐹⃗௫ሺ𝑥ሻ ൌ 𝑁௫ሺ𝑥ሻ𝚤 ൅ 𝐿௫ሺ𝑥ሻ𝚥 (1a) 

- Scalar (in this problem) bending moment 𝑀௭
௫ሺ𝑥ሻ 

acting against the clockwise direction (i.e. around the third 
𝑧 direction).  

- Vectorial uniform displacement 𝛱ሬሬ⃗ ௫ሺ𝑥ሻ  which con-
sists of two scalar components: normal displacement 
𝑢௫ሺ𝑥ሻ (acting in 𝑥 direction) and tangential one 𝑣௫ሺ𝑥ሻ (di-
rected toward y-axis), i.e.: 

 Πሬሬ⃗ ௫ሺ𝑥ሻ ൌ 𝑢௫ሺ𝑥ሻ𝚤 ൅ 𝑣௫ሺ𝑥ሻ𝚥 (1b) 

- Scalar (in this problem) rotation angle 𝜃௭௫ሺ𝑥ሻ rotat-
ing against the clockwise direction (i.e. around the third 𝑧 
direction).  

Note, that axial force 𝑁௫ሺ𝑥ሻ and bending moment 
𝑀௭

௫ሺ𝑥ሻ produce compressive axial stresses, 𝜎௫ሺ𝑥,𝑦ሻ at 
each side 𝑥 ൌ 𝑐𝑜𝑛𝑠𝑡:  

 𝜎௫ሺ𝑥,𝑦ሻ ൌ 𝜎ே
௫ሺ𝑥ሻ െ

ଶቀ௬ି
್
మቁ

௕
∙ 𝜎ெ

௫ሺ𝑥ሻ, (2a) 

where stress components are given by formulas:  

 𝜎ே
௫ሺ𝑥ሻ ൌ

ேೣሺ௫ሻ

௧௕
;     𝜎ெ

௫ሺ𝑥ሻ ൌ
଺∙ெ೥

ೣሺ௫ሻ

௧௕మ
, (2b) 

where 𝑡 is the plate thickness; usually we take it to be 1. 
Shear force 𝐿௫ሺ𝑥ሻ produces uniform shear stress at this 
side:  

 𝜏௬ሺ𝑥ሻ ൌ
௅ೣሺ௫ሻ

௧௕
 (2c) 

Now consider the displacements along the side 𝑥 ൌ
𝑐𝑜𝑛𝑠𝑡. Everything is clear about the displacement 𝑣௫ሺ𝑥ሻ in 
the tangent (𝚥) direction. In contrast, the displacement in 
the normal ሺ𝚤ሻ direction, 𝑢௫ሺ𝑥,𝑦ሻ, has two components – a 
uniform one and that one produced by rotation on angle 
𝜃௭௫ሺ𝑥ሻ:  

 𝑢௫ሺ𝑥,𝑦ሻ ൌ 𝑢௫ሺ𝑥ሻ െ ቀ𝑦 െ
௕

ଶ
ቁ ∙ 𝜃௭௫ሺ𝑥ሻ (2d)  

The similar 6 governing scalar parameters and rela-
tions can be introduced also for 𝑦-beam, Fig 1. They are 
related to the central line along 𝑡ℎ𝑒 𝑦 direction, i.e. to 𝑥 ൌ
𝑎/2, and are the following:  
- Vectorial concentrated force 𝐹⃗௬ሺ𝑦ሻ which consists of 
two scalar components: normal force 𝑁௬ሺ𝑦ሻ (acting in 𝑦 
direction) and shear force 𝐿௬ሺ𝑦ሻ (directed toward 𝑦-axis), 
Fig 1, i.e.: 

 𝐹⃗௬ሺ𝑦ሻ ൌ 𝑁௬ሺ𝑦ሻ𝚥 ൅ 𝐿௬ሺ𝑦ሻ𝚤 (3a) 

- Scalar bending moment 𝑀௭
௬ሺ𝑦ሻ acting against the 

clockwise direction. 
- Vectorial uniform displacement Πሬሬ⃗ ௬ሺ𝑦ሻ which con-

sists of two scalar components: normal displacement 
𝑣௬ሺ𝑦ሻ (acting in 𝑦 direction) and tangential one 𝑢௬ሺ𝑦ሻ (di-
rected toward 𝑥-axis), i.e.: 

 Πሬሬ⃗ ௬ሺ𝑦ሻ ൌ 𝑢௬ሺ𝑦ሻ𝚤 ൅ 𝑣௬ሺ𝑦ሻ𝚥 (3b) 

- Scalar rotation angle 𝜃௭
௬ሺ𝑦ሻ rotating against the 

clockwise direction (i.e. around the third 𝑧 direction). 
Note, that axial force 𝑁௬ሺ𝑦ሻ and bending moment 

𝑀௭
௬ሺ𝑦ሻ produce compressive axial stresses, 𝜎௬ሺ𝑥,𝑦ሻ at 

each side 𝑦 ൌ 𝑐𝑜𝑛𝑠𝑡:  

 𝜎௬ሺ𝑥,𝑦ሻ ൌ 𝜎ே
௬ሺ𝑥ሻ ൅

ሺଶ௫ି௔ሻ

௔
∙ 𝜎ெ

௬ሺ𝑦ሻ (4a) 

Where stress components are given by formulas:  

 𝜎ே
௬ሺ𝑦ሻ ൌ

ே೤ሺ௬ሻ

௧௔
;     𝜎ெ

௬ሺ𝑦ሻ ൌ
଺∙ெ೥

೤ሺ௬ሻ

௧௔మ
 (4b) 

Shear force 𝐿௬ሺ𝑦ሻ produces uniform shear stress at 
this side:  

 𝜏௬ሺ𝑦ሻ ൌ
௅೤ሺ௬ሻ

௧௕
 (4c) 

 Now consider the displacements along the side 
𝑦 ൌ 𝑐𝑜𝑛𝑠𝑡. Everything is clear about the displacement 
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𝑢௬ሺ𝑦ሻ in 𝚤 direction. In contrast, the displacement in 𝚥 di-
rection, 𝑣௬ሺ𝑥,𝑦ሻ, has two components – a uniform one and 
that one produced by rotation on angle 𝜃௭

௬ሺ𝑦ሻ:  

 𝑣௬ሺ𝑥,𝑦ሻ ൌ 𝑣௬ሺ𝑦ሻ ൅ ቀ𝑥 െ
௔

ଶ
ቁ ∙ 𝜃௭

௬ሺ𝑦ሻ (4d)  

2.2. Physical equations (Gook’s law).  

Consider the axial deformations, 𝜀, for both 
“beams”. According to the definition, we can write them 
based on general expressions for axial displacements (2d) 
and (4d). Differentiating them, we have:  

 𝜀௫ሺ𝑥,𝑦ሻ ൌ
ௗ௨ೣሺ௫,௬ሻ

ௗ௫
ൌ

ௗ௨ೣሺ௫ሻ

ௗ௫
െ ቀ𝑦 െ

௕

ଶ
ቁ ∙

ௗఏ೥
ೣሺ௫ሻ

ௗ௫
 (5a)  

 𝜀௬ሺ𝑥,𝑦ሻ ൌ
ௗ௩೤ሺ௫,௬ሻ

ௗ௬
ൌ

ௗ௩೤ሺ௬ሻ

ௗ௬
൅ ቀ𝑥 െ

௔

ଶ
ቁ ∙

ௗఏ೥
೤ሺ௬ሻ

ௗ௬
 (5b) 

Write the Gook’s law (plane stress condition) with 
accounting for the adopted here signs for the stresses:  

 𝜀௫ሺ𝑥,𝑦ሻ ൌ െ
ଵ

ா
൫𝜎௫ሺ𝑥,𝑦ሻ െ 𝜇𝜎௬ሺ𝑥,𝑦ሻ൯ (5c) 

 𝜀௬ሺ𝑥,𝑦ሻ ൌ െ
ଵ

ா
൫𝜎௬ሺ𝑥,𝑦ሻ െ 𝜇𝜎௫ሺ𝑥,𝑦ሻ൯ (5d) 

Substitute expressions for stresses (2a) and (4a) in 
(5c) and (5d). So, we get the following expressions for both 
beams: 

ௗ௨ೣሺ௫ሻ

ௗ௫
െ ቀ𝑦 െ

௕

ଶ
ቁ ∙

ௗఏ೥
ೣሺ௫ሻ

ௗ௫
ൌ െ

ଵ

ா
൭ቆ

ேೣሺ௫ሻ

௧௕
െ

ቀ௬ି
್
మቁ

௕
∙

ଵଶ∙ெ೥
ೣሺ௫ሻ

௧௕మ
ቇ െ 𝜇 ቆ

ே೤ሺ௬ሻ

௧௔
൅

ቀ௫ି
ೌ
మቁ

௔
∙
ଵଶ∙ெ೥

೤ሺ௬ሻ

௧௔మ
ቇ൱ (5e) 

ௗ௩೤ሺ௬ሻ

ௗ௬
൅ ቀ𝑥 െ

௔

ଶ
ቁ ∙

ௗఏ೥
೤ሺ௬ሻ

ௗ௬
ൌ െ

ଵ

ா
൭ቆ

ே೤ሺ௬ሻ

௧௔
൅

ቀ௫ି
ೌ
మቁ

௔
∙

ଵଶ∙ெ೥
೤ሺ௬ሻ

௧௔మ
ቇ െ 𝜇 ቆ

ேೣሺ௫ሻ

௧௕
െ

ቀ௬ି
್
మቁ

௕
∙
ଵଶ∙ெ೥

ೣሺ௫ሻ

௧௕మ
ቇ൱ (5f) 

Evidently, the deformations in the x-beam cannot 
depend on the independent variable 𝑦. So, take the values 
of “alien” parameters (in other words the 𝑦-dependent 
ones) in the fixed central point of the rectangular element, 

i.e. take 𝑦 ൌ
௕

ଶ
 for the 𝑥-beam, and 𝑥 ൌ

௔

ଶ
 for the 𝑦-beam. 

Thus, the following physical relations can be drawn out for 
𝑥- beam:  

 
ௗ௨ೣሺ௫ሻ

ௗ௫
ൌ െ

ଵ

ா
൭
ேೣሺ௫ሻ

௧௕
െ 𝜇 ቆ

ே೤ሺ௕/ଶሻ

௧௔
൅

ቀ௫ି
ೌ
మቁ

௔
∙
ଵଶ∙ெ೥

೤ሺ௕/ଶሻ

௧௔మ
ቇ൱ 

  (6a) 

 
ௗఏ೥

ೣሺ௫ሻ

ௗ௫
ൌ െ

ଵ

ா
ቀ
ଵଶ∙ெ೥

ೣሺ௫ሻ

௧௕య
ቁ (6b) 

Similar relations are written for 𝑦-beam:  

 
ௗ௩೤ሺ௬ሻ

ௗ௬
ൌ െ

ଵ

ா
൭
ே೤ሺ௬ሻ

௧௔
െ 𝜇 ቆ

ேೣሺ௔/ଶሻ

௧௕
െ

ቀ௬ି
್
మቁ

௕
∙
ଵଶ∙ெ೥

ೣሺ௔/ଶሻ

௧௕మ
ቇ൱ 

  (6c) 

 
ௗఏ೥

೤ሺ௬ሻ

ௗ௬
ൌ െ

ଵ

ா
ቀ
ଵଶ∙ெ೥

೤ሺ௬ሻ

௧௔య
ቁ (6d) 

Now consider the relations for the shear stresses and defor-
mations. The basic Gook’s law in the elasticity theory is 
the following:  

 𝐺 ቀ
డ௩ሺ௫,௬ሻ

డ௫
൅

డ௨ሺ௫,௬ሻ

డ௬
ቁ ൌ െ𝜏ሺ𝑥,𝑦ሻ (7a) 

Where 𝜏ሺ𝑥,𝑦ሻ is the shear stress, which is theoreti-
cally equal on both sides. In our approach, we discern be-
tween these stresses on the different sides, and this should 
be accounted for in our approach. So, law (7a) can be ap-
proximately satisfied if we rewrite the right side of (7a) as: 

 ቀ
డ௩ೣ,೐ሺ௫ሻ

డ௫
൅

డ௨೤,೐ሺ௬ሻ

డ௬
ቁ ൌ െ

ଵ

ଶீ
ቀ
௅ೣሺ௫ሻ

௧௕
൅

௅೤ሺ௬ሻ

௧௔
ቁ (7b) 

Here the upper index "e" means that a particular contribu-
tion is due to the consideration of the plane stress theory of 
elasticity. Evidently, we should break out this two-coordi-
nate dependent relation into two independent ones: 

డ௩ೣ,೐ሺ௫ሻ

డ௫
ൌ 𝛾௫ሺ𝑥ሻ ൌ െ

ଵ

ଶீ௕௧
𝐿௫ሺ𝑥ሻ  (7c) 

డ௨೤,೐ሺ௬ሻ

డ௬
ൌ 𝛾௬ሺ𝑦ሻ ൌ െ

ଵ

ଶீ௔௧
𝐿௬ሺ𝑦ሻ (7d)  

Equations (7c) and (7d) – are the approximate equa-
tions of the theory of elasticity. But here we consider the 
beams and operate additionally by the beam parameters. 
So, the deformation (7c) and (7d) are only a part of the 
whole beam deformation in the transverse direction. An-
other essential contribution is caused by the rotation of the 
central axis. So, we should supplement the elasticity defor-
mation with the beam deformation:  

డ௩ೣሺ௫ሻ

డ௫
ൌ 𝜃௭௫ሺ𝑥ሻ െ

ଵ

ଶீ௕௧
𝐿௫ሺ𝑥ሻ  (7e) 

డ௨೤ሺ௬ሻ

డ௬
ൌ െ𝜃௭

௬ሺ𝑥ሻ െ
ଵ

ଶீ௔௧
𝐿௬ሺ𝑦ሻ (7f)  

2.3. Equilibrium equations.   

We cannot give the exact solution of the equilibrium 
equation within the element. It is impossible due to the con-
sideration of the element as consisting of two almost inde-
pendent beams. What can be done at the best is to preserve 
the integral equilibrium of the whole element. This will be 
done below. Furthermore, this integral equilibrium will be 
written in the differential form, i.e. the integration of the 
derived below differential equation will provide the global 
equilibrium of the element. Write out the equilibrium in the 
𝚤 direction according to the theory of elasticity:  

డఙೣሺ௫,௬ሻ

డ௫
൅

డఛೣ
೤ሺ௬,௫ሻ

డ௬
ൌ 𝑝௫   (8a) 

Consider that 𝑝௫ is a constant outer distributed force in 𝑥-
direction, multiply by the thickness 𝑡, and integrate it over 
the whole area of the element  

׬ 𝑑𝑥
௔
଴ ׬

డఙೣሺ௫,௬ሻ

డ௫
𝑡𝑑𝑦

௕
଴

൅ ׬ 𝑑𝑦
௕
଴ ׬

డఛೣ
೤ሺ௬,௫ሻ

డ௬
𝑡𝑑𝑥

௔
଴

ൌ

׬ 𝑑𝑦
௕
଴ ׬ 𝑝௫

௔
଴

𝑑𝑥  (8b) 
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׬
డேೣሺ௫ሻ

డ௫
𝑑𝑥

௔
଴

൅ ׬
డ௅೤ሺ௬ሻ

డ௬
𝑑𝑦

௕
଴

ൌ 𝑎𝑏 ∙ 𝑝௫    (8b) 

Rewrite this equation in the differential form:  

డேೣሺ௫ሻ

௕డ௫
൅

డ௅೤ሺ௬ሻ

௔డ௬
ൌ 𝑝௫   (9a) 

In a similar way derive the force equilibrium in the 
𝚥 direction:  

డே೤ሺ௬ሻ

௔డ௬
൅

డ௅ೣሺ௫ሻ

௕డ௫
ൌ 𝑝௬    (9b) 

Where 𝑝௬ is an outer distributed force in 𝑦-direction. 
Similarly, write down the equilibrium of the rotation mo-
ment around the very small element with sides 𝑎 and 𝑏:  

డெ೥
ೣሺ௫ሻ

డ௫
𝑎 ൅ 𝐿௫ሺ𝑥ሻ𝑎 ൅

డெ೥
೤ሺ௬ሻ

డ௬
𝑏 െ 𝐿௬ሺ𝑦ሻ𝑏 ൌ 0    (10a) 

Break down this equation into two coordinate-inde-
pendent equations:  

డெ೥
ೣሺ௫ሻ

డ௫
൅

஺ల
௔
൅ 𝐿௫ሺ𝑥ሻ ൌ 0 (10b) 

డெ೥
೤ሺ௬ሻ

డ௬
െ

஺ల
௕
െ 𝐿௬ሺ𝑦ሻ ൌ 0 (10c) 

Where we introduce the constant 𝐴଺. It envisages the 
interaction between the moments 𝑀௭

௫ሺ𝑥ሻ and 𝑀௭
௬ሺ𝑦ሻ within 

the element. Integrating equation (10b) by 𝑥, and equation 
(10c) by 𝑥 and adding them, we will get the global moment 
equlibrity (10a).  
 

3. Approximate analytical solutions  

 3.1. Rectangular element.  

The usual way of solution is applied here [1]. We 
start with the equilibrium equations. Then the physical 
equation will be solved, and at last, we give the ultimate 
solutions for geometrical equations.  

 Consider the force equilibrium. Take in (9a) and 
in (9b) that:   

 
డ௅೤ሺ௬ሻ

௔డ௬
ൌ 𝐴ସ;  

డ௅ೣሺ௫ሻ

௕డ௫
ൌ 𝐴ହ     (11a) 

Then from first equation (11a) and from equation (9b) we 
have the solution for forces in the y-beam:  

𝐿௬ሺ𝑦ሻ ൌ 𝐿଴
௬ ൅ 𝐴ସ𝑎𝑦    (11b) 

𝑁௬ሺ𝑦ሻ ൌ 𝑁଴
௬ ൅ 𝑝௬𝑎𝑦 െ 𝐴ହ𝑎𝑦   (11c) 

From the second equation of (11a) and the equation 
we get for 𝑥-beam:  

𝐿௫ሺ𝑥ሻ ൌ 𝐿଴
௫ ൅ 𝐴ହ𝑏𝑥   (11d) 

𝑁௫ሺ𝑥ሻ ൌ 𝑁଴
௫ ൅ 𝑝௫𝑏𝑥 െ 𝐴ସ𝑏𝑥   (11e) 

The values of moments are derived by integration of 
(10b) and (10c): 

𝑀௭
௫ሺ𝑥ሻ ൌ 𝑀௭,଴

௫ െ 𝐿௬,଴
௫ 𝑥 െ 𝐴ହ𝑏

௫మ

ଶ
െ

஺ల
௔
𝑥     (12a) 

𝑀௭
௬ሺ𝑦ሻ ൌ 𝑀௭,଴

௬ ൅ 𝐿௫,଴
௬ 𝑦 ൅ 𝐴ସ𝑎

௬మ

ଶ
൅

஺ల
௕
𝑦 (12b) 

The formulas for angles of rotation for both “beams” 
are derived from physical dependences (6b) and (6d) and 
solutions for moments (12a) and (12b): 

𝜃௭௫ሺ𝑥ሻ ൌ 𝜃௭,଴
௫ െ

ଵଶ

ா௧௕య
ቀ𝑀௭,଴

௫ 𝑥 െ 𝐿௬,଴
௫ ௫మ

ଶ
െ 𝐴ହ

௕௫య

଺
െ

஺ల
௔

௫మ

ଶ
ቁ  

(13a) 

𝜃௭
௬ሺ𝑦ሻ ൌ 𝜃௭,଴

௬ െ
ଵଶ

ா௧௔య
ቀ𝑀௭,଴

௬ 𝑦 ൅ 𝐿௫,଴
௬ ௬మ

ଶ
൅ 𝐴ସ

௔௬య

଺
൅

஺ల
௕

௬మ

ଶ
ቁ  

(13b) 

The last step is to obtain the solution for displacement.  

Consider 𝑥-beam. Axial displacement is derived by 
integration of (6a), and tangential displacement – by (7e):  

𝑢௫ሺ𝑥ሻ ൌ 𝑢଴
௫ െ

ଵ

ா
൭
ேబ
ೣ௫ା൬௣ೣ

್ೣమ

మ
ି஺ర

್ೣమ

మ ൰

௧௕
൱ ൅

ఓ

ா
൭𝑥

ேబ
೤ା௣೤

್ೌ
మ
ି஺ఱ

್ೌ
మ

௧௔
൅

଺௫ሺ௫ି௔ሻ

௧௔య
ቀ𝑀௭,଴

௬ ൅ 𝐿௫,଴
௬ ௕

ଶ
൅ 𝐴ସ

௔௕మ

଼
൅

𝐴଺
ଵ

ଶ
ቁ൱     (14a) 

𝑣௫ሺ𝑥ሻ ൌ 𝑣଴
௫ ൅ 𝜃௭,଴

௫ 𝑥 െ
ଵଶ

ா௧௕య
ቀ𝑀௭,଴

௫ ௫మ

ଶ
െ 𝐿௬,଴

௫ ௫య

଺
െ 𝐴ହ

௕௫ర

ଶସ
െ

஺ల
௔

௫య

଺
ቁ െ

ଵ

ଶீ௕௧
ቀ𝐿௬,଴

௫ 𝑥 ൅ 𝐴ହ
௕௫మ

ଶ
ቁ     (14b) 

Now consider 𝑦-beam. Axial displacement is de-
rived by integration of (6c), and tangential one – by (7f):  

𝑣௬ሺ𝑦ሻ ൌ 𝑣଴
௬ െ

ଵ

ா
൭
ேబ
೤௬ା൬௣೤

ೌ೤మ

మ
ି஺ఱ

ೌ೤మ

మ ൰

௧௔
൱ ൅

ఓ

ா
ቌ൭𝑦

ேబ
ೣା௣ೣ

್ೌ
మ
ି஺ర

್ೌ
మ

௧௕
െ

଺௬ሺ௬ି௕ሻ

௧௕య
ቀ𝑀௭,଴

௫ െ 𝐿௬,଴
௫ ௔

ଶ
െ 𝐴ହ

௕௔మ

଼
െ

𝐴଺
ଵ

ଶ
ቁ൱ቍ     (14c) 

𝑢௬ሺ𝑦ሻ ൌ 𝑢଴
௬ െ 𝜃௭,଴

௬ 𝑦 ൅
ଵଶ

ா௧௔య
ቀ𝑀௭,଴

௬ ௬మ

ଶ
൅ 𝐿௫,଴

௬ ௬య

଺
൅ 𝐴ସ

௔௬ర

ଶସ
൅

஺ల
௕

௬య

଺
ቁ െ

ଵ

ଶீ௔௧
ቀ𝐿௫,଴

௬ 𝑦 ൅ 𝐴ସ
௔௬మ

ଶ
ቁ (14d) 

The above 12 equations in this subchapter starting 
from (11b) and up to the last one (14d) give the solutions 
for all 12 parameters (6+6) in each point of either beam.  

The unknown constants 𝐴ସ, 𝐴ହ, and 𝐴଺ are extracted 
from consideration by employing the continuity conditions 
at the center of the rectangular element. These conditions 
provide equality of two independent displacements and one 
angle of rotation. Write the continuity of displacements. 
They are evident:   

𝑢௫ ቀ
௔

ଶ
ቁ ൌ 𝑢௬ ቀ

௕

ଶ
ቁ   (15a) 

𝑣௫ ቀ
௔

ଶ
ቁ ൌ 𝑣௬ ቀ

௕

ଶ
ቁ    (15b) 



Mech. Adv. Technol., Vol. 8, No. 4, 2024  433 

The relationship between the angles of rotations is 
not so evident as for displacements. Provided that there is 
no shear deformation then the angles of rotation of both 
sides should be the same (rotation of the body as a rigid):  

𝜃௭௫ ቀ
𝑎
2
ቁ ൌ 𝜃௭

௬ ൬
𝑏
2
൰ 

Yet this is the wrong condition because of the shear 
deformation (7c) and (7d). The action of 𝐿௫ሺ𝑥ሻ rotates the 
lower side 𝜃௭

௬ on an additional angle 𝛾௫ሺ𝑥ሻ and the action 
of 𝐿௬ሺ𝑦ሻ rotates the left side 𝜃௭௫ on an additional angle 
െ𝛾௬ሺ𝑦ሻ. Accounting for this additional shear deformation 
the relations between the angles will be the following:  

𝜃௭௫ ቀ
௔

ଶ
ቁ ൅ 𝛾௫ሺ𝑎/2ሻ ൌ 𝜃௭

௬ ቀ
௕

ଶ
ቁ െ 𝛾௬ሺ𝑏/2ሻ (15c) 

 

3.2. Right triangular element 

The element with the right-upper hypothenuse is 
shown in Fig 2. It serves for the geometry adjustment at the 
real body boundaries. It has three sides. Introduce the angle 
𝜑 between the lower leg and hypotenuse. We have the fol-
lowing dependencies between the sides of the triangle:  

𝑎 ∙ 𝑡𝑔𝜑 ൌ 𝑏   𝑙 ∙ 𝑐𝑜𝑠𝜑 ൌ 𝑎     𝑙 ∙ 𝑠𝑖𝑛𝜑 ൌ 𝑏   (16a) 

𝑙 ൌ 𝑏ሬ⃗ െ 𝑎⃗  𝑎⃗ ൌ 𝚤 ∙ 𝑎  𝑏ሬ⃗ ൌ 𝚥 ∙ 𝑏 (16b) 

Write the unit tangent vector, 𝑠, to the inclined side, evi-
dently:  

𝑠 ൌ
௟⃗

௟
ൌ

௕ሬ⃗ ି௔ሬ⃗

ඥ௔మା௕మ
   (16c) 

The normal vector on the hypotenuse is 𝑛ሬ⃗  (directed out-
ward) and the tangent vector is 𝑠. From Fig 2, it is evident 
that: 

𝑛ሬ⃗ ൌ 𝚤𝑠𝑖𝑛𝜑 ൅ 𝚥𝑐𝑜𝑠𝜑     𝑠 ൌ െ𝚤𝑐𝑜𝑠𝜑 ൅ 𝚥𝑠𝑖𝑛𝜑   (16d) 

Or  

𝚤 ൌ 𝑛ሬ⃗ 𝑠𝑖𝑛𝜑 െ 𝑠𝑐𝑜𝑠𝜑     𝚥 ൌ 𝑠𝑠𝑖𝑛𝜑 ൅ 𝑛ሬ⃗ 𝑐𝑜𝑠𝜑   (16e) 

 Our solution for the right triangular element will 
be based on the above solution for the rectangular element. 
Yet in this case, there is no necessity to introduce the aux-
iliary constants 𝐴ସ, 𝐴ହ, and 𝐴଺. They are taken to be zero 
because the interchange between the forces occurs just on 
the hypothenuse.  

 The 𝑥-beam is considered to have the width 𝑏 as 
usual. But its length now is taken to be 𝑎/2. So, all param-
eters in it are calculated from the above formulas (11d), 
(11e), (12a), (13a), (14a) and (14b). The 𝑦-beam is consid-
ered to have the width 𝑎. But its length now is taken to be 
𝑏/2. So, all parameters in it are calculated from the formu-
las (11b), (11c), (12b), (13b), (14c) and (14d). 
 

 

Fig 2. The scheme and designations for a right tri-
angular element with right-upper hypothenuse 

Consider the side 𝑙 and prescribe that it is an outlet 
side. On this side, we also have 6 parameters that charac-
terize any beam side. The vector of forces on this side, 𝐹⃗ఝ, 
can be presented as:  

𝐹⃗ఝ ൌ 𝐹௡𝑛ሬ⃗ ൅ 𝐹௦𝑠,   (17a) 

where 𝐹௡ is the force projection in the direction of 
𝑛ሬ⃗ , and 𝐹௦ is the projection along 𝑠. The vector of displace-
ment Πሬሬ⃗ ఝ can be written as:  

Πሬሬ⃗ ఝ ൌ Π௡𝑛ሬ⃗ ൅ Π௦𝑠,  (17b) 

where Π௡ is the force projection in the direction of 
𝑛ሬ⃗ , and Π௦ is the projection along 𝑠. This side also is char-
acterized by the bending moment 𝑀௭

ఝ and the angle of ro-
tation 𝜃௭

ఝ.  
 Compile 9 scalar equations within this element. 

The two first equations can be derived from the condition 
that the sum of vectorial inlet forces in point 𝑂, Fig 2, 
should be equal to outlet force (17a), i.e.:  

𝑁௫ሺ
௔

ଶ
ሻ𝚤 ൅ 𝐿௫ ቀ

௔

ଶ
ቁ 𝚥 ൅ 𝑁௬ ቀ

௕

ଶ
ቁ 𝚥 ൅ 𝐿௬ ቀ

௕

ଶ
ቁ 𝚤 ൌ 𝐹௡𝑛ሬ⃗ ൅ 𝐹௦𝑠  

(18a) 

Where from with accounting for vectorial dependences 
(16e): 

𝐹௡ ൌ 𝑁௫ ቀ
௔

ଶ
ቁ 𝑠𝑖𝑛𝜑 ൅ 𝐿௫ ቀ

௔

ଶ
ቁ 𝑐𝑜𝑠𝜑 ൅ 𝑁௬ ቀ

௕

ଶ
ቁ 𝑐𝑜𝑠𝜑 ൅

𝐿௬ ቀ
௕

ଶ
ቁ 𝑠𝑖𝑛𝜑    (18b) 

𝐹௦ ൌ െ𝑁௫ ቀ
௔

ଶ
ቁ 𝑐𝑜𝑠𝜑 ൅ 𝐿௫ ቀ

௔

ଶ
ቁ 𝑠𝑖𝑛𝜑 ൅ 𝑁௬ ቀ

௕

ଶ
ቁ 𝑠𝑖𝑛𝜑 െ

𝐿௬ ቀ
௕

ଶ
ቁ 𝑐𝑜𝑠𝜑    (18c) 

The next 4 equations are the equality of vectorial dis-
placements as those pertained to: 1) 𝑥- beam in point 

௔

ଶ
; 2) 

- beam in point 
௕

ଶ
; 3) to the side 𝜑. Thus we have for pro-

jections on vector 𝑠:  
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െ𝑢௫ ቀ
௔

ଶ
ቁ 𝑐𝑜𝑠𝜑 ൅ 𝑣௫ ቀ

௔

ଶ
ቁ 𝑠𝑖𝑛𝜑 ൌ െ𝑢௬ ቀ

௕

ଶ
ቁ 𝑐𝑜𝑠𝜑 ൅

𝑣௬ ቀ
௕

ଶ
ቁ 𝑠𝑖𝑛𝜑 ൌ Π௦   (19a) 

𝑢௫ ቀ
௔

ଶ
ቁ 𝑠𝑖𝑛𝜑 ൅ 𝑣௫ ቀ

௔

ଶ
ቁ 𝑐𝑜𝑠𝜑 ൌ 𝑢௬ ቀ

௕

ଶ
ቁ 𝑠𝑖𝑛𝜑 ൅

𝑣௬ ቀ
௕

ଶ
ቁ 𝑐𝑜𝑠𝜑 ൌ Π௡    (19b) 

The requirement of equality of angles of rotation in the 
central point 𝑂, Fig 2, pertained to three different sides, 
leads to two additional equations:  

𝜃௭௫ ቀ
௔

ଶ
ቁ ൅ 𝛾௫ ቀ

௔

ଶ
ቁ ൌ 𝜃௭

௬ ቀ
௕

ଶ
ቁ െ 𝛾௬ ቀ

௕

ଶ
ቁ ൌ 𝜃௭௫ ቀ

௔

ଶ
ቁ ൅

𝛾௫ሺ𝑎/2ሻ ൌ 𝜃௭ௌ ቀ
௕

ଶ
ቁ െ 𝛾௦ሺ

௔

ଶ
,
௕

ଶ
ሻ (19c) 

The condition of equality of the sum of input moment to 
the sum of output moments leads to the last nineth equation 
within the right rectangular element:  

 𝑀௭
௫ ቀ

௔

ଶ
ቁ ൅ 𝑀௭

௬ ቀ
௕

ଶ
ቁ ൌ 𝑀௭

ఝ   (20b) 

Remind, that solutions for 𝑥- and 𝑦- beams are de-
rived from subchapter 3.1 where all three constants 𝐴ସ, 𝐴ହ, 
𝐴଺ and A6 are taken to be zero. Similarly, the equations 
can be written for 3 other cases of placement of the hy-
pothenuse in the right triangular elements.  
 

4. Examples of calculations 

 To spare the place we omit here the description of 
the organization of the calculation process. It is described 
in detail in works [1-4] and technically it is based on the 
transfer matrix method, TMM [23].  
 Consider two typical examples used in the sub-
stantiation of the efficiency of the numerical methods [24-
26].  

4.1. Cantilever beam like the rectangular CFFF plate.  

First, let us consider the simplest case - a rectangular 
plate stretched along one X-axis three sides of which are 
free, F, and the left side is clamped, C, Fig. 3. Let's study 
to what extent the elongation and the number of elements 
affect the quality of the obtained results. Fix the linear di-
mensions of the element as 𝑙௫ ൌ 20, 𝑙௬ ൌ 1, so this large 
ratio allows us to consider the plate as a beam, especially 
in its central sections. The right side is loaded with a unit 
evenly distributed shear force along the x-axis, Fig. 3. 

 

Fig 3. Cantilever beam-like CFFF plate 

A theoretical beam-like solution for normal stress 
𝜎∗௫ሺ𝑦ሻ and shear stress 𝜏∗௫ሺ𝑦ሻ in the central section (𝑥 ൌ
10) can be obtained readily by using the following for-
mula:  

𝜎∗௫ሺ𝑦ሻ ൌ 10 ∙
6ሺ𝑦 െ 0.5ሻ

0.5
ൌ 60 ∙ ሺ2𝑦 െ 1ሻ ሺ21𝑎ሻ 

 𝜏∗ሺ𝑦ሻ ൌ 1.5ሺ1 െ ሺ2𝑦 െ 1ሻଶሻ ሺ21𝑏ሻ 

The first comparison will be made on the center line 
of the vertical line at 𝑥 ൌ 10. According to (21b), along 
this line, 𝜏∗ varies parabolically, and has a maximum of 
𝜏∗ ൌ 1.5 at 𝑦 ൌ 𝑙௬/2 ൌ 0.5. The stress 𝜎∗௫ varies linearly, 
from 60 to െ60, respectively, Fig 4. 

 

Fig 4. Theoretical stresses for beam-like CFFF 
plate 

 Note that the MMS solution results in 𝜏௠௫  values 
somewhat averaged along the sides of the corresponding 
elements. And since the vertical amount of elements, 𝑁, is 
assumed to be small, it is more appropriate to transform 
shear stresses (21b) into the averaged values of 𝜏௠,௔௩௚, 
where 𝑚 is the particular element number in the vertical 
direction, Fig 3. 

𝜏௠,௔௩௚ ൌ 𝑁න 1.5ሺ1 െ ሺ2𝑦 െ 1ሻଶሻ𝑑𝑦

௠
ே

௠ିଵ
ே

ൌ

ൌ 1.5ቆ
4𝑚 െ 2
𝑁

െ
4ሺ3𝑚ଶ െ 3𝑚 ൅ 1ሻ 

3 ∙ 𝑁ଶ ቇ , ሺ22𝑎ሻ
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For example, when 𝑁 is uneven, then the averaged shear 
stress in the central element, 𝜏௖,௔௩௚, is calculated for 𝑚 ൌ
ሺ𝑁 ൅ 1ሻ/2: 

   𝜏௖,௔௩௚ ൌ 1.5 ൬1 െ
1 

3 ∙ 𝑁ଶ൰ ,   ሺ22𝑏ሻ 

 

Now let us calculate stress values using MMS. We 
start with a 2 ൈ 1 base grid, where 𝑀 ൌ 2 elements along 
the x-axis, and 𝑁 ൌ 1 along y-axis. We will check the cal-
culated central, 𝜏௠ୀே/ଶ,

௫  and the edge values of 𝜏௠ୀே,
௫  and 

the edge values of 𝜏௠ୀଵ
௫  and the edge values of 𝜎ே

௫, and 
compare them with the theoretical averaged central values 
of 𝜏௖,௔௩௚ and the edge values of 𝜏ଵ,௔௩௚, Table 1. Evidently, 
the results for 𝜎ே

௫ calculated by the formula (2a) with (2b) 
are very good notwithstanding the mesh refinement, nor 
from the 𝑎/𝑏 ratio. In some cases, for a small number of 
elements in 𝑡ℎ𝑒 𝑥-direction (M) and a very large 𝑎/𝑏 ratio, 
the results are a little smaller than the theoretical ones. As 
to 𝜏௫ values, they require a larger number of N and M re-
finement to become accurate and the ratio of a/b needs to 
be close to 1.  

Comparison of the 𝜏௫ results is complicated by the 
fact that they are integrally averaged along the sides of the 
corresponding elements. It is worth recalling that MMS 
does not use the law of equality of the shear stresses. It is 
of interest to calculate and compare the values of shear 
stress along the horizontal sides of the elements, 𝜏௬, as in-
dicated in Fig. 3. And compare them with the values ob-
tained through (21b), for different aspect ratios and mesh 
densities, Table 2.  

Although our method do not explicitly equal 𝜏௫ and 
𝜏௬, their values become very similar when the grid is suf-
ficiently dense. This can be easily seen in Fig. 5, where the 
grid is taken as 𝑀 ൌ 256, 𝑁 ൌ 11. 

 

 

Fig 5. Tau comparison for a dense grid 

4.2. Infinite plate with a circular cutout 

Now let's move on to a much more complicated ge-
ometry. Consider a rectangular plate with infinitely long 

sides, with a circular cutout with a radius 𝑎௖ in its center. 
The origin of the coordinates is at the center of the plate. A 
unit force is applied to the right side along the x-axis. An 
analytical solution to this problem is proposed is given, 
among others in [26]. Thus, the stresses are expressed us-
ing the following formulas: 

𝜎௫ ൌ 𝑇 െ 𝑇
𝑎௖ଶ

𝑟ଶ
 ൬

3
2
𝑐𝑜𝑠2𝜃 ൅ 𝑐𝑜𝑠4𝜃൰ ൅ 𝑇

3𝑎ସ

2𝑟ସ
𝑐𝑜𝑠4𝜃, ሺ23𝑎ሻ 

𝜎௬ ൌ െ𝑇
𝑎௖ଶ

𝑟ଶ
 ൬

1
2
𝑐𝑜𝑠2𝜃 െ 𝑐𝑜𝑠4𝜃൰ െ 𝑇

3𝑎ସ

2𝑟ସ
𝑐𝑜𝑠4𝜃, ሺ23𝑏ሻ 

𝜏௫௬ ൌ െ𝑇
𝑎௖ଶ

𝑟ଶ
 ൬

1
2
𝑠𝑖𝑛2𝜃 ൅ 𝑠𝑖𝑛4𝜃൰ ൅ 𝑇

3𝑎ସ

2𝑟ସ
𝑠𝑖𝑛4𝜃, ሺ23𝑐ሻ 

where 

𝑟 ൌ ඥ𝑥ଶ ൅ 𝑦ଶ, 𝑠𝑖𝑛2𝜃 ൌ
2𝑥𝑦

𝑥ଶ ൅ 𝑦ଶ
, 𝑐𝑜𝑠2𝜃 ൌ

𝑥ଶ െ 𝑦ଶ

𝑥ଶ ൅ 𝑦ଶ
, ሺ23𝑑ሻ 

𝑠𝑖𝑛4𝜃 ൌ
4𝑥𝑦ሺ𝑥ଶ െ 𝑦ଶሻ
ሺ𝑥ଶ ൅ 𝑦ଶሻଶ

,

  𝑐𝑜𝑠4𝜃 ൌ
ሺ𝑥ଶ െ 𝑦ଶሻଶ െ 4𝑥ଶ𝑦ଶ

ሺ𝑥ଶ ൅ 𝑦ଶሻଶ
. ሺ23𝑒ሻ

 

 The maximum stress concentration occurs at 
ሺ𝑎௖ , 0ሻ, where 𝜎௫ ൌ 3𝑇.  

For calculations, let us consider the finite part of this 
plate with radius 𝑎௖. Namely, the right upper quarter of a 
figure with finite length 𝑙௫ and height 𝑙௬, Fig 6. We are left 
with a cutout in the form of a quarter circle of radius 𝑎௖. To 
qualitatively describe a quarter circle let us place 𝑁௖ points 
on it. Then, place triangular elements on the boundary so 
that the points on the arc are their vertices. 

 

 

Fig 6. Plate with a circular cutout (𝑁௖ ൌ 7) 

Within this geometry, we need to set the boundary 
conditions correctly to model an infinite body. The bound-
ary conditions for 𝑥 ൌ 0 and 𝑦 ൌ 0 are simple symmetry 
conditions: 𝑈଴

௫ ൌ 𝜃଴
௫ ൌ 𝐿଴

௫ ൌ 0 for the left side and 𝑉଴
௬ ൌ

𝜃଴
௬ ൌ 𝐿଴

௬ ൌ 0 for the bottom side, respectively. The cutout 
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boundary is free, so we set the force components there to 
zero. 

The situation is more complicated with the right and 
upper bounds. We need to set on these boundaries the loads 
described in (23a-c). However, we operate with forces and 
moments distributed along the sides of the elements, while 
the analytical formulas specify stresses pointwise.  

Let us consider the right boundary of the lower right 
element as an example. For calculating the 𝑁௫ and 𝐿௫, the 
equations (23a-b) simply need to be integrated along the 
right side, (24a-b). 

𝑁௫ ൌ න𝜎௫ሺ𝑥 ൌ 𝑙௫ሻ𝑑𝑦

௕

଴

, ሺ24𝑎ሻ 

𝐿௫ ൌ න𝜏௫௬ሺ𝑥 ൌ 𝑙௫ሻ𝑑𝑦

௕

଴

. ሺ24𝑏ሻ 

Among other things, MMS allows moment loads to 
be applied as boundary conditions. The moments have 
maximum values at the edge points of the element side. 
Maximum negative at the bottom ሺ𝑦 ൌ 0ሻ, and maximum 
positive at the top ሺ𝑦 ൌ 𝑏ሻ. That is, it is necessary to inte-
grate 𝜎௫ while multiplying each integration segment by the 
distance to the center of the side, 𝑏௖ሺ𝑦ሻ, considering the 
sign, (25a).  

𝑀௫ ൌ න𝜎௫ሺ𝑥 ൌ 𝑙௫ሻሺ𝑦 െ 0.5ሻ𝑑𝑦

௕

଴

. ሺ24𝑐ሻ 

The analogous approach is also applied to the upper 
side (𝑦 ൌ 𝑙௬). 

Suppose we have a plate with length 𝑙௫ ൌ 3, height 
𝑙௬ ൌ 2, and radius of the cutout circle 𝑎௖ ൌ 1. Let's apply 
for it the base mesh 𝑀 ൌ 𝑁 ൌ 71, and describe the circle 
with 𝑁௖ ൌ 23 points. We present the results along the hor-
izontal and vertical lines of greatest interest to us, Fig 7. 

 

 

 

 

Fig 7. Comparison of results for an infinite plate 
with a circular cutout 

From the results, we can see that MMS allows us to 
describe complex geometry using a small mesh of ele-
ments. For more clarity, numerical results at the points of 
greatest difference are given, Table 3. 

Conclusion 

The method of the matched section has been proven 
to be an effective numerical technique for solving the com-
plicated problems of mathematical physics formulated 
through partial differential equations. MMS is a new vari-
ant of the FEM and contains all its principal features – 
meshing on finite elements, the substitution of the differ-
ential dependences by an algebraical one for each element, 
compilation of equations, and solution of the global matrix. 
Yet its main unique feature is the substitution of the partial 
differential equations by the ordinary ones with subsequent 
exact or approximate solution of them. This allows to ac-
curately account for all known 1D behavioral peculiarities 
and avoid all unwanted effects related, for example, with 
shear, membrane, and volume locking. The significance of 
the present paper consists in:  

1. For the first time it considers the 2D plane body 
problem of the elasticity by the MMS. Instead of the hy-
pothesis of equality of shear stress the equation of the mo-
ment equilibrium is accounted for each element.  
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2. For the first time in MMS application the deforma-

Table 1. Comparison of 
x  results for beam-like CFFF plate depending on the grid and aspect ratio 

 

N  

 

M  

 

/a b  
 /2

x
m Nτ  

 

,c  avgτ   1
x
mτ  

 

1,  avgτ   
x
Nσ  

1 
2 10 1 

1 
1 

1 
 60  

6 3.33 1 1  60  

3 

2 30 1.0061 

1.44 

0.997 

0.78 

 59.9565  

8 7.5 1.248 0.876  60.0132  

32 1.875 1.3484 0.8258  60.0000  

5 
2 50 1.0024 

1.48 
0.9976 

0.52 
 59.9455  

16 6.25 1.3132 0.6887 60.0005 
64 1.562 1.4346 0.5729  60.0000  

11 
2 110 1.0005 

1.5 
0.9992 

0.26 
 59.9604  

32 6.875 1.3576  0.4834 60.0000 
128 1.7188 1.4799 0.3047 60.0000 

21 

8 52.5 1.0346 

1.5 

0.9415 

0.14 

59.8996 

64 6.5625 1.4246 0.3238 60.0000 

256 1.64 1.495 0.1645 60.0000 

 

Table 2. Comparison of 
y  results for beam-like CFFF plate depending on the mesh and aspect ratio 

 

M N  
/a b   1 | 0y

*τ   τ y       | 0.5y
m *τ   τ y    1

1
| 0.5

   
 

y
m *τ   τ y

N
  

2 3  30 1.3334 | 1.3333 1.3334 | 1.3333 0.0000 | 0.0000 

8 3  7.5 1.3333 | 1.3333 1.3333 | 1.3333 0.0000 | 0.0000 

2 5  50 0.9600 | 0.9600 1.4400 | 1.4400 0.9600 | 0.9600 

16 5  6.25 0.9600 | 0.9600 1.4400 | 1.4400 0.9600 | 0.9600 

2 11  110 0.4959 | 0.4959 1.4876 | 1.4876 1.3885 | 1.3884 

32 11  6.875 0.4959 | 0.4959 1.4876 | 1.4876 1.3884 | 1.3884 

4 31  155 0.1873 | 0.1873 1.4984 | 1.4984 1.4859 | 1.4860 

 

Table 3. Comparison of results for an infinite plate with a circular cutout 

,x yl  l
 

M N  

cN  
 0,1xσ

  
 1,0yσ

  
 1,1xyτ

 

3, 2 
71, 71 

23 
3.0816 -0.8868 -0.25 

Analytical 3 -1 -0.25 
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ble right triangular element is formulated. It allows to accu-
rately treat any geometrical peculiarities of the boundaries.  

3. In contrast to traditional FEM each MMS element 
exactly satisfies the force equilibrium in either of two di-
rections as well as the moment equilibrium. Thus, the equi-
librium is fulfilled exactly for the whole body as well.  

4. Numerical verification is performed for the canti-
lever beam considered as the plain body and for the infinite 
body with the circular hole. It is shown that even a rela-
tively small number of elements (coarse meshing) is able 
to provide the desired accuracy. The shear stresses on all 
sides of the inner elements are very close, so the require-
ment of their equality is principally satisfied. 
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Числовий аналіз задачі статики пружного плоского тіла методом узгодже-
них січень 

К. Даниленко1    І. Ориняк1 

1  КПІ ім. Ігоря Сікорського, Київ, Україна 

Анотація. Стаття продовжує цикл авторських робіт з розробки принципово нового варіанту методу скінченних елементів 
МСЕ для вирішення різноманітних задач математичної фізики, а саме методу узгоджених січень МУС. Тут розглядається 
пружне плоске тіло при статичному навантаженні. Як і в МСЕ, все тіло розбивається на дрібні елементи, переважно, 
прямокутної форми. Основна особливість методу полягає у введенні набору основних параметрів, які залежать лише від 
однієї координатної змінної, тобто від x або y. Таким чином, будь-яке диференційне рівняння рівноваги з двома частинними 
похідними по x або y розбивається на два відносно простих рівняння по відношенню лише до однієї незалежної змінної. Це 
призводить до введення однієї додаткової константи, яка показує взаємообмін між цими двома рівняннями. Введені конс-
танти можна вивести з рівняння неперервності кінематичних параметрів у центрі кожного елемента. Основними, напри-

клад, залежними від x параметрами є:  xv x  та  xu x  переміщення у вертикальному (y-) і горизонтальному (x-) напрямках 

відповідно; нормальна  xN x  і тангенціальна (зсувна)  xL x  сили в x -напрямку та y- напрямках відповідно; і згинальний 

момент  xM x  і кут повороту  x . Подібні параметри встановлюються і для напрямку y. На основі методології методу 

початкових параметрів встановлюється аналітична залежність у вигляді матриці звязку між цими параметрами в будь-
якій точці x або y та параметрами на нижній та/або лівій межі елемента. Для обробки похилих і криволінійних границь 
виведено прямокутний трикутний елемент як окремий вироджений випадок прямокутного елемента. Отримана система 
лінійних рівнянь формуються для невідомих значень усіх параметрів, заданих на межі всіх елементів. Ефективність і чудова 
точність МУС продемонстрована на класичних прикладах згинання довгого прямокутного тіла (балкова геометрія) і розтя-
гування на нескінченності 2D тіла з маленьким круговим отвором. 

Ключові слова: Метод узгоджених січень, метод початкових параметрів, пружне плоске тіло, трикутний елемент,  грани-
чні умови, нескінчена пластина з круглим отвором. 

 

 

 


