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Abstract. The paper continues the series of authors’ works on the elaboration of a principally new variant of the finite element method,
FEM, for the treatment of various problems of mathematical physics, namely the method of matched section, MMS. The elastic plane
body under static loading is considered here. As in FEM, the whole body is meshed into the small elements of, preferably, rectangular
form. The main peculiarity of the method consists in the introduction of a set of main parameters dependent only on one coordinate
variable, i.e. either x or y. So, any differential equilibrium equation with two partial derivatives concerning x or y is broken out
into two relatively simple equations concerning only one independent variable. This leads to the introduction of one additional constant
showing the interchange between these two equations. The introduced constants can be derived from the equation of continuity of

kinematic parameters in the center of each element. The main, for example, x -dependent parameters are: v*(x) and u™(x) displace-
ments in vertical (y—) and horizontal (x-) directions, respectively;, normal N*(x) and tangential (shear) L*(x) forcesin x direc-

tion, and y direction, respectively; and bending moment M*(x) and angle of rotation ©(x). Similar parameters are established for
y -direction. Based on the methodology of the transfer matrix method the analytical matrix-form dependence between these parameters
in any point x or y and those at the lower and/or left border of the element are established. For the treatment of oblique and

curvilinear boundaries, the right triangular element as a special degenerate case of the rectangular element is derived. The resulting
system of linear equations is formulated for unknown values of all parameters specified at the border of all elements. The efficiency
and the superb accuracy of the MMS are demonstrated in the classical examples of bending of a long rectangular body (beam-like
geometry) and tension at infinity of a 2D body with a small circular hole.

Keywords: method of matched sections, transfer matrix method, elastic plane body, triangular element, boundary conditions, plate
with a circular hole.

1. Introduction

The paper is a further development of the method of
matched section, MMS, [1]-[4] as a new branch of finite
element method, FEM, in application to plane body prob-
lem. Like FEM it supposes that the whole domain is repre-
sented as a mesh of simple elements; algebraic relations
between main physical and geometrical parameters are es-
tablished from the governing differential equations; these
relationships are compiled locally for all elements and then
assembled into one global matrix.
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Nevertheless, MMS has the following distinctive
features:

A) It explicitly operates by all geometrical and phys-
ical parameters of the considered problem, rather than, say,
by displacements through which all others are expressed.
The unknowns are prescribed to the central line between
two opposite sides of the element, rather than to its vertices
(nodes) as in FEM. They are equally important in the com-
pilation of a global matrix of equations. The matrix coeffi-
cients result from approximate analytical solution ofall 1D
differential equations, instead of minimization of some
functional or residual.

B) Analytical solutions are reduced to the solution of
a set of ordinary 1D differential equations concerning each
local independent variable. If the governing equilibrium
equation is the partial differential equation with respect to 2
(in 2D case) independent variables (x and y ), then it is

broken out into two ordinary differential equations each
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concerning either of x or y variable with introducing one

additional unknown constant for accounting the interaction
between them. This constant will be further determined
through the supplemental requirement of continuity of ge-
ometrical parameters in the element center. The 1D analyti-
cal solutions (connection equations) within each element
are written in the form of a transfer matrix between inlet
and outlet parameters, where the unknowns at the left and
lower sides of the element are considered as the inlet and
those at the upper and right sides — as the outlet ones.

C) The continuity conditions (conjugation equa-
tions) between different elements are provided at the sides
of the neighboring elements by equating all corresponding
governing parameters. Another significance of them con-
sists in the possibility to introduce the outer force between
them, imposed jumps of kinematic parameters.

It is often argued that FEM is strictly based on the
minimization procedure for weighted residuals or some
functional. We think that it is not so. Early development of
FEM was based on a matrix structural analysis which com-
pletely stemmed from the analogy with the beam and rod
behavior [5], [6]. Furthermore, in explaining the essence of
FEM the authors of famous textbooks often say that the
goal of the auxiliary minimization procedure is to get sim-
ilar relations between the kinematic and force parameters
in 2D and 3D cases similarly as in the known solutions for
beams and rods [7].

For 1D structures, the same (exact or approximate)
analytical solution can be considered as a foundation for
either FEM (or stiffness method) or transfer matrix
method. The difference is in the way of presentation of
the solution matrix [8], [9]. If the dependencies are given
as those between the inlet (left side) and outlet parame-
ters, then we have the transfer matrix method solution
[9]-[12]. If the force parameter on the left and right sides
are expressed through left and right sides kinematic pa-
rameters, then the FEM (or stiffness method) is to be ap-
plied [14]-[16].

Employment of analytical solutions in MMS has an-
other obvious advantage. One always can guess what to ex-
pect from the method: its accuracy, means, and phenomena
to be addressed. For example, if some parameter or effect
is accounted for in the analytical solution it always would
lead to predictable output results without any locking ef-
fects or artificial loss of stability. For example, if the shear
deformation is explicitly included in the governing differ-
ential equations, then the solution will never exhibit the
shear locking, and for the small thickness-to-length plate
ratio it will converge to the thin plate results [1].

The primary requirement for MMS is that it is con-
structed in such a way that equilibrium equations are ex-
actly satisfied on the boundary of the element. Considering
that they exactly match on the borders between elements,
one can conclude that equilibrium is fulfilled for the whole
body too. The requirement for keeping the equilibrium is
the most important in mechanics (“Equilibrium is Essen-
tial, Compatibility is Optional” [17]). Yet most commercial

software does not provide the fulfillment of this require-
ment [18], so alternative FEM approaches which keep the
equilibrium at the sides between the neighboring elements
are recently intensively developed within hybrid or mixed
formulations [18]-[20]. So, MMS satisfies recent trends in
computational mechanics.

MMS can be easily enhanced by the employment of
more sophisticated physical models and their solutions as
connection equations. An example is the transient heat con-
duction analysis by MMS where the connection equations
contain the time step as a model parameter [3]. In that work
[3], it realizes 2D geometry the Bathe’s idea that basic
functions within an element could be time-dependent ones
[21], [22]. A similar enhancement within MMS was made
for the plate transverse vibration analysis [4], where the so-
lution was given with explicit accounting for the unknown
natural frequency, so the solution was derived as the 2D
spectral one.

This work is restricted to the elastic plane body static
analysis. The main goal is to show the applicability of the
MMS to this problem, where MMS has the same salient
features as in previous applications — it allows to use the
drastically different ratio of properties and dimensions.
Contrary to work [1] the technical emphasis is made on the
development of the right triangular element with the ability
to account for its deformation with subsequent analysis of
the curvilinear boundaries.

2. Differential equations for the 2D plane
body

The peculiarity of the proposed solution is that all
partial differential equations are not combined to form one
governing equation. They are to be considered individu-
ally. On the other hand, in contrast to the transverse plate
problem [1] where all equations are already written in the
textbooks in the beam-like digestible form, here we need
to reformulate the governing differential equations in a
similar beam-like manner for two different directions.

2.1. Main parameters and notions

The classical plane problem operates by two dis-
placements and three stresses. Following the general beam-
like methodology we introduce here 6 main parameters on
each side of the element, Fig 1. Take the rectangular ele-
ment of length a (along the x-axis), and height b (along the
y-axis) as the basic geometrical element of the analysis. In-
troduce the local coordinate system originated at the left-
lower edge, Fig 1. Let us consider the element as if it were
formed by two perpendicular beams — one in the x direc-

tion (x-beam) and the other one in the y direction (y-beam).

Introduce the set of main notions and parameters. Note,
that upper indexes “x” or “y” characterize the sides (or an-
other word — the beams) they are related to, while for pa-
rameters shown in Fig 1 the lower index “0” means that it

pertains to the origin of a “beam”.
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Fig 1. The scheme and designations for a rectan-
gular element

Start from x-beam. It is characterized by 6 governing
scalar parameters. They are related to the central line along
the x direction, i.e. to y =b /2, and are the following, Fig 1:

— Vectorial concentrated force F*(x) which con-
sists of two scalar components: normal force N*(x) (act-

ing in x direction) and tangential (shear) force L*(x) (di-
rected toward y -axis), Fig. 1, i.e.:

Fx(x):Nx(x)7+Lx(x)j (1a)
— Scalar (in this problem) bending moment M (x)

acting against the clockwise direction (i. e. around the third
z direction).

— Vectorial uniform displacement I1*(x) which
consists of two scalar components: normal displacement
u*(x) (acting in x direction) and tangential one v (x)
(directed toward y -axis), i.e.:

I (x)=u" (x)f+vx (x)] (1b)

— Scalar (in this problem) rotation angle 6 (x) ro-

tating against the clockwise direction (i.e. around the third
z direction).

Note, that axial force N*(x) and bending moment

M (x) produce compressive axial stresses, ¢*(x,y) at

each side x = const :

o (x,y)=0oy (x)—T-GM (x), (2a)
where stress components are given by formulas:
. N*(x) 6-M? (x)
GN(X):T, GM(X):m—Z, (2b)

where ¢ is the plate thickness; usually we take it to be 1.

Shear force L' (x) produces uniform shear stress at this side:

(2¢)

Now consider the displacements along the side
x =const . Everything is clear about the displacement

v¥(x) in the tangent (;) direction. In contrast, the dis-

placement in the normal (i) direction, u”*(x,y), has two
components — a uniform one and that one produced by ro-
tation on angle 67 (x):

u (x,y)=u’ (x)—(y—é)ef(x)

5 (2d)

The similar 6 governing scalar parameters and rela-
tions can be introduced also for y -beam, Fig 1. They are

related to the central line along they direction, i.e. to
x=a/?2,and are the following:

— Vectorial concentrated force F” ( y) which con-
sists of two scalar components: normal force N” ( y) (act-

ing in y direction) and shear force L’ ( y) (directed to-

ward y -axis), Fig 1, i.e.:

Fy(y):Ny(y)j+Ly(y)7 (3a)

— Scalar bending moment M} (y) acting against the
clockwise direction.

— Vectorial uniform displacement jved (y) which
consists of two scalar components: normal displacement
v/(y) (acting in y direction) and tangential one u” (y)
(directed toward x -axis), i.e.:

fly(y):uy(y)7+vy(y)] (3b)

— Scalar rotation angle 6 (y) rotating against the
clockwise direction (i.e. around the third z direction).
Note, that axial force N”(y) and bending moment

M (y) produce compressive axial stresses, ¢’ (x,y) at
each side y = const :

—~

2x—a)

a

(42)

o’ (x,y) =0y (x)+ o3, ()
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Where stress components are given by formulas:

oy ()=, oy () - S

_6-MI(y)
_S M)

(4b)

Shear force L” ( y) produces uniform shear stress at this

side:

(4c)

Now consider the displacements along the side
y =const . Everything is clear about the displacement
u” ( y) in { direction. In contrast, the displacement in j
direction, v (x, y) , has two components — a uniform one

and that one produced by rotation on angle 67 ( y) :

vy(x,y):vy(y)+(x—%j-9“zv(y). (4d)
2.2. Physical equations (Gook’s law)
Consider the axial deformations, &, for both

“beams”. According to the definition, we can write them
based on general expressions for axial displacements (2d)
and (4d). Differentiating them, we have:

du*(x,y) _du* d6?
a2 AU (, Dy
& (x.y)= dvyc(l;"y) _ dv;y(y) +(x_%j, de?y(y) sb)

Write the Gook’s law (plane stress condition) with ac-
counting for the adopted here signs for the stresses:

e (x,») =—%<Gx (x,y)—pc” (x,y)). (5¢)

g” (x,y)z—%(cy (x,y)—pc* (x,y)). (5d)

Substitute expressions for stresses (2a) and (4a) in (5c) and
(5d). So, we get the following expressions for both beams:

b
e \U72) e O E|| w b
-5)
. x y . y
12 Mz (x)]_u N (y) 2) 12 M; (») 5o
th ta a ta

Yy y y
dv (y){x_gj.d@z 0)_ 1| M), y
dy 2 dy E ta a
y b
12.M2(y) | N"(x) \7 2) 12-M7(x)
_ — . z 5
S 0 b th? D

Evidently, the deformations in the x-beam cannot depend
on the independent variable y . So, take the values of “al-

ien” parameters (in other words the y -dependent ones) in
the fixed central point of the rectangular element, i.e. take

y :% for the x-beam, and x :% for the y -beam. Thus,

the following physical relations can be drawn out for x -
beam:

NY (b/2)+(x_2j.12~sz(b/2)

dux(x)i_l Nx(x)_
& E th H ta a ta®
(6a)
do’ 12-M7?
) a(2ae)
dx E 1’

Similar relations are written for y -beam:

b
@’ (y) 1| N (y)_H N"(a/Z)_(y_Ej.12~M;(a/2)

dy E| t th b th*
(6¢)
de; 12-M7}
z(y):_l( : (y)} 60
dy E ta’®

Now consider the relations for the shear stresses and defor-
mations. The basic Gook’s law in the elasticity theory is
the following:

G(av(x,y) . a”(x’y)j =—1(x,»)

Ox oy

(7a)

Where T(x, y) is the shear stress, which is theoretically

equal on both sides. In our approach, we discern between
these stresses on the different sides, and this should be ac-
counted for in our approach. So, law (7a) can be approxi-
mately satisfied if we rewrite the right side of (7a) as:

(avx’e (x) n ou”" (y)j - L(U—(X)+M] (7b)

ox oy 2G| ta
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Here the upper index “e” means that a particular contribu-
tion is due to the consideration of the plane stress theory of
elasticity. Evidently, we should break out this two-coordi-
nate dependent relation into two independent ones:

A G BN g

T—'Y (X)——ﬁl/ (X) (7C)

éuy»E(y): Y () =- 1 20 (7d)
oy Y 2Gat Y-

Equations (7c) and (7d) — are the approximate equations of
the theory of elasticity. But here we consider the beams and
operate additionally by the beam parameters. So, the defor-
mation (7¢) and (7d) are only a part of the whole beam de-
formation in the transverse direction. Another essential
contribution is caused by the rotation of the central axis.
So, we should supplement the elasticity deformation with
the beam deformation:

v (x) I
e A
W) gy (-1 (y) G

Oy 2Gat

2.3. Equilibrium equations

We cannot give the exact solution of the equilibrium
equation within the element. It is impossible due to the con-
sideration of the element as consisting of two almost inde-
pendent beams. What can be done at the best is to preserve
the integral equilibrium of the whole element. This will be
done below. Furthermore, this integral equilibrium will be
written in the differential form, i.e. the integration of the
derived below differential equation will provide the global
equilibrium of the element. Write out the equilibrium in the
i direction according to the theory of elasticity:

oo, (x,y) . o) (y,x)
Ox oy

=D, (8a)

Consider that p, is a constant outer distributed force in x-

direction, multiply by the thickness ¢, and integrate it
over the whole area of the element

s R A e N

y
(8b)
a ON™ (x) 0L (y)
jo = dx+j0 5 dy=ab-p.. (8b)
Rewrite this equation in the differential form:
ON* or¥
&), 22 G)_ (%)
box ady

In a similar way derive the force equilibrium in the
J direction:
oN” (y) . oL" (x)
box

=p,. (9b)

ady

Where p, is an outer distributed force in y-direc-

tion. Similarly, write down the equilibrium of the rotation
moment around the very small element with sides ¢ andb :

—GM; (x) a+L" (x)a +—8M; (y)

b-I"(y)b=0.(1
Oox oy (y) (10a)

Break down this equation into two coordinate-independent
equations:

oM .

—8x(x)+_a +L"(x)=0. (10b)
oMm? A

%_f_y(y):o, (10¢)

Where we introduce the constant 4. It envisages the in-

teraction between the moments M (x) and M} (y) within
the element. Integrating equation (10b) by x, and equation
(10c) by x and adding them, we will get the global moment
equlibrity (10a).

3. Approximate analytical solutions

3.1. Rectangular element

The usual way of solution is applied here [1]. We
start with the equilibrium equations. Then the physical
equation will be solved, and at last, we give the ultimate
solutions for geometrical equations.

Consider the force equilibrium. Take in (9a) and in
(9Db) that:

or’ ( y)
ady

oL* (x) B
box

= Ay As. (11a)

Then from first equation (11a) and from equation (9b) we
have the solution for forces in the y-beam:

L (y)=Ly+ Aay . (11b)

NY(y)=N§ + p,ay—Asay . (11c)

From the second equation of (11a) and the equation we get
for x-beam:

L (y)=Ly+ Aay . (11d)

N*(x) =Ny + p,bx—Abx. (1le)

The values of moments are derived by integration of (10b)
and (10c):
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2
A
M (x) =My =L} ox— 4 %——%. (12a)
B s 4
¥
M;’(y):MZy’O+L£’Oy+A4a7+7y. (12b)

The formulas for angles of rotation for both “beams”
are derived from physical dependences (6b) and (6d) and
solutions for moments (12a) and (12b):

12 x’ bx® A x?
0 (x)=0 g ———| M x— L' j—— Ag— 2
(x) =62 Etb3[ . ’

" 6 a 2
(13a)
12 y2 ay3 A y2
9? (J’):O“ZV’O _W{Mz}},oy+Li,07+A4?+767
(13b)

The last step is to obtain the solution for displacement.
Consider x-beam. Axial displacement is derived by
integration of (6a), and tangential displacement — by (7e):

bx? bx?
Nyx+| p, ——A4,—
X X Ox (px 2 ) 2 j
u' (x)=u 7 - +
. ba ba
N ap, g )
p| 0T Ey 5 6x(x-a)| .., ., b , ab 1
+=|x tZ 2 7 {M§’0+L10—+A4 +A6E
a
(14a)
12 X2 X
vi(x)=v) +0% x MY
( ) 0 z,0 Etb3[ z,0 2 'v,0 6
bx* A4 X 1 2
. T L 14b
24 a 6] 2th£ pOT (140)

Now consider y-beam. Axial displacement is derived
by integration of (6¢), and tangential one — by (7f):

2 2
a a

vy(y):vg—f ta ’
ba  ba
X
[ N A G0eb e o b
Yy b » 2070 T TR
(14c)

12 yz ya
u’ (y) =u] —95)0y+ P [M207+L£’0?_

4 3 2
Ay 1 ay
g, @ Ay Ly D (4

“ T4 b6] 2Gat[x’0y 42} (14d)

The above 12 equations in this subchapter starting
from (11b) and up to the last one (14d) give the solutions
for all 12 parameters (6+6) in each point of either beam.

The unknown constants 4,, A4;, and A4, are ex-
tracted from consideration by employing the continuity
conditions at the center of the rectangular element. These
conditions provide equality of two independent displace-
ments and one angle of rotation. Write the continuity of
displacements. They are evident:

(152)

(15b)

The relationship between the angles of rotations is not so
evident as for displacements. Provided that there is no
shear deformation then the angles of rotation of both sides
should be the same (rotation of the body as a rigid):

-0l

Yet this is the wrong condition because of the shear defor-
mation (7c) and (7d). The action of L*(x) rotates the lower

side 67 on an additional angle y*(x) and the action of
L"(y) rotates the left side 6] on an additional angle

—”(y) . Accounting for this additional shear deformation
the relations between the angles will be the following:

or (4] ov @rmy=0z(2 ) er). ase

3.2. Right triangular element

The element with the right-upper hypothenuse is
shown in Fig. 2. It serves for the geometry adjustment at
the real body boundaries. It has three sides. Introduce the
angle ¢ between the lower leg and hypotenuse. We have the

following dependencies between the sides of the triangle:

atg(pzb’ ZCOS(P=a,lsm(p=b (16a)

[=b-dG,d=i-a,b=j-b. (16b)
Write the unit tangent vector, § , to the inclined side, evi-

dently:

1 b-a
§=—
!

= (16c)
\a? +b?
The normal vector on the hypotenuse is 7 (directed out-
ward) and the tangent vector is § . From Fig. 2, it is evident
that:
ii = iSinQ + jcos® ,5 = —icosQ+ jSing. (16d)
Or

i = fisinQ —5cosQ, | = 5sinQ+iicos@ . (16¢)
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Our solution for the right triangular element will be
based on the above solution for the rectangular element.
Yet in this case, there is no necessity to introduce the aux-
iliary constants A, , As,and A4,. They are taken to be zero
because the interchange between the forces occurs just on
the hypothenuse.

The x-beam is considered to have the width 5 as
usual. But its length now is taken to be a/2. So, all pa-
rameters in it are calculated from the above formulas (11d),
(11e), (12a), (13a), (14a) and (14b). The y -beam is con-
sidered to have the width . But its length now is taken to
be b/2. So, all parameters in it are calculated from the
formulas (11b), (11c), (12b), (13b), (14c) and (14d).

Fig 2. The scheme and designations for a right tri-
angular element with right-upper hypothenuse

Consider the side / and prescribe that it is an outlet
side. On this side, we also have 6 parameters that charac-

terize any beam side. The vector of forces on this side, F°,
can be presented as:

F® =F"i+F°5, (17a)

where F" is the force projection in the direction of 7, and
F* is the projection along s . The vector of displacement
I1® can be written as:

° = 11" + I1°5 , (17b)

where I1" is the force projection in the direction of 7, and
IT° is the projection along s . This side also is characterized
by the bending moment A and the angle of rotation 6.

Compile 9 scalar equations within this element. The
two first equations can be derived from the condition that
the sum of vectorial inlet forces in point O, Fig. 2, should
be equal to outlet force (17a), i.e.:

N* (%}“Lx (%j”Ny [gj]’uy [g)f = F"ii+ F'5 .

(18a)
Where from with accounting for vectorial depen-
dences (16e):

b b
F'=N*| L sinp+ | £ w872 w22 s
(2jsm(p [z)cosq) (zjcosq) (zjsm(p

(18b)

F’=—N* (%J cos@+ L [%j sing+ N” (gj sinp— L7 [gj cosQ

(18c¢)
The next 4 equations are the equality of vectorial displace-

ments as those pertained to: 1) x- beam in point %;

2) - beam in point g; 3) to the side ¢ . Thus we have for

projections on vector § :

—ux(ﬁ cos +vx(£jsin ——uy[éjcos +
2 )T ) 2 )®

+v7 (gjsimp =1II°. (19a)
u”* (E sing+v* gj cosp=u" b sing+
2 2 2
b n
+v” 5 coso=T11". (19b)

The requirement of equality of angles of rotation in the cen-
tral point O, Fig. 2, pertained to three different sides, leads
to two additional equations:

orlepwl2hr )
- (%]wx (a/2)=60° (gj—ys (%gj . (19¢)

The condition of equality of the sum of input moment to
the sum of output moments leads to the last nineth equation
within the right rectangular element:

M (gjﬂ\@ [gj =M?.

Remind, that solutions for x-and y - beams are de-

(20b)

rived from subchapter 3.1 where all three constants 4, , 4
, A¢ and A6 are taken to be zero. Similarly, the equations

can be written for 3 other cases of placement of the hy-
pothenuse in the right triangular elements.

4. Examples of calculations

To spare the place we omit here the description of
the organization of the calculation process. It is described
in detail in works [1]-[4] and technically it is based on the
transfer matrix method, TMM [23].

Consider two typical examples used in the substanti-
ation of the efficiency of the numerical methods [24]-[26].
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4.1. Cantilever beam like the rectangular CFFF plate

First, let us consider the simplest case - a rectangular
plate stretched along one X-axis three sides of which are
free, F, and the left side is clamped, C, Fig. 3. Let’s study
to what extent the elongation and the number of elements
affect the quality of the obtained results. Fix the linear di-
mensions of the element as /, = 20, ly =1, so this large ra-

tio allows us to consider the plate as a beam, especially in
its central sections. The right side is loaded with a unit
evenly distributed shear force along the x-axis, Fig. 3.

Y
N 0 7
N N
A
T T !
ly TN/2 TN/2 :L;E =1
1
T .
| N|
[ Iy 1

Fig 3. Cantilever beam-like CFFF plate

A theoretical beam-like solution for normal stress
ox () and shear stress 13 () in the central section (x =10)
can be obtained readily by using the following formula:

6(y—0.5)
0

o (v)=10- =60-(2y-1) (21a)

@ (¥)=15(1-(2v-1)°).

The first comparison will be made on the center line
of the vertical line at x =10. According to (21b), along this
line, t. varies parabolically, and has a maximum of

21b)

Theoretical Sigma X

60 4 —— Sigma X (Theoretical)

40 1

Stress
o

—60 4

0.0 0.2 0.4 0.6 0.8 10
y-coordinate

T.=1.5at y=1,/2=0.5. The stress o varies linearly,
from 60 to —60, respectively, Fig. 4.

Note that the MMS solution results in 1, values
somewhat averaged along the sides of the corresponding
elements. And since the vertical amount of elements, N,

is assumed to be small, it is more appropriate to transform

shear stresses (21b) into the averaged values of 1, ...,

where m is the particular element number in the vertical
direction, Fig. 3.

(22a)

For example, when N is uneven, then the averaged
shear stress in the central element,

m=(N+1)/2:

c.avg » 18 calculated for

|
T, . =1.5/1- .
e [ 3~N2j

Now let us calculate stress values using MMS. We
start with a 2x1 base grid, where M =2 elements along
the x-axis, and N =1 along y-axis. We will check the cal-

(22b)

culated central, T,,_y/, and the edge values of t,_y and

the edge values of t;,_, and the edge values of o}, and

compare them with the theoretical averaged central values
of 1 and the edge values of 1, ,,, , Table 1. Evidently,

c,avg
the results for o}, calculated by the formula (2a) with (2b)

are very good notwithstanding the mesh refinement, nor
from the a /b ratio. In some cases, for a small number of
elements in the x -direction (M) and a very large a/b ra-
tio, the results are a little smaller than the theoretical ones.

Theoretical Tau X

—— Tau X (Theoretical)

Stress

0.4 4

0.2 1

0.0 4

0.0 0.2 0.4 0.6 0.8 10
y-coordinate

Fig 4. Theoretical stresses for beam-like CFFF plate
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Table 1. Comparison of t* results for beam-like CFFF plate depending on the grid and aspect ratio

N M alb Tm=N/2 Te, avg T=l 1, avg oy
1 2 10 1 1 1 1 60
6 3.33 1 1 60

2 30 1.0061 0.997 59.9565

3 8 7.5 1.248 1.44 0.876 0.78 60.0132

32 1.875 1.3484 0.8258 60.0000

2 50 1.0024 0.9976 59.9455

5 16 6.25 1.3132 1.48 0.6887 0.52 60.0005

64 1.562 1.4346 0.5729 60.0000

2 110 1.0005 0.9992 59.9604

11 32 6.875 1.3576 1.5 0.4834 0.26 60.0000

128 1.7188 1.4799 0.3047 60.0000

8 52.5 1.0346 0.9415 59.8996

21 64 6.5625 1.4246 1.5 0.3238 0.14 60.0000

256 1.64 1.495 0.1645 60.0000

Table 2. Comparison of 17 results for beam-like CFFF plate depending on the mesh and aspect ratio

MxN alb o |t (y=0) T |7 (¥ =0.5) T |'|:*(y=0.5+%)
2x3 30 1.3334|1.3333 1.3334|1.3333 0.0000 | 0.0000
8x3 7.5 1.3333]1.3333 1.3333]1.3333 0.0000 | 0.0000
2x5 50 0.9600 | 0.9600 1.4400 | 1.4400 0.9600 | 0.9600
16x5 6.25 0.9600 | 0.9600 1.4400 | 1.4400 0.9600 | 0.9600
2x11 110 0.4959 | 0.4959 1.4876 | 1.4876 1.3885| 1.3884

32x11 6.875 0.4959 | 0.4959 1.4876 | 1.4876 1.3884 | 1.3884
4x31 155 0.1873]0.1873 1.4984 | 1.4984 1.4859 | 1.4860

As to 1" values, they require a larger number of N and M
refinement to become accurate and the ratio of a/b needs to
be close to 1.

Comparison of the t* results is complicated by the
fact that they are integrally averaged along the sides of the
corresponding elements. It is worth recalling that MMS
does not use the law of equality of the shear stresses. It is
of interest to calculate and compare the values of shear
stress along the horizontal sides of the elements, t”, as in-
dicated in Fig. 3. And compare them with the values ob-
tained through (21b), for different aspect ratios and mesh
densities, Table 2.

Although our method do not explicitly equal t* and

17, their values become very similar when the grid is suf-

ficiently dense. This can be easily seen in Fig. 5, where the
grid is taken as M =256, N =11.

Comparison of Tau

0.4

0.2 {—

0.0

—— Tau Theory
144 Tau Y
— TauX

T T
0.0 0.2

T
0.4

T T T
0.6 0.8 1.0

y-coordinate

Fig 5. Tau comparison for a dense grid
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4.2. Infinite plate with a circular cutout

Now let’s move on to a much more complicated ge-
ometry. Consier a rectangular plate with infinitely long
sides, with a circular cutout with a radius a, in its center.

The origin of the coordinates is at the center of the plate. A
unit force is applied to the right side along the x-axis. An
analytical solution to this problem is proposed is given,
among others in [26]. Thus, the stresses are expressed us-
ing the following formulas:

2 4
" =T-T a"z [ECOSZG + cos49j + Ty%cos46, (23a)
e \2 2r
2 4
o’ =-T a”z [lcos29 —cos49j - T&%cos46, (23b)
e\ 2 2r
2 4
=1 (lsinZO 4 sin4eJ 4 T3i4sin4e, (23¢)
e\ 2 2r
where
2., .2 2xy X —y2
r=qx"+y°, sin20 = 5, 0820 =———,  (23d)
X“+y X +y
2
dxy(x? = Poy?) a4ty
sind0 = (—2), cos40 = ( ) 5 (23¢)
o )

The maximum stress concentration occurs at (a,,0),
where o, =37

For calculations, let us consider the finite part of this
plate with radius a.. Namely, the right upper quarter of a

figure with finite length /, and height /,, Fig. 6. We are
left with a cutout in the form of a quarter circle of radius
a.. To qualitatively describe a quarter circle let us place
N, points on it. Then, place triangular elements on the
boundary so that the points on the arc are their vertices.

2.0

151

1.04

0.5 A

0.0

0.0 0.5 1.0 1.5 2.0
X

Fig. 6. Plate with a circular cutout (N, =7)

Within this geometry, we need to set the boundary con-
ditions correctly to model an infinite body. The boundary con-

ditions for x =0 and y =0 are simple symmetry conditions:
Uy =6y =Ly =0 fortheleftsideand V)’ =0 = Ly =0 for
the bottom side, respectively. The cutout boundary is free, so
we set the force components there to zero.

The situation is more complicated with the right and
upper bounds. We need to set on these boundaries the loads
described in (23a-c). However, we operate with forces and
moments distributed along the sides of the elements, while
the analytical formulas specify stresses pointwise.

Let us consider the right boundary of the lower right

element as an example. For calculating the N* and L, the

equations (23a-b) simply need to be integrated along the
right side, (24a-b).
b

N = jcx (x=1,)dy, (24a)
0
b

L= [e? (x=1,)d. (24b)
0

Among other things, MMS allows moment loads to
be applied as boundary conditions. The moments have
maximum values at the edge points of the element side.
Maximum negative at the bottom (y =0), and maximum

positive at the top (y =b) . That is, it is necessary to inte-
grate o while multiplying each integration segment by
the distance to the center of the side, b.(y), considering
the sign, (25a).

b
M =J-Gx (x=1.)(»—0.5)dy. (24c¢)
0

The analogous approach is also applied to the upper
side (y=1,).

Suppose we have a plate with length /. =3, height
[, =2, and radius of the cutout circle a. =1. Let’s apply

for it the base mesh M = N =71, and describe the circle
with N, =23 points. We present the results along the hori-

zontal and vertical lines of greatest interest to us, Fig. 7.

From the results, we can see that MMS allows us to
describe complex geometry using a small mesh of ele-
ments. For more clarity, numerical results at the points of
greatest difference are given, Table 3.

Table 3. Comparison of results for an infinite plate
with a circular cutout

MxN
I..1, ¢ c*(0,1) | o¥(1,0) | ¥ (L1)
c
3,2 7,71 3.0816 —0.8868 -0.25
23
Analytical 3 -1 -0.25
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Sigma X (x = 0.00)

—— Ssigma X - Theory
3.00 sigma X - MMs
2.75
2.50
g 225
4
®
2.00
175
150
125 T
1.0 12 14 16 18 2.0

y-coordinate

Sigma Y (y = 0.00)

—— Sigma Y - Theory
0.0 1 Sigma Y - MMS T

~

stress

1.00 125 150 175 2.00 2.25 2.50 2.75 3.00
x-coordinate

Tau XY (x = 1.20)

—— Tau XY - Theory

Tau XY - MMS
0.00 4

—0.05

—0.25

—0.30

T
100 1.25 150 175 2.00

y-coordinate

Fig 7. Comparison of results for an infinite plate with a circular cutout

Conclusion

The method of the matched section has been proven
to be an effective numerical technique for solving the com-
plicated problems of mathematical physics formulated
through partial differential equations. MMS is a new vari-
ant of the FEM and contains all its principal features —
meshing on finite elements, the substitution of the differ-
ential dependences by an algebraical one for each element,
compilation of equations, and solution of the global matrix.
Yet its main unique feature is the substitution of the partial
differential equations by the ordinary ones with subsequent
exact or approximate solution of them. This allows to ac-
curately account for all known 1D behavioral peculiarities
and avoid all unwanted effects related, for example, with
shear, membrane, and volume locking. The significance of
the present paper consists in:

1. For the first time it considers the 2D plane body
problem of the elasticity by the MMS. Instead of the hy-
pothesis of equality of shear stress the equation of the mo-
ment equilibrium is accounted for each element.

2. For the first time in MMS application the deforma-
ble right triangular element is formulated. It allows to accu-
rately treat any geometrical peculiarities of the boundaries.

3. In contrast to traditional FEM each MMS element
exactly satisfies the force equilibrium in either of two di-
rections as well as the moment equilibrium. Thus, the equi-
librium is fulfilled exactly for the whole body as well.

4. Numerical verification is performed for the canti-
lever beam considered as the plain body and for the infinite
body with the circular hole. It is shown that even a rela-
tively small number of elements (coarse meshing) is able
to provide the desired accuracy. The shear stresses on all
sides of the inner elements are very close, so the require-
ment of their equality is principally satisfied.
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YucaoBuid aHATI3 3a1a4i CTATHKHU NMPYKHOTO IVIOCKOTO TijIa METOA0M
Y3Ir0/’KeHUX CiueHb

K. lanunenko! o I. Opunsx!

' KMl im. Izopa Cixopcwvkozo, Kuis, Yrpaina

Anomauia. Cmamms npo00BIHCYE YUK A8MOPCLKUX pOOIM 3 pO3POOKU NPUHYUNOBO HOBO20 8APIAHNY MEMOQJY CKIHUEHHUX eleMenmia
MCE 0ns supiwenna pisnomanimuux 3a0aq mamemamuynoi Qizuxu, a came memooy y3eoocenux civeno MYC. Tym posensioacmucs
npysiche naocke mino npu cmamuynomy nHasanmadgxcenti. Ax i 6 MCE, 6ce mino po3busacmocs na OpiOHi enemeHmu, nepesalcHo,
npamoxymuoi gopmu. OcnosHna ocobaugicms Memoody nonaeac 'y 66edenti Habopy OCHOBHUX Napamempis, AKi 3anexicams auue io
00Hiel Koopounammoi 3minnoi, mobmo 6io x abo y. Taxum uurom, 6y0b-ske Ougepenyiline piHANHA PI6HOBALU 3 0BOMA YACTIUHHUMU
NOXIOHUMU NO X abo y po3ousacmvcs Ha 08a GiOHOCHO NPOCMUX PIBHAHHA NO GIOHOWEHHIO uwe 00 OOHI€el He3anedcHoi sminnoi. Lle
npu3e00Ums 00 88edeHHsl OOHIET 000AMK0BOI KOHCMANMU, AKA NOKA3YE 83AEMOOOMIH Midic Yyumu 08oma pigHanHAMU. Beedeni komnc-
MAHMU MOJICHA BUBECU 3 PIBHAHHA HeNePePeHOCTNI KIHeMAMUYHUX Napamempie y yenmpi kocno2o eremenma. Ocnognumu, Hanpu-

KA, 3anedcHumu 610 x napamempamu €: v (x) ma u*(x) nepemiwyentss y 6epmukanohomy (v-) i 20pusoHmanvhomy (x-) HanpsIMKax
6i0nosiono; nopmanvia N*(x) i mancenyianona (3cyéna) L (x) cunu @ X -HARPSAMKY Md Y- HANPAMKAX GIONOGIOHO, [ 32UHANbHULL

momenm M*(x) i kym nosopomy 0(x). I[100i6ni napamempu écmanoeniolomvcs i 0ns Hanpsamky y. Ha ocnogi memodonozii memooy

NOYAMKOBUX NAPAMEMPIE8 BCTNAHOBNIOEMbCS AHATTMUYHA 3ANeNHCHICMYb Y 8UIAI MAMPUY 36513KY MIJIC YuMU napamempamu 8 6you-
AKid moyyi x abo y ma napamempamu Ha HUdICHIU ma/abo nisiil medici enemenma. /s 06pobKu nOXUNUX i KPUBONIHIUHUX 2PAHUYb
8UBCOCHO NPAMOKYMHUL MPUKYMHULL eleMeHM K OKPeMUll 8UPOOdICeHUl BUNAOOK NPAMOKYmMHO20 enemenma. Ompumana cucmema
JHIUHUX PIBHAHb YOPMYIOMbC O HEBIOOMUX 3HAYEHD YCIX NApaAMempia, 3a0aHux Ha Medici 6cix enemenmis. E¢pexmusnicmo i uyoosa
mounicms MY C npodemoncmpogana na KiacutHux npuKiaoax 32UHaHHs 0082020 NPAMOKYMHO20 mina (bankoea eeomempis) i po3ms-
2y6anHs Ha Heckinvennocmi 2D mina 3 maneHvKum Kpy208Um 0OmeopoM.

Kntouosi cnosa: Memoo y3200sicenux ciuens, Memoo no4amkosux napamempis, npysucHe niocke mino, mpukymuuii eiemenm, pamu-
YHi YMOBU, HECKIHYEHA NIACUHA 3 KDY2TIUM OMBOPOM.
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