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Abstract: This article presents a comprehensive review of temperature compensation techniques for ball screw feed drives in CNC
machine tools, where thermally induced errors account for up to 70 % of total positioning errors. Ball screws are particularly
susceptible to thermal expansion as frictional heat generated in the screw, nut, and bearings causes axial elongation, directly
compromising machining accuracy. The problem intensifies in high-speed machining conditions, where increased feed rates and duty
cycles produce greater frictional heating. We analyze three key aspects of thermal compensation: modeling approaches, temperature
measurement techniques, and accuracy validation methods. Modeling approaches range from physics-based analytical methods using
finite element and heat transfer principles to empirical techniques employing multiple linear regression, principal component analysis,
and machine learning algorithms including artificial neural networks. Temperature monitoring strategies span from traditional contact
sensors at strategic points to advanced wireless sensor arrays with embedded temperature sensors along the screw length, as well as
non-contact infrared thermography for capturing detailed thermal profiles. Accuracy validation methodologies primarily utilize laser
interferometry with sub-micrometer accuracy, eddy-current displacement sensors and coordinate measuring machines for part
verification. The reviewed studies demonstrate significant improvement in positioning accuracy, with thermal errors reduced by
up to 85 % in some implementations, achieving positioning accuracy below 10 micrometers. Empirical modeling enhanced by
comprehensive non-contact thermal sensing and calibration through laser interferometry emerges as a particularly promising
approach for robust compensation. Future research directions should focus on adaptive models that maintain effectiveness under
varying operating conditions, as compensation strategies continue to evolve toward improving the precision and reliability of next-
generation CNC systems.
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Introduction

Thermally induced errors have a dominant influence
on machine tool accuracy, accounting for up to 70 % of the
total positioning errors [1]-[11]. In CNC machines, ball
screw feed drives are especially susceptible to thermal ex-
pansion, as heat generated from friction in the screw, nut,
and bearings causes the screw to elongate. This thermal
elongation directly translates into positioning error along
the axis [1], [12]. The problem is acute in semi-closed-loop
systems, in which only the rotary encoder on the motor is
used for positioning feedback, meaning any change in
screw length remains undetected by the control and leads
to lost accuracy. [12]. Thermal expansion intensifies with
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faster feed rates. In particular, high-speed machining (HSM)
conditions exacerbate this issue: faster axis feed rates and
longer duty cycles produce more frictional heating in the
screw assembly, leading to larger temperature rises and ex-
pansions [1], [13]. As shown in Fig. 1, faster rotational
speeds produce more rapid temperature changes and a
higher equilibrium temperature. Such speed-dependent
thermal errors are crucial in modern high-speed machining,
as expansions on the order of a few micrometers can force
a precision component beyond its specified tolerance.

Machine builders have pursued two general strate-
gies to tackle thermal errors: error avoidance and error
compensation [2]. Error avoidance aims to minimize ther-
mal disturbances through design or environmental control —
examples include symmetric machine designs, pre-ten-
sioned ball screws, cooling systems, or maintaining con-
stant ambient conditions. One approach is passive or active
cooling of the ball screw, for example by internal cooling
channels [1].
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Fig. 1. Temperature dependence from rotational
speed [14]

In contrast, when error compensation is used, the
machine is permitted to heat and deform, while a corrective
offset is applied in the CNC controller to counteract the
thermal expansion. Compensation techniques sense or pre-
dict the thermal-induced displacement and adjust the tool
position command in real time to maintain accuracy. This
approach is generally more convenient and cost-effective
in practice than rigid avoidance of thermal effects [2].

Ball screw thermal error compensation requires un-
derstanding the relationship between temperature changes
in the feed drive and the resulting axial growth. Research-
ers have developed a variety of modeling methods to cap-
ture this relationship, as well as sensor systems to monitor
temperature and calibration techniques to measure the ac-
tual elongation for validation. High-speed ball screws pose
particular challenges, as they heat rapidly and unevenly
along their length, necessitating dynamic compensation mo-
dels. Moreover, sensors or estimation approaches must ac-
count for a moving heat source, namely the translating nut.

This article reviews the state of the art in temperature
compensation for ball screw feed drives, based exclusively
on recent scientific studies. We organize the review into
three thematic areas: Compensation methods — the model-
ing and control algorithms used to predict and offset ther-
mal errors; Temperature measurement methods — the tech-
niques and sensor arrangements for monitoring the thermal
state of ball screws; and Accuracy measurement methods —
how the resulting positioning errors are measured and
quantified for model development and validation. Within
each theme, we highlight key developments and compare
the merits of different approaches. Finally, we discuss the
trends and identify the most promising techniques. In par-
ticular, based on the literature surveyed, empirical model-
ing methods combined with advanced non-contact temper-
ature sensing and laser interferometer calibration emerge
as highly effective solutions for ball screw thermal error
compensation.

Compensation Methods for Ball Screw Ther-
mal Errors

Physics-Based and Analytical Models. These
methods derive the thermal behavior from physical princi-
ples to predict screw expansion. FEM simulations and ana-

lytical heat transfer models have been used to describe tem-
perature distribution and expansion of ball screws. For ex-
ample, finite element thermal models can calculate the
temperature profile along a screw under given operating
conditions, which is then translated into axial growth. Xu
et al. [1] present a classic example by developing thermal
models based on the finite element method and a modified
lumped-capacitance approach for a ball screw with and
without an internal cooling system. In this work, the heat
generated by the nut in the ball screw and the heat transfer
coefficient are represented by the following formulas [1]:

H, =0.12xf,v,nM ; (1)
h=NyKqig /d; 2
N, = 0.133Re?*pr3, (3)

In (1), Hn denotes the thermal power generated by
the nut; fo is a coefficient dependent on nut type and lubri-
cation method; vo represents the kinematic viscosity of the
lubricant; n corresponds to the rotational speed of the
screw; and M signifies the total frictional torque in the nut,
including both preload and dynamic load. The convective
heat transfer coefficient (2) h is defined via the Nusselt
number Ny, which is calculated from the Reynolds number
Re and the Prandtl number Pr as shown in (3), kiuig denotes
the thermal conductivity of the ambient air and d represents
the diameter of the screw where convection occurs. Such
principle-based models can capture detailed effects such as
heat generation at contacts and heat diffusion, but they of-
ten require extensive calibration of material properties,
convective coefficients, and contact friction parameters to
accurately reflect real conditions.

An accurate physics model may also be computa-
tionally heavy for real-time use. To address the challenge
of a moving heat source, represented by the nut traversing
the screw, researchers have introduced techniques such as
moving node renumbering in FEM [15] or finite difference
formulations that shift the heat input along the screw over
time [3]. Jedrzejewski et al. [15] developed a precise FEM
model including moving heat sources and time-varying
loads, enabling estimation of the nut’s thermal expansion
contribution as it travels. Liu et al. [3] similarly treated the
ball nut as a moving heat source in a finite difference ther-
mal simulation, which improved modeling accuracy under
actual reciprocating motion conditions. As illustrated in
Fig. 2, heat generated by the nut is unevenly distributed
along the screw, resulting in a non-linear elongation pro-
file. Qiu et al. [17] further advanced theoretical modeling
by incorporating the dependence of frictional heat genera-
tion on both speed and temperature. They derived a friction
heat equation that includes screw raceway geometry and
accounts for the drop in viscous friction torque as the
grease warms. This yielded an analytical model where the
steady-state temperature rise at different rotational speeds
follows an exponential relationship with speed. These ap-
proaches yield a detailed understanding of screw thermal
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behavior; however, implementing them for real-time com-
pensation is difficult due to computation complexity and
the need to measure or estimate many physical parameters
in operation.

v
-] (=]
A
S}
~

(NS T S T \ TR
(=)

N

)
w Temperature(°C)

B0
SN

; 400

z
100 “\g)gg'\\'\o“(l“““

400 500 s

300
z
100 '\5"?5\\'\01\ (mm)

Fig. 2. Distribution of heat along the ball screw
under different operating conditions [3]: axis
movement along full stroke (a); movement in
short range along the axis (b)

Instead of purely relying on forward physical simu-
lation during machining, some strategies use physics-based
hybrid models in a precomputed or auxiliary manner. In a
recent hybrid compensation scheme, Geist et al. [16] em-
ploy pre-calculated thermo-elastic characteristic diagrams
derived from FEM. These characteristic diagrams map
thermal states to error values. During machining, a simpli-
fied structure model monitors thermal state of the machine
and selects the appropriate precomputed map; if an unmod-
eled state is encountered, a new FEM simulation can be in-
itiated in a semi-automatic manner to update the compen-
sation. This method effectively outsources heavy compu-
tation to an offline process, allowing complex physics to
inform real-time compensation with manageable computa-
tional load. Rong et al. [4] propose an iterative finite-dif-
ference thermal error model that is computationally effi-
cient for CNC implementation. By assuming an approxi-
mately linear relationship between heat generation, con-
vective cooling, and feed speed, they reduce the number of
parameters that must be identified experimentally. The
model updates the temperature and expansion state of the
ball screw iteratively during operation. After compensa-
tion, the maximum thermal error decreased by 88.7 % in
the X direction, 87.1 % in the Y direction, and 56.7 % in the
Z direction. Such hybrid approaches highlight the ongoing
integration of theoretical modeling with practical control.

Empirical Modeling and Data-Driven Methods.
Given the difficulties in obtaining a perfect physics model
for complex CNC machines, empirical modeling has be-
come the backbone of most thermal error compensation
systems. Empirical models utilize measured data, such as
temperature and deformation, to determine how tempera-
ture at specific points relates to the resulting thermal ex-
pansion. A straightforward example is the multiple linear
regression model used by Zhang et al. [12]. They separated
the total screw positioning error into a geometric compo-
nent, caused by screw pitch errors and mounting alignment,
and a thermal expansion component. By collecting data of
screw expansion at various temperatures and positions,
they fit a multiple linear regression model for the thermal
error as a function of screw temperature and position along
the axis. Their model, fitted for a specific mounting con-
figuration of the screw, could predict thermal drift at any
position given the screw’s temperature, and compensation
based on this model improved positioning accuracy signifi-
cantly. In a similar way, Chebyshev polynomial-based or-
thogonal least-squares method has been employed to de-
velop thermal error models that closely align with measu-
red thermal drift curves. [2]. The general form of least-
squares method is shown in (4). These linear models are
straightforward, require modest computation, and have
been successfully implemented in CNC controllers for
real-time error correction.

y=2af(x)+-+a fi(x). (4)

Empirical modeling often involves choosing a few
key temperature-sensitive points on the machine structure
to serve as inputs. The temperatures at these points are used
as proxies for the overall thermal state. Determining the
optimal sensor locations is non-trivial — the best locations
are those whose temperature strongly correlates with the
screw expansion. Miao et al. [5] demonstrated that tempe-
rature-sensitive sensor locations can drift under varying
operating conditions, such as changes in ambient environ-
ment or spindle speed, thereby undermining a fixed model.
They proposed using Principal component regression
(PCR) to handle multi-collinearity among sensor readings.
By effectively combining temperature inputs, the PCR-
based model achieved more stable accuracy even when the
thermal pattern shifted, and their traverse optimization
method helped choose an optimal subset of sensors auto-
matically. Another study by Liu et al. [6] introduced ridge
regression for thermal error modeling, similarly aimed at
improving robustness against collinear temperature inputs.
By employing a ridge regression model, this approach mi-
ti-gated overfitting to noise or specific thermal scenarios
and maintained superior predictive stability. Using this
method, the thermal error along the Z axis was reduced
from over 40 micrometers to below 10 micrometers.

These studies highlight that, even within empirical
linear models, careful algorithm choices can markedly im-
prove performance in real machining environments where
thermal conditions are not identical to the training data.
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Beyond linear models, a variety of machine learning
techniques have been explored for thermal compensation.
Avrtificial neural networks (ANNSs) have long been used
due to their ability to approximate nonlinear relationships
between temperatures and error. Zhang et al. [7] combined
grey system theory with neural networks, creating hybrid
grey-neural models that outperformed stand-alone neural
nets in both accuracy and robustness on a five-axis ma-
chine tool. Their serial and parallel grey neural network
models could better generalize from limited training data
(a frequent scenario in thermal testing) compared to basic
back-propagation networks. Support Vector Regression
(SVR) is another machine learning approach applied to
thermal error modeling. Miao et al. [18] compared SVR
against linear models on a CNC spindle and found that
SVR maintained strong prediction accuracy even when
trained on a small data set, whereas linear models’ accu-
racy degraded with sparse data. However, with more abun-
dant data, all models improved and advantage of SVR be-
came less pronounced or even unstable, indicating that
model selection may depend on practical data availability
and required robustness.

More recently, deep learning models have gained at-
tention for thermal compensation. Zhou et al. [19] pro-
posed a comprehensive error compensation method for a
CNC ball screw drive, employing a deep learning model
based on a Long short-term memory (LSTM) neural net-
work optimized by a whale optimization algorithm. Their
deep model could capture complex thermal error patterns
and was implemented in the machine’s numerical control
system in real time. During the experiments, applying this
compensation reduced Z-axis error from +14.5 microme-
ters to £6 micrometers. This marked improvement demon-
strates the potential of modern neural network models in
handling the nonlinear, time-dependent nature of thermal
errors. The downside is that neural networks require more
extensive training data and careful validation to ensure they
do not overfit to specific thermal cycles. Nonetheless, as
CNC controllers and industrial PCs become more power-
ful, deploying such models is increasingly feasible.

Real-Time Implementation Considerations: Re-
gardless of modeling approach, implementing thermal er-
ror compensation on an actual CNC machine involves
practical considerations. The model must run fast enough
not to impede the control cycle. Empirical models are typ-
ically algebraic and execute quickly, an advantage over it-
erative physics simulations. For example, a simple regres-
sion or even a multi-layer neural network can be computed
in a fraction of a millisecond on modern hardware. Many
researchers have successfully embedded their compensa-
tion algorithms into CNC controllers or external modules.
Pajor et al. [8] developed an on-line neural network com-
pensation system for a conventional CNC axis: they instru-
mented a ball screw with sensors and implemented an
ANN model in the controller that adjusted position com-
mands in real time. This exemplifies that even relatively
advanced models can be deployed on industrial equipment
effectively.

Another implementation challenge is maintaining
model accuracy over long-term machine operation. Ma-
chine characteristics can evolve over time due to factors
such as wear and lubrication changes, which may alter ther-
mal behavior. Zimmermann et al. [20] addressed this with
an adaptive compensation approach: their Thermal adap-
tive learning control (TALC) framework periodically up-
dates the model using new data and employs Group — least
absolute shrinkage and selection operator (Group-LASSO)
auto-regressive with exogenous (ARX) models to automa-
tically re-select the most relevant temperature inputs as
conditions evolve. This underscores the benefit of adaptive
and self-learning models in compensation of ball screw er-
rors, especially for long-running precision machines where
initial models might drift over months of use.

Finally, a few methods dispense with physical tem-
perature sensors entirely and infer thermal error from other
signals. One innovative approach uses the CNC’s internal
servo data. Zhou et al. [9] proposed modeling thermal de-
formation of a ball screw using real-time motor current,
motor speed, and axis position information from the CNC
system, instead of direct temperature measurements. Used
by authors formula (5) expresses Qp as the heat generated
in the ball screw, where | denote the current in the drive
motor, S the distance covered by the nut, and k the coeffi-
cient of heat generated by the work of motor.

Qp=k-1-S. (5)

They reasoned that motor load and motion data indi-
rectly reflect heat generation through friction work and
could be employed to predict expansion. They built a
model via multiple linear regression relating these internal
signals to the thermal drift of the screw. Experiments on a
small machine tool showed this sensor-less method could
estimate the screw expansion in both warm-up and cool-
down phases with high accuracy. Similarly, Xu et al. [15]
developed a compensation system that required no temper-
ature or position feedback during operation — all inputs to
the model were given by command signals and a pre-cha-
racterized thermal model of the screw. These open-loop
predictive approaches remove the cost and lag associated
with sensors, though they typically require extensive off-
line identification of model parameters and may be sensi-
tive to unmodeled disturbances such as unexpected friction
changes. In practice, purely sensor-less methods are still
less common than sensor-based empirical models, but they
demonstrate the range of strategies being explored.

Temperature Measurement Methods for
Ball Screws

Effective thermal compensation hinges on accu-
rately capturing the thermal state of the ball screw in real
time. Traditionally, this is accomplished using contact
temperature sensors such as thermocouples, attached to
strategic points on the screw or related structures. A com-
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mon approach is to mount temperature sensors near the
ends of the screw, nut, and bearing housings, where much
of the heat is generated or conducted. For example, in a
study on an X-axis of a drilling machine, three key temper-
atures were monitored: the ambient end of the screw, the
nut end, and the motor-side bearing [21]. These were found
to correlate with the thermal expansion the screw, and pro-
vided inputs to a compensation model. Many researchers
use between 2 to 10 sensors distributed along the screw.
Pajor et al. [8] implemented a diagnostic system featuring
nine thermistor sensors evenly distributed along a pre-ten-
sioned ball screw, along with an additional sensor on the
machine frame. By measuring a temperature profile along
the screw, their system could better capture the non-uni-
form heating pattern and thus improve the effectiveness of
the compensation. The sensors were inserted into trans-
verse holes in the screw and wired out through an axial
bore via a slip ring collector, allowing continuous readings
from the rotating screw. Similarly, Tanaka et al. [10] de-
veloped a ball screw with a built-in wireless temperature
sensor array. They embedded 25 miniature temperature
sensors along length of a ball screw, with wireless trans-
mission of the data from the rotating screw to a base sta-
tion. This overcame the longstanding issue of how to in-
strument a fast-moving, rotating component without tan-
gled wires or slip rings. Although contact sensors typically
offer high reliability and accuracy, integrating them within
a ball screw and performing subsequent maintenance can
be both costly and technically challenging.

Important question is where to place these sensors
for the best predictive power. The optimal sensor locations
may not be obvious, as different regions of the screw and
machine heat up at different rates depending on duty cycle
and environment. Researchers have applied statistical ana-
lyses to select temperature-sensitive points. One technique
is fuzzy clustering and correlation analysis to identify
which sensor positions have the strongest relationship to
the thermal error. Miao et al. [18] used such methods on a
spindle system to choose sensor locations, and then built
models relating those temperatures to axial drift. More di-
rectly, some studies simply trial multiple sensor place-
ments and evaluate model accuracy. An important finding
by Miao et al. [5] was that the contribution of certain sen-
sors can change with different operating conditions. This
variability means a fixed set of sensor inputs could yield
high accuracy in the scenario it was trained on but lose ef-
fectiveness elsewhere — a lack of robustness. To address
this, they proposed employing principal component regres-
sion to ensure that the temperature inputs to the model re-
main orthogonal and thus independent. They also intro-
duced a “traverse optimization” method to systematically
search for the best combination of sensor points for the
PCR model. The result was a compensation model less sen-
sitive to which specific sensors were included, thus more
resilient to changes.

While most implementations use wired contact sen-
sors, there is growing interest in non-contact and advan-

ced sensing for ball screws. Infrared (IR) thermography is
a powerful non-contact method to obtain the temperature
distribution over a surface. Modern infrared cameras can
capture the entire thermal field of a machine component in
real time. Mayr et al. [22] noted that IR cameras are com-
monly used in research to measure temperature on machine
tool structures. The temperature difference between cold
and warm condition of the ball screw is shown on Fig. 3.

Fig. 3. Ball screw in cold condition (a) and after
4000 cycles (b) [22]

As demonstrated by Zaptata [23], this method can
capture detailed thermal profiles that reveal critical
hotspots and gradients necessary for effective thermal error
compensation. However, its accuracy is strongly depend-
ent on the precise calibration of the surface emissivity and
careful management of ambient reflections, which can oth-
erwise lead to discrepancies compared to contact-based
sensors. The thermogram on Fig. 4. reveals non-uniform
emissivity across the screw.

Fig. 4. Thermogram of the heated ball screw [23]

To mitigate such issues, methods including the ap-
plication of high-emissivity coatings or using reference
contact measurements have been proposed [23]. Overall,
IR thermography offers a rapid and effective means to
monitor transient thermal states in high-speed machining
applications.

Another non-contact approach is to measure proxies
of temperature. We saw earlier that Zhou et al. [9] avoided
temperature sensors by relying on motor current and other
CNC internal signals. In essence, they treat the servo drive
as a thermo-sensor: when the axis is under load, the current
goes up, indicating friction work and thus heat generation.
Over time, this method infers the temperature rise indi-
rectly. Although it does not directly measure temperature,
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it eliminates the need for additional sensors and wiring on
the machine.

In addition to the screw itself, some approaches
monitor temperature of the surrounding machine structure.
Since the relative expansion between the screw and the ma-
chine frame matters, sensing both can improve compensa-
tion. For example, a sensor on the machine’s base or col-
umn can capture ambient drift. The system proposed by Pa-
jor at. al. [8] included a single sensor on the machine body
to serve as a reference. In the research conducted by
Tanakaet. al. [10], in addition to the 25 screw sensors, tem-
peratures were measured at 277 points on the machine
structure using an array called LATSIS (Large-scale Array
of Temperature Sensors in Series). The combination al-
lowed them to distinguish errors due to screw expansion
versus those from the machine frame deformation, leading
to more accurate overall compensation.

Lastly, it is worth noting the importance of response
time and noise in temperature measurements. Typical sen-
sors employed, such as small thermocouples or thermis-
tors, have response times on the order of seconds or faster,
which is usually sufficient for the application. Non-contact
IR can be near-instantaneous, but might be affected by sur-
face reflections or dirt. In either case, filtering techniques
are often applied to temperature readings in compensation
systems to smooth out noise. The ridge regression method
by Liu et al. [6] inherently helps in noise reduction by regu-
larization. Another approach is sensor fusion, which com-
bines or averages readings from multiple sensors to mini-
mize the impact of any single noisy measurement.

Accuracy Measurement and Validation
Methods

Developing and tuning a thermal error compensation
system requires accurate measurement of the actual posi-
tional errors caused by thermal expansion. These accuracy
measurements serve two main purposes: first, they supply
ground truth data for modeling during the calibration or
training phase, and second, they verify the effectiveness of
the compensation by measuring residual errors once it is
applied. Because these thermal expansions are relatively
minor, often in the range of tens of micrometers across sev-
eral hundred millimeters of travel, high-precision measure-
ment instruments are required.

The most prevalent tool for this task is the laser in-
terferometer. A laser interferometer can directly measure
the linear displacement of an axis with sub-micrometer ac-
curacy over the full travel. According to 1SO 230-2:2014 [24],
calibrated laser interferometers are the preferred instruments
for determining the accuracy and repeatability of numerica-
lly controlled axes, especially for linear axes up to 2,000 mm.
In thermal error studies, a common approach is to drive the
machine axis through a series of positions or cycles and then
use a laser interferometer system to record the positioning
error over time as the screw heats up. Pajor et al. explicitly

report that they measured the axis positioning accuracy us-
ing a Renishaw XL-80 laser system shown on Fig. 5.

AVIA Machine Tool

Mirrors

Interferometer

Fig. 5. Measurement arrangement using a laser
interferometer [8]

They performed a sequence of movements and cap-
tured both the temperature readings and the corresponding
expansion of the axis measured by the interferometer, with
own encoder-based feedback of the machine considered as
reference.

One important detail is that many modern interfer-
ometers incorporate automatic environmental compensa-
tion for air temperature, pressure, and humidity that affect
the laser wavelength. Pajor et al. [8] note that they enabled
environmental compensation of the laser during tests to en-
sure that the measured errors were exclusively attributable
to the thermal deformation under investigation.

Typically, the thermal error manifests as a slowly
changing bias in the axis length. Therefore, frequent measu-
rements are taken, for example every few minutes or after
a predetermined number of cycles. Yu et al. [21] provide a
good example of using a laser setup for thermal compensa-
tion development. In their work, they specifically measured
the deformation of the screw for every 1 °C change in tem-
perature, controlling ambient conditions to isolate the effect.

Another method for measuring thermal expansion is
using displacement sensors such as eddy-current or ca-
pacitive sensors. Instead of measuring the entire axis
travel, these sensors can directly measure the relative dis-
placement between two components. Tanaka et al. [10]
used an eddy-current displacement sensor to measure the
Z-axis thermal drift at the tool center point (TCP) while
their machine ran through thermal cycles. The sensor was
positioned to continuously monitor how much the spindle
head moved relative to the machine base due to thermal
growth of the structure and screw. Capacitive sensors simi-
larly can detect small changes in distance. However, these
are typically used in research or calibration rather than in-
stalled permanently on industrial machines, except in some
ultra-precision systems, because they require stable targets
and are sensitive to environmental noise such as vibrations.
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Some studies also use reference parts and measuring
machines. For instance, to validate multi-axis compensa-
tion, researchers might machine a test piece and measure it
on a coordinate measuring machine (CMM). In Rong et al.,
after applying their real-time compensation on a three-axis
machine, they performed a test by machining a precision
test piece (Fig. 6) and measuring its dimensions. This kind
of validation is more indirect but very practical — ulti-
mately, the goal of compensation is to improve part accu-
racy, so checking a machined part under thermal load is a
strong proof of effectiveness. However, when this measure-
ment method is used, additional factors such as tool defor-
mation must be taken into account, as they can influence
the final result.

Fig. 6. Test piece for measurement on coordinate
measuring machine [4]

Conclusion
This review highlights that robust thermal error

compensation in CNC ball screw feed drives requires a ho-
listic integration of advanced modeling, sensing, and calib-
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Komnencaunis rTemneparypHux aeopmManii B KyJ1bKOBO-TBUHTOBHUX Mapax
Bepcraris 3 UIIK. Orasia

B. M. Kopenbkos! o T. M. Ckpununk!

Y KMl im. Izops Cixopcokozo, Kuis, Yrpainua

Anomauia: YV oaniti cmammi npedcmagneHo KOMNIEKCHULL 0210 Memooie meMnepamypHoi KoMneHcayii s KYIbK080 -26UHNOBUX
nap y eepcmamax 3 YIIK, doe noxubxu cnpuuyuneni naepisom cknaoaroms 00 70 % 3azcanehux noxubox nosuyionysanws. Kynvkoso-
2BUHMOBI NAPU 0COONUBO CXUIbHI 00 MENT0B020 POSUWUPEHHS, OCKITbKU (PPUKYILIHe MENIo, WO 2eHePYEMbCA 8 28UHMI, 2aulyi ma nio-
WIUNHUKAX, CNPUYUHSE OCbOBE BUOOBICEHHS, Oe3n0cepeOHbo NOSiputyouu mounicms 0opobku. Ilpobnema nocumoemvcs 6 yMosax Gu-
COKOWBUOKICHOL 00poOKU, Oe nidsuuyeni weuoKoCcmi nooayi ma yukiu pobomu cmeoprooms oinvute ppukyitine naepieants. Mu ana-
J3YEMO MPU KIIOH08I ACHEeKMU MEPMIYHOT KOMREHCAyii: nioxoou 00 MOOeTO8AHH S, MEMOOU GUMIPIOBAHHS MEMNEPAmypu ma Memoou
nepegipku mourocmi. 1lioxoou 0o modenrosanms apioromvcs 6i0 QI3UUHUX AHATIMUYHUX MEeMOO0i8 3 UKOPUCAHHAM CKIHYEHHUX
eneMenmie ma npUHYUNIe menionepedayi 00 eMnipUYHUX Memoois, Wo GUKOPUCTIOBYIONMb MHOJMCUHHY JIHILIHY pespecito, aHai3 2010~
GHUX KOMNOHEHM Ma aneOPUMMU MAUWUHHO20 HAGYAHHS, BKIIOUAI0YYU WmYYHi Heliponni mepedci. Cmpamezii Monimopunzy memnepa-
Mypu OXONI0I0Mb 810 MPAOUYITHUX KOHMAKMHUX OAMYUKIE Y CIPAMe2iYHUX MOYKAX 00 nepedosux 6e30pomosux Macusié 0amyuKie
3 80Y008AHUMU MEMNEPAMYPHUMU OAMYUUKAMU 83008HC OOBICUHU 26UHMA, A MAKOXC Oe3KOHMAKMHY IHppauepeory mepmocpaghiio
OJ151 OMPUMAHHSL OeMANILHUX MENI08UX npoinie. Memooonoeii nepesipku mouHOCMI NePesadcHo BUKOPUCOBYIOMb JIA3EPHY IHmep-
hepomempito 3 CYOMIKPOMEMPUYHOIO MOYHICIIO, OAMYUKAMU NePEMIUeHHs. Ha OCHOBE 8UXPOBUX CIPYMI6 Ma KOOPOUHAMHO-GUMIDIO-
BAIbHI MawiuHu 015 eepuixayii odpobrenux demanei. Pozensnymi 00cuioxicenHs 0eMOHCIMPYIOMb 3HAYHE NOKPAWEHHS MOYHOCHII
NO3UYIOHYBAHHSL, 31 3MEHUEHHAM MEePMIYHUX NOXUOOK 00 85 % y Oesaxux eunaokax, 00csieaioyu MoYHOCMI NO3UYIOHYEAHHS HUICHE
10 mikpomempie. Emnipuune mooentogantsi, nocuniene KOMIAEKCHUM 6e3KOHMAKMHUM MEPMINHUM BUMIDIOGAHHAM MA KATIOPYBAHHAM
3a OONOMO2010 1A3ePHOT iHmepghepomempii, € 0cOOIUBO NEPCNEKMUBHUM NIOXOOOM O/ HAOIHOT KomneHcayii. Matioymui nanpsamKu
00CTOHCEHD MAIOMb 30CEPeOUMUCS HA AOANMUBHUX MOOETIAX, 5K 30epieaiomb eheKmusHiCMb 3a PI3HUX YMO8 eKCNIYAMAayil, OCKIIbKU
cmpamezii KomMnencayii npoooBIICYIONb PO3GUBAMUCS 8 HANPAMKY NiOsueH s moyHocmi ma Haoditinocmi cucmem YIIK nacmynnozo
NOKOMIHHSL.

Knrouosi cnosa: sepcmamu 3 IIK; Ky1bk060-26UHMO0O6a NApa, KOMNeHCayis memMnepamyprux 0egpopmayiti; 6UMIiplosants memnepa-
mypu,; 6UMIPIOBAHHS MOYHOCIL.




