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Abstract. The paper continues the series of authors’ works on the elaboration of a principally new variant of the finite element method,
FEM, for the treatment of various problems of mathematical physics, namely the method of matched section, MMS. The elastic plane
body under static loading is considered here. As in FEM, the whole body is meshed into the small elements of, preferably, rectangular
Jform. The main peculiarity of the method consists in the introduction of a set of main parameters dependent only on one coordinate
variable, i.e. either x or y. So, any differential equilibrium equation with two partial derivatives concerning x or y is broken out into
two relatively simple equations concerning only one independent variable. This leads to the introduction of one additional constant
showing the interchange between these two equations. The introduced constants can be derived from the equation of continuity of
kinematic parameters in the center of each element. The main, for example, x-dependent parameters are: v¥(x) and u*(x) displacements
in vertical (y-) and horizontal (x-) directions, respectively; normal N*(x) and tangential (shear) L* (x) forces in x direction, and y
direction, respectively, and bending moment M~ (x) and angle of rotation O(x). Similar parameters are established for y-direction.
Based on the methodology of the transfer matrix method the analytical matrix-form dependence between these parameters in any point
x ory and those at the lower and/or left border of the element are established. For the treatment of oblique and curvilinear boundaries,
the right triangular element as a special degenerate case of the rectangular element is derived. The resulting system of linear equations
is formulated for unknown values of all parameters specified at the border of all elements. The efficiency and the superb accuracy of
the MMS are demonstrated in the classical examples of bending of a long rectangular body (beam-like geometry) and tension at infinity
of a 2D body with a small circular hole. .

Keywords: Method of matched sections, transfer matrix method, elastic plane body, triangular element, boundary conditions, plate
with a circular hole.

1. Introduction

The paper is a further development of the method of
matched section, MMS, [1]-[4] as a new branch of finite
element method, FEM, in application to plane body prob-
lem. Like FEM it supposes that the whole domain is repre-
sented as a mesh of simple elements; algebraic relations
between main physical and geometrical parameters are es-
tablished from the governing differential equations; these
relationships are compiled locally for all elements and then
assembled into one global matrix.
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Nevertheless, MMS has the following distinctive
features:

A) It explicitly operates by all geometrical and phys-
ical parameters of the considered problem, rather than, say,
by displacements through which all others are expressed.
The unknowns are prescribed to the central line between
two opposite sides of the element, rather than to its vertices
(nodes) as in FEM. They are equally important in the com-
pilation of a global matrix of equations. The matrix coeffi-
cients result from approximate analytical solution of all 1D
differential equations, instead of minimization of some
functional or residual.

B) Analytical solutions are reduced to the solution of
a set of ordinary 1D differential equations concerning each
local independent variable. If the governing equilibrium
equation is the partial differential equation with respect to
2 (in 2D case) independent variables (x and y), then it is
broken out into two ordinary differential equations each
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concerning either of x or y variable with introducing one
additional unknown constant for accounting the interaction
between them. This constant will be further determined
through the supplemental requirement of continuity of ge-
ometrical parameters in the element center. The 1D analyt-
ical solutions (connection equations) within each element
are written in the form of a transfer matrix between inlet
and outlet parameters, where the unknowns at the left and
lower sides of the element are considered as the inlet and
those at the upper and right sides — as the outlet ones.

C) The continuity conditions (conjugation equa-
tions) between different elements are provided at the sides
of the neighboring elements by equating all corresponding
governing parameters. Another significance of them con-
sists in the possibility to introduce the outer force between
them, imposed jumps of kinematic parameters.

It is often argued that FEM is strictly based on the
minimization procedure for weighted residuals or some
functional. We think that it is not so. Early development of
FEM was based on a matrix structural analysis which com-
pletely stemmed from the analogy with the beam and rod
behavior [5], [6]. Furthermore, in explaining the essence of
FEM the authors of famous textbooks often say that the
goal of the auxiliary minimization procedure is to get sim-
ilar relations between the kinematic and force parameters
in 2D and 3D cases similarly as in the known solutions for
beams and rods [7].

For 1D structures, the same (exact or approximate)
analytical solution can be considered as a foundation for
either FEM (or stiffness method) or transfer matrix
method. The difference is in the way of presentation of
the solution matrix [8], [9]. If the dependencies are given
as those between the inlet (left side) and outlet parame-
ters, then we have the transfer matrix method solution
[9]-[12]. If the force parameter on the left and right sides
are expressed through left and right sides kinematic pa-
rameters, then the FEM (or stiffness method) is to be ap-
plied [14]-[16].

Employment of analytical solutions in MMS has an-
other obvious advantage. One always can guess what to ex-
pect from the method: its accuracy, means, and phenomena
to be addressed. For example, if some parameter or effect
is accounted for in the analytical solution it always would
lead to predictable output results without any locking ef-
fects or artificial loss of stability. For example, if the shear
deformation is explicitly included in the governing differ-
ential equations, then the solution will never exhibit the
shear locking, and for the small thickness-to-length plate
ratio it will converge to the thin plate results [1].

The primary requirement for MMS is that it is con-
structed in such a way that equilibrium equations are ex-
actly satisfied on the boundary of the element. Considering
that they exactly match on the borders between elements,
one can conclude that equilibrium is fulfilled for the whole
body too. The requirement for keeping the equilibrium is
the most important in mechanics (“Equilibrium is Essen-
tial, Compatibility is Optional” [17]). Yet most commercial

software does not provide the fulfillment of this require-
ment [18], so alternative FEM approaches which keep the
equilibrium at the sides between the neighboring elements
are recently intensively developed within hybrid or mixed
formulations [18]-[20]. So, MMS satisfies recent trends in
computational mechanics.

MMS can be easily enhanced by the employment of
more sophisticated physical models and their solutions as
connection equations. An example is the transient heat con-
duction analysis by MMS where the connection equations
contain the time step as a model parameter [3]. In that work
[3], it realizes 2D geometry the Bathe's idea that basic func-
tions within an element could be time-dependent ones [21],
[22]. A similar enhancement within MMS was made for
the plate transverse vibration analysis [4], where the solu-
tion was given with explicit accounting for the unknown
natural frequency, so the solution was derived as the 2D
spectral one.

This work is restricted to the elastic plane body static
analysis. The main goal is to show the applicability of the
MMS to this problem, where MMS has the same salient
features as in previous applications — it allows to use the
drastically different ratio of properties and dimensions.
Contrary to work [1] the technical emphasis is made on the
development of the right triangular element with the ability
to account for its deformation with subsequent analysis of
the curvilinear boundaries.

2. Differential equations for the 2D plane
body

The peculiarity of the proposed solution is that all
partial differential equations are not combined to form one
governing equation. They are to be considered individu-
ally. On the other hand, in contrast to the transverse plate
problem [1] where all equations are already written in the
textbooks in the beam-like digestible form, here we need
to reformulate the governing differential equations in a
similar beam-like manner for two different directions.

2.1. Main parameters and notions

The classical plane problem operates by two dis-
placements and three stresses. Following the general beam-
like methodology we introduce here 6 main parameters on
each side of the element, Fig 1. Take the rectangular ele-
ment of length a (along the x-axis), and height b (along the
y-axis) as the basic geometrical element of the analysis. In-
troduce the local coordinate system originated at the left-
lower edge, Fig 1. Let us consider the element as if it were
formed by two perpendicular beams — one in the x direc-
tion (x-beam) and the other one in the y direction (y-
beam). Introduce the set of main notions and parameters.
Note, that upper indexes “x” or “y” characterize the sides
(or another word — the beams) they are related to, while for
parameters shown in Fig 1 the lower index “0” means that
it pertains to the origin of a “beam”.
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Fig 1. The scheme and designations for a rectan-
gular element

Start from x-beam. It is characterized by 6 governing
scalar parameters. They are related to the central line along
the x direction, i.e. to y = b/2, and are the following,
Fig 1:

- Vectorial concentrated force F* (x) which consists
of two scalar components: normal force N*(x) (acting in
x direction) and tangential (shear) force L*(x) (directed to-
ward y-axis), Fig 1, i.e.:

F*(x) = N*(x)T + L*(x)] (1a)

- Scalar (in this problem) bending moment MZ (x)
acting against the clockwise direction (i.e. around the third
z direction).

- Vectorial uniform displacement n~ (x) which con-
sists of two scalar components: normal displacement
u*(x) (acting in x direction) and tangential one v*(x) (di-
rected toward y-axis), i.e.:

I (x) = u* ()T + v*(x)] (1b)

- Scalar (in this problem) rotation angle 6 (x) rotat-
ing against the clockwise direction (i.e. around the third z
direction).

Note, that axial force N*(x) and bending moment
MX(x) produce compressive axial stresses, a*(x,y) at
each side x = const:

2(y-3)

o (x,y) = o (x) = =2 o35 (%), (2a)
where stress components are given by formulas:
N*(x) 6-M7 (x)
on() === om(x) =—5— (2b)

where t is the plate thickness; usually we take it to be 1.
Shear force L*(x) produces uniform shear stress at this
side:

L*(x)
v ==

(2¢)

Now consider the displacements along the side x =
const. Everything is clear about the displacement v* (x) in
the tangent (J) direction. In contrast, the displacement in
the normal (7) direction, u*(x, y), has two components — a

uniform one and that one produced by rotation on angle
67 (x):

w(x,y) = () - (v —3) - 67 ()

The similar 6 governing scalar parameters and rela-
tions can be introduced also for y-beam, Fig 1. They are
related to the central line along the y direction, i.e. to x =
a/2, and are the following:

- Vectorial concentrated force £ (y) which consists of
two scalar components: normal force N (y) (acting in y
direction) and shear force LY (y) (directed toward y-axis),
Fig 1,ie.:

(2d)

FY(y) = N )j + LY ()i (3a)

- Scalar bending moment M) (y) acting against the
clockwise direction.

- Vectorial uniform displacement I1 (y) which con-
sists of two scalar components: normal displacement
vY (y) (acting in y direction) and tangential one u¥ (y) (di-
rected toward x-axis), i.e.:

Y (y) = wW )i+ v’ )j

- Scalar rotation angle 6 (y) rotating against the
clockwise direction (i.e. around the third z direction).

Note, that axial force N¥(y) and bending moment
M} (y) produce compressive axial stresses, o”(x,y) at
each side y = const:

(3b)

¥ (x,y) = o () + Z=2- 63 () (42)

Where stress components are given by formulas:

63 )

o) = =5

NY(y),
O-R’/(y) = “ta ’ ta?

(4b)

Shear force LY (y) produces uniform shear stress at
this side:

LY
(y) =22

(4c)

Now consider the displacements along the side
y = const. Everything is clear about the displacement
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u¥ (y) in T direction. In contrast, the displacement in j di-
rection, v¥ (x, y), has two components — a uniform one and
that one produced by rotation on angle 8, ():

V() =@ +(x-5)-070)  (4d)
2.2. Physical equations (Gook’s law).
Consider the axial deformations, &, for both

“beams”. According to the definition, we can write them
based on general expressions for axial displacements (2d)
and (4d). Differentiating them, we have:

du*(x, y) dux(x)

e* _ _b .dﬂf(x)
(x y) = dx o (y 2) —= (Sa)
y y y
e¥(x,y) = d"d_(y"'y) - d"d_y(Y)_l_ (x _%) . dBZ;y) (5b)

Write the Gook’s law (plane stress condition) with
accounting for the adopted here signs for the stresses:

e (x,y) = =2 (0¥ @ y) —po? (%)  (50)

() = =2 (0V(xy) —po*(xy))  (5d)

Substitute expressions for stresses (2a) and (4a) in
(5¢) and (5d). So, we get the following expressions for both

beams:
dux(x) (y b) degf(x) _ % ((N’;(’x) _ (y;g) .

12-MZ (x) M) L (x-3) 12:M) ()
th2 ) ,u( ta? >> (5e)
y y y _a
dv (”+(x 2) .42 (y) _1<(N » , (5)
E ta a
b
12:M) () . N*(x) (y—g) C12:MF(x)
ta2 ) ”< th b th? (Sf)

Evidently, the deformations in the x-beam cannot
depend on the independent variable y. So, take the values
of “alien” parameters (in other words the y-dependent
ones) in the fixed central point of the rectangular element,

ie take y = g for the x-beam, and x = % for the y-beam.

Thus, the following physical relations can be drawn out for
x- beam:

awe 1w (W | (5) zmlen
dx E\ tb H ta a ta?
(6a)

(6b)

doF(x) _ 1 (12-M§(x))
dx  E\ tb3

Similar relations are written for y-beam:

) 1w (Nep (73 1w
dy = E\ ta K th b th2

(6¢)

a6y () _ _1(12-sz (y)) (6d)

dy  E ta3
Now consider the relations for the shear stresses and defor-
mations. The basic Gook’s law in the elasticity theory is
the following:

gv(xy) | du(x.y)
G( ox + dy )

—T(x%,y) (7a)

Where t(x,y) is the shear stress, which is theoreti-
cally equal on both sides. In our approach, we discern be-
tween these stresses on the different sides, and this should
be accounted for in our approach. So, law (7a) can be ap-
proximately satisfied if we rewrite the right side of (7a) as:

ov¥e(x ouY-€ 1 (L*(x Ly

G ) B Gty [

n,n

Here the upper index "e" means that a particular contribu-
tion is due to the consideration of the plane stress theory of
elasticity. Evidently, we should break out this two-coordi-
nate dependent relation into two independent ones:

avx'e(x)

- X(x)——ﬂvf(x) (7¢)
22D =y () = — 5= L) (74)

Equations (7¢) and (7d) — are the approximate equa-
tions of the theory of elasticity. But here we consider the
beams and operate additionally by the beam parameters.
So, the deformation (7c) and (7d) are only a part of the
whole beam deformation in the transverse direction. An-
other essential contribution is caused by the rotation of the
central axis. So, we should supplement the elasticity defor-
mation with the beam deformation:

ov*(x)
— -0 )——ZthLx(x) (7e)
WO _ vy

= =0 () — 5= L) (7D

2.3. Equilibrium equations.

We cannot give the exact solution of the equilibrium
equation within the element. It is impossible due to the con-
sideration of the element as consisting of two almost inde-
pendent beams. What can be done at the best is to preserve
the integral equilibrium of the whole element. This will be
done below. Furthermore, this integral equilibrium will be
written in the differential form, i.e. the integration of the
derived below differential equation will provide the global
equilibrium of the element. Write out the equilibrium in the
7 direction according to the theory of elasticity:

9ox(xy) | ATy (y.%)

52 1 2500 — p, (8)

Consider that p, is a constant outer distributed force in x-
direction, multiply by the thickness t, and integrate it over
the whole area of the element

b dox(x,y) b aT) (%)
foa dx fo %tdy + fo dy foaTa—;/xtdx =
b
Jy @y [ px dx (8b)
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a dN*(x) b oLY (y) _ .
Jo =5 dx+ [, 5y @y =ab px (8b)

Rewrite this equation in the differential form:

AN*(x) aLy()
== 2 =p, (%)

box ady
In a similar way derive the force equilibrium in the
J direction:
ONY ()

aL~ (x)
ady +

=py (9b)
Where p,, is an outer distributed force in y-direction.

Similarly, write down the equilibrium of the rotation mo-
ment around the very small element with sides a and b:

BMZ (x)

- a+L"(x)a+aM (”b L(Mb=0 (10a)

Break down this equation into two coordinate-inde-
pendent equations:

oM (x) +%+ Lx(x) =0 (IOb)
IMY(Y) _As _ 1y =
20) 2 17(y) = 0 (10¢)

Where we introduce the constant A¢. It envisages the
interaction between the moments MZ (x) and M (y) within
the element. Integrating equation (10b) by x, and equation
(10¢) by x and adding them, we will get the global moment
equlibrity (10a).

3. Approximate analytical solutions

3.1. Rectangular element.

The usual way of solution is applied here [1]. We
start with the equilibrium equations. Then the physical
equation will be solved, and at last, we give the ultimate
solutions for geometrical equations.

Consider the force equilibrium. Take in (9a) and
in (9b) that:
0L ¥) @)
ady = A4; box

=A: (lla)
Then from first equation (11a) and from equation (9b) we
have the solution for forces in the y-beam:
LY(y) = Ly + Agay (11b)
NY(y) = N +pyay — Asay (1lc)
From the second equation of (11a) and the equation
we get for x-beam:
L*(x) = L + Acbx (11d)
N*(x) = N§ + pebx — Aybx (11e)

The values of moments are derived by integration of
(10b) and (10c):

2
M (x) = Mo — L5,0x — Ash——22x  (12a)

M) (y) = M), +Ly0y+A4a—+ °y (12b)

The formulas for angles of rotation for both “beams”
are derived from physical dependences (6b) and (6d) and
solutions for moments (12a) and (12b):

x2 bx3  Agx
6(x) = 620 — gz (Miox — Loy — As 7 — %)
(13a)
Asy
02 (y) = 02y — i (Myy + 12+ 4,2 + 22
(13b)

The last step is to obtain the solution for displacement.

Consider x-beam. Axial displacement is derived by
integration of (6a), and tangential displacement — by (7e):

bx? bx?
X o1 [N (p-adt)
u(x) =uf — = —————= |+

E tb
y
Ny +p
0 y

—A
52 +6x(x a)(My Ly b+A4
E ta

1
A6E)> (14a)
2 3
12 (Mgox?—Lx’ x>

X — X X

v¥(x) =v 0Fox —

( ) 0 + z,0 Etb3

A5x3) 1 (

=) —— (¥ ox + A —
a6 26bt \"'¥.0 5 2

Now consider y-beam. Axial displacement is de-
rived by integration of (6¢), and tangential one — by (71):

2 2
(——)) .

ta

-t

o=

Noﬂ’x —A42 _ 6y(y- b)( L —A ba*
y tb tb3 5'g

6§)> (14¢)

020y + 3(My b +L3;0?+A4

oS

w(y) =uy —
Agy 1
76?) - ZGat( x0Y T As T) (14d)

The above 12 equations in this subchapter starting
from (11b) and up to the last one (14d) give the solutions
for all 12 parameters (6+6) in each point of either beam.

The unknown constants A,, As, and A, are extracted
from consideration by employing the continuity conditions
at the center of the rectangular element. These conditions
provide equality of two independent displacements and one
angle of rotation. Write the continuity of displacements.
They are evident:

¢ @=w() ow

#@)=v () o
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The relationship between the angles of rotations is
not so evident as for displacements. Provided that there is
no shear deformation then the angles of rotation of both
sides should be the same (rotation of the body as a rigid):

x a —nY b
o (3) =22 3)

Yet this is the wrong condition because of the shear
deformation (7¢) and (7d). The action of L*(x) rotates the
lower side 8, on an additional angle y*(x) and the action
of LY(y) rotates the left side 8 on an additional angle
=YY (¥). Accounting for this additional shear deformation
the relations between the angles will be the following:

67 (5) +v*(a/2) = 62 (3) =¥ (b/2) (15¢)

3.2. Right triangular element

The element with the right-upper hypothenuse is
shown in Fig 2. It serves for the geometry adjustment at the
real body boundaries. It has three sides. Introduce the angle
¢ between the lower leg and hypotenuse. We have the fol-
lowing dependencies between the sides of the triangle:

a‘tgp=b l-cosp=a l-sinp=>b (l6a)

-

=b—d d=17ab=j-b(l6b)

I

Write the unit tangent vector, S, to the inclined side, evi-
dently:
sl

T Jaz+p?
The normal vector on the hypotenuse is 71 (directed out-
ward) and the tangent vector is §. From Fig 2, it is evident
that:

(16¢)

-

5o >
n =1T1sing + jcosp S=

Or

—Tcos + Jsing (16d)

1 =1ising — Scosg ] = Ssing +ficosg (16¢)

Our solution for the right triangular element will
be based on the above solution for the rectangular element.
Yet in this case, there is no necessity to introduce the aux-
iliary constants A,, As, and A4. They are taken to be zero
because the interchange between the forces occurs just on
the hypothenuse.

The x-beam is considered to have the width b as
usual. But its length now is taken to be a/2. So, all param-
eters in it are calculated from the above formulas (11d),
(11e), (12a), (13a), (14a) and (14b). The y-beam is consid-
ered to have the width a. But its length now is taken to be
b/2. So, all parameters in it are calculated from the formu-
las (11b), (11c), (12b), (13b), (14c) and (14d).

\
N
/VO‘” N\ 0 8
N\ 2,0 s
ﬂ L 09:0 NN UO
NEf A
N/ > 08\ \
‘\ LT Uy 20 >' |
MZ N\ "0 NS N N2
P/ y 0 \ ,0
i V= N
0 Y
/ ;o0 N .
! Y y Yy
Le0— Y \\|

Yy f . Yy
\\N(i /// Mz,O

Fig 2. The scheme and designations for a right tri-
angular element with right-upper hypothenuse

Consider the side [ and prescribe that it is an outlet
side. On this side, we also have 6 parameters that charac-
terize any beam side. The vector of forces on this side, F @,
can be presented as:

-

F¢ = F"R + FS3, (17a)

where F" is the force projection in the direction of
7, and F* is the projection along §. The vector of displace-
ment [1® can be written as:

¥ = "7 + 158, (17b)

where [1" is the force projection in the direction of
7, and II° is the projection along §. This side also is char-
acterized by the bending moment MY and the angle of ro-
tation 7.
Compile 9 scalar equations within this element.
The two first equations can be derived from the condition
that the sum of vectorial inlet forces in point O, Fig 2,
should be equal to outlet force (17a), i.e.:

N QT+ 1% (5)+ N (3)] +17 (5)T= F"ii + F°5
(18a)

Where from with accounting for vectorial dependences
(16e):

F"—N"( )sm<p+Lx( )cosg0+Ny( )cos<p+
Ly( )sm<p (18b)

F* ——Nx( )cos<p+L"( )sm<p+Ny( )sm<p—
Ly( )COS(p (18¢)

The next 4 equations are the equality of vectorial dis-
placements as those pertained to: 1) x- beam in point g; 2)

.. b .
- beam in point > 3) to the side ¢. Thus we have for pro-
jections on vector §:
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—u* %) cosp +v ( )sm(p = —uY (b) cosp +
vY (g) sing =I1° (19a)
)

( sing + v* ( )COS(p —uy( )sm<p+
vy( )COS(p " (19b)

[SESHES]

The requirement of equality of angles of rotation in the
central point O, Fig 2, pertained to three different sides,
leads to two additional equations:

o (@) ()= ()= () =0 (2)
v (a/2) = 65 (3) = v°E.2) (19)

The condition of equality of the sum of input moment to
the sum of output moments leads to the last nineth equation
within the right rectangular element:

Mx( )+My() M? (20b)

Remind, that solutions for x- and y- beams are de-
rived from subchapter 3.1 where all three constants A,, A,
Ag and A6 are taken to be zero. Similarly, the equations
can be written for 3 other cases of placement of the hy-
pothenuse in the right triangular elements.

4. Examples of calculations

To spare the place we omit here the description of
the organization of the calculation process. It is described
in detail in works [1-4] and technically it is based on the
transfer matrix method, TMM [23].

Consider two typical examples used in the sub-
stantiation of the efficiency of the numerical methods [24-
26].

4.1. Cantilever beam like the rectangular CFFF plate.

First, let us consider the simplest case - a rectangular
plate stretched along one X-axis three sides of which are
free, F, and the left side is clamped, C, Fig. 3. Let's study
to what extent the elongation and the number of elements
affect the quality of the obtained results. Fix the linear di-
mensions of the element as [, = 20, ly = 1, so this large
ratio allows us to consider the plate as a beam, especially
in its central sections. The right side is loaded with a unit
evenly distributed shear force along the x-axis, Fig. 3.

Y
T g
TN TN
A
2 T '
ly TN/Z TN/2 ,L:ezl
'
‘rf Tiy x

Fig 3. Cantilever beam-like CFFF plate

A theoretical beam-like solution for normal stress

0 (y) and shear stress T(y) in the central section (x =

10) can be obtained readily by using the following for-
mula:

6(y — 0.5)
x — 7

() =151 -2y -1?

The first comparison will be made on the center line
of the vertical line at x = 10. According to (21b), along
this line, T, varies parabolically, and has a maximum of
T,=15aty = ly /2 = 0.5. The stress ¢f varies linearly,
from 60 to —60, respectively, Fig 4.

=60-2y—-1) (21a)

(21b)

Theoretical Sigma X

60 —— Sigma X (Theoretical)

20

Stress
o

-20

0.0 0.2 0.4 0.6 0.8 10
y-coordinate

Theoretical Tau X

—— Tau X (Theoretical)

14

12

10

0.8

Stress

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 10
y-coordinate

Fig 4. Theoretical stresses for beam-like CFFF
plate

Note that the MMS solution results in 7}, values
somewhat averaged along the sides of the corresponding
elements. And since the vertical amount of elements, N, is
assumed to be small, it is more appropriate to transform
shear stresses (21b) into the averaged values of Tp, 4y,
where m is the particular element number in the vertical
direction, Fig 3.

N
Tmavg_Nf_ 15(1—(2}/—1) )dy_
N
4m -2 4Bm?-3m+1)
=15 - ,

m e (22a)
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For example, when N is uneven, then the averaged shear
stress in the central element, 7. 41,4, is calculated for m =
(N+1)/2:

Teang = 15 (1 - ) (22b)

3-N?

Now let us calculate stress values using MMS. We
start with a 2 X 1 base grid, where M = 2 elements along
the x-axis, and N = 1 along y-axis. We will check the cal-
culated central, T, _y/, and the edge values of 75,_y and

the edge values of t5,—; and the edge values of af, and
compare them with the theoretical averaged central values
of T 4y and the edge values of 74 4,4, Table 1. Evidently,
the results for o5 calculated by the formula (2a) with (2b)
are very good notwithstanding the mesh refinement, nor
from the a/b ratio. In some cases, for a small number of
elements in the x-direction (M) and a very large a/b ratio,
the results are a little smaller than the theoretical ones. As
to ¥ values, they require a larger number of N and M re-
finement to become accurate and the ratio of a/b needs to
be close to 1.

Comparison of the T* results is complicated by the
fact that they are integrally averaged along the sides of the
corresponding elements. It is worth recalling that MMS
does not use the law of equality of the shear stresses. It is
of interest to calculate and compare the values of shear
stress along the horizontal sides of the elements, 77, as in-
dicated in Fig. 3. And compare them with the values ob-
tained through (21b), for different aspect ratios and mesh
densities, Table 2.

Although our method do not explicitly equal T* and
7Y, their values become very similar when the grid is suf-
ficiently dense. This can be easily seen in Fig. 5, where the
grid is taken as M = 256, N = 11.

Comparison of Tau

1 —— Tau Theory
44 144 TauY

144 7 —
1.2 /
10 1ol

0.6 1

— Tau X

Stress

0.4

0.24

0.0 4

0.0 0.2 0.4 0.6 0.8 10
y-coordinate

Fig 5. Tau comparison for a dense grid

4.2. Infinite plate with a circular cutout

Now let's move on to a much more complicated ge-
ometry. Consider a rectangular plate with infinitely long

sides, with a circular cutout with a radius a, in its center.
The origin of the coordinates is at the center of the plate. A
unit force is applied to the right side along the x-axis. An
analytical solution to this problem is proposed is given,
among others in [26]. Thus, the stresses are expressed us-
ing the following formulas:
a2 (3 3a*

o*=T-T— <— cos26 + cos40) + T 5 cos46,(23a)
re \2 2r

a2 /1 3a*
oY = —Tr—2 (— c0s26 — COS49) — T —cos40, (23b)

2 2r4
oo gl (1 in20 + si 49)+T3a4 in46, (23¢)
™ = 7 |zsin sin 57 sin46, (23¢
where
— 2xy x? —y?
r =.x2+ y?,sin20 = m,cosze =77 yz.(23d)
. 4xy(x* — y?)
sin40 = W.
(xZ _ y2)2 _ 4x2y2
cos40 = Gz 107 (23e)

The maximum stress concentration occurs at
(a., 0), where o, = 3T.

For calculations, let us consider the finite part of this
plate with radius a.. Namely, the right upper quarter of a
figure with finite length [, and height ,,, Fig 6. We are left
with a cutout in the form of a quarter circle of radius a.. To
qualitatively describe a quarter circle let us place N, points
on it. Then, place triangular elements on the boundary so
that the points on the arc are their vertices.

2.04

154

1.0 @

0.51

0.0 4

0.0 0.5 1.0 15 2.0
X

Fig 6. Plate with a circular cutout (N, = 7)

Within this geometry, we need to set the boundary
conditions correctly to model an infinite body. The bound-
ary conditions for x = 0 and y = 0 are simple symmetry
conditions: U§ = 6% = L§ = 0 for the left side and V)’ =
87 = L}, = 0 for the bottom side, respectively. The cutout
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boundary is free, so we set the force components there to
Zero.

The situation is more complicated with the right and
upper bounds. We need to set on these boundaries the loads
described in (23a-c). However, we operate with forces and
moments distributed along the sides of the elements, while
the analytical formulas specify stresses pointwise.

Let us consider the right boundary of the lower right
element as an example. For calculating the N* and L*, the
equations (23a-b) simply need to be integrated along the
right side, (24a-b).

b
N* = fax(x =1l)dy, (24a)
0
b
L* = J-‘rxy(x =1,)dy. (24b)

0

Among other things, MMS allows moment loads to
be applied as boundary conditions. The moments have
maximum values at the edge points of the element side.
Maximum negative at the bottom (y = 0), and maximum
positive at the top (y = b). That is, it is necessary to inte-
grate ¢* while multiplying each integration segment by the
distance to the center of the side, b.(y), considering the
sign, (25a).

b

M* = J- d*(x =1,)(y —0.5)dy.
0

(24¢)

The analogous approach is also applied to the upper
side (y = 1,).

Suppose we have a plate with length [, = 3, height
l, = 2, and radius of the cutout circle a, = 1. Let's apply
for it the base mesh M = N = 71, and describe the circle

with N, = 23 points. We present the results along the hor-
izontal and vertical lines of greatest interest to us, Fig 7.
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3.00 —— Sigma X - MMS

2.751

stress

10 12 14 16 18 2.0
y-coordinate

Sigma Y (y = 0.00)

— Sigma Y - Theory SESN_————
0.0 4 — Sigma Y - MMS

1.00 125 1.50 175 2.00 2.25 2.50 275 3.00
x-coordinate

Tau XY (x = 1.20)

= Tau XY - Theory
Tau XY - MMS

—-0.05

-0.10

-0.15

stress

-0.20

-0.25

-0.30

0.00 0.25 0.50 0.75 1.00 125 1.50 175 2.00
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Fig 7. Comparison of results for an infinite plate
with a circular cutout

From the results, we can see that MMS allows us to
describe complex geometry using a small mesh of ele-
ments. For more clarity, numerical results at the points of
greatest difference are given, Table 3.

Conclusion

The method of the matched section has been proven
to be an effective numerical technique for solving the com-
plicated problems of mathematical physics formulated
through partial differential equations. MMS is a new vari-
ant of the FEM and contains all its principal features —
meshing on finite elements, the substitution of the differ-
ential dependences by an algebraical one for each element,
compilation of equations, and solution of the global matrix.
Yet its main unique feature is the substitution of the partial
differential equations by the ordinary ones with subsequent
exact or approximate solution of them. This allows to ac-
curately account for all known 1D behavioral peculiarities
and avoid all unwanted effects related, for example, with
shear, membrane, and volume locking. The significance of
the present paper consists in:

1. For the first time it considers the 2D plane body
problem of the elasticity by the MMS. Instead of the hy-
pothesis of equality of shear stress the equation of the mo-
ment equilibrium is accounted for each element.
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Table 1. Comparison of T * results for beam-like CFFF plate depending on the grid and aspect ratio

N M alb Treni L T T\ e oy
) 10 1 1 60
1 1 1
6 3.33 1 1 60
2 30 1.0061 0.997 59.9565
3 8 7.5 1.248 1.44 0.876 0.78 60.0132
32 1.875 1.3484 0.8258 60.0000
2 50 1.0024 0.9976 59.9455
5 16 6.25 1.3132 1.48 0.6887 0.52 60.0005
64 1.562 1.4346 0.5729 60.0000
2 110 1.0005 0.9992 59.9604
11 32 6.875 1.3576 L5 0.4834 0.26 60.0000
128 | 1.7188 1.4799 0.3047 60.0000
8 52.5 1.0346 0.9415 59.8996
21 64 | 6.5625 1.4246 L5 0.3238 0.14 60.0000
256 1.64 1.495 0.1645 60.0000

Table 2. Comparison of 7 ? results for beam-like CFFF plate depending on the mesh and aspect ratio

1

V7. (y=0 7. (y=0.5 .t y=05+—

Mxn | @b Nz (y=0) | )l (y=05) [ ), 7|y N
2x3 30 1.3334 ] 1.3333 1.3334 | 1.3333 0.0000 | 0.0000
8x3 7.5 1.3333 | 1.3333 1.3333]1.3333 0.0000 | 0.0000
2x5 50 0.9600 | 0.9600 1.4400 | 1.4400 0.9600 | 0.9600
16x5 6.25 0.9600 | 0.9600 1.4400 | 1.4400 0.9600 | 0.9600
2x11 110 0.4959 | 0.4959 1.4876 | 1.4876 1.3885 | 1.3884
32x11 | 6875 0.4959 | 0.4959 1.4876 | 1.4876 1.3884 | 1.3884
4x31 155 0.18730.1873 1.4984 | 1.4984 1.4859 | 1.4860

Table 3. Comparison of results for an infinite plate with a circular cutout

Mx N . y W
I.1, N, a*(0,1) o’ (1,0) ™ (1,1)
3,2 712’371 3.0816 -0.8868 -0.25
Analytical 3 -1 -0.25
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ble right triangular element is formulated. It allows to accu-
rately treat any geometrical peculiarities of the boundaries.
3. In contrast to traditional FEM each MMS element
exactly satisfies the force equilibrium in either of two di-
rections as well as the moment equilibrium. Thus, the equi-
librium is fulfilled exactly for the whole body as well.
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YncsioBuil aHami3 3a1a4i CTATUKU NPYKHOTO MJIOCKOT0 TLJIa METOOM Yy3IO/IxKe-
HHUX CiYeHb

K. Nauuaenxo! o I Opunsk!

' KII im. Izops Cikopcvkozo, Kuis, Ykpaina

Anomauis. Cmammsi npo0oeacye yuki agmopcobKux pobim 3 po3pooKu NPUHYUNOBO HOB020 GAPIANMY MemOOy CKIHYEHHUX e/leMeHMI
MCE ons upiwenns piznomanimuux 3a0ay mamemamuunoi Qizuxu, a came memooy y3eooxucenux civenv MYC. Tym posenadacmbcs
npyscre naocke mino npu cmamuynomy naeanmadicenui. Ax i ¢ MCE, éce mino posbusacmocs na OpiOHi enemenmu, nepesaxdcHo,
npsmoxymuoi popmu. OcrosHna ocobaugicms Memoody nojsieac y 66e0eHHi Habopy OCHOGHUX NAPAMEMPIS, SKi 3a1edcamy aume 6i0
00Hi€l KOOpOUHAmMHOI 3MiHHOL, mobmo 6i0 x abo y. Taxum yunom, 6y0b-sike Oughepenyitine pisHAHHS PIGHOSAU 3 080MA YACMUHHUMU
NOXIOHUMU NO X ab0 Y PO30UBAEMbCSL HA 08 BIOHOCHO NPOCMUX PIGHSIHHS NO GIOHOWIEHHIO uue 00 OOHIET He3anedcHoT sminnoi. [le
npu3eo0uUms 00 66e0eH s 0OHICE 000aAMKOBOI KOHCMAHMU, KA NOKA3YE 83AEMOOOMIN MidiC YumMu 08oma pigHsHHamu. Beedeni kownc-
MAHMU MOJICHA BUBECTNU 3 DIGHSIHHS HENEPEPEHOCMI KIHEMAMUYHUX NApaMempig y yenmpi Kkodcho2o eiemenma. OchogHumu, Hanpu-

. X X . .
KAa0, 3anediCHuMy 8i0 X napamempamu €: v (x) ma u (x) nepemiwjens y 6epmuKaibHoMy (v-) i 20pU30HMATLHOMY (X-) HANPAMKAX
. . X . . X . . . o
6ionogiono; nopmarvna N (x) i manzenyianena (3cyena) L (x) CUU 8 X -HANPAMKY MA Y- HANPAMKAX 8iONO0GIOHO, | 32UHANLHULL

momenm M (x) i kym nosopomy 0 (x) . I[Tooibni napamempu ecmanognioromscs i 0na nanpamky y. Ha ocnogi memooonozii memooy

NOYAMKOBUX NAPAMEMPIE BCMAHOBIIOEMbCA AHANIMUYHA 3ATIEHCHICMb Y 8USTAOT Mampuyi 363Ky MIdJC yumu napamempamu 6 6y0v-
AKid mouyi x abo y ma napamempamu Ha HUMCHIU ma/abo nigill medici enemenma. [nsa 06poOKu noxuaux i KpUSOAIHIUHUX SPpaAHUYb
8UBCOCHO NPSMOKYMHUL MPUKYIMHULL eeMEeHm K OKPeMULL BUPOOICEHUT UNAOOK NPAMOKYMHO20 eiemenma. Ompumana cucmema
JUHIUHUX PIGHAHb OPMYIOMbCS 0TI HEGIOOMUX 3HAYEHb YCIX NAPAMEmpI8, 3a0aHUX Ha Mexci 6cix enemenmis. Egpexmusnicmo i uyooea
mounicms MYC npodemoncmposana na KIACU4HUX NPUKIAOAX 32UHAHHS 0082020 NPSAMOKYMHO20 mina (bankosa ceomempis) i po3msi-
2Y6anHa Ha HecKiHuennocmi 2D mina 3 ManeHbKuM Kpy208Uum OmeopoM.

Kntouosi cnosa: Memoo y3eo0dcenux civenb, Memoo nouamKo8ux napamempis, npysiche niocke mino, mpukymuuil e1emenm, panu-
YHI YMOBU, HECKIHYEHA NIACMUHA 3 KPY2TUM OME0POM.




