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Abstract: This article presents a comprehensive review of temperature compensation techniques for ball screw feed drives in CNC 
machine tools, where thermally induced errors account for up to 70 % of total positioning errors. Ball screws are particularly 
susceptible to thermal expansion as frictional heat generated in the screw, nut, and bearings causes axial elongation, direct ly 

compromising machining accuracy. The problem intensifies in high-speed machining conditions, where increased feed rates and duty 
cycles produce greater frictional heating. We analyze three key aspects of thermal compensation: modeling approaches, temperature 
measurement techniques, and accuracy validation methods. Modeling approaches range from physics-based analytical methods using 
finite element and heat transfer principles to empirical techniques employing multiple linear regression, principal component analysis, 
and machine learning algorithms including artificial neural networks. Temperature monitoring strategies span from traditional contact 
sensors at strategic points to advanced wireless sensor arrays with embedded temperature sensors along the screw length, as well as 
non-contact infrared thermography for capturing detailed thermal profiles. Accuracy validation methodologies primarily utilize laser 
interferometry with sub-micrometer accuracy, eddy-current displacement sensors and coordinate measuring machines for part 

verification. The reviewed studies demonstrate significant improvement in positioning accuracy, with thermal errors reduced by 
up to 85 % in some implementations, achieving positioning accuracy below 10 micrometers. Empirical modeling enhanced by 
comprehensive non-contact thermal sensing and calibration through laser interferometry emerges as a particularly promising 
approach for robust compensation. Future research directions should focus on adaptive models that maintain effectiveness under 
varying operating conditions, as compensation strategies continue to evolve toward improving the precision and reliability of  next-
generation CNC systems. 

Keywords: CNC machine tools; ball screw; thermal error compensation; temperature sensing; accuracy measurement.

Introduction 

Thermally induced errors have a dominant influence 

on machine tool accuracy, accounting for up to 70 % of the 

total positioning errors [1]–[11]. In CNC machines, ball 

screw feed drives are especially susceptible to thermal ex-

pansion, as heat generated from friction in the screw, nut, 

and bearings causes the screw to elongate. This thermal 

elongation directly translates into positioning error along 

the axis [1], [12]. The problem is acute in semi-closed-loop 

systems, in which only the rotary encoder on the motor is 

used for positioning feedback, meaning any change in 

screw length remains undetected by the control and leads 

to lost accuracy. [12]. Thermal expansion intensifies with 

faster feed rates. In particular, high-speed machining (HSM) 

conditions exacerbate this issue: faster axis feed rates and 

longer duty cycles produce more frictional heating in the 

screw assembly, leading to larger temperature rises and ex-

pansions [1], [13]. As shown in Fig. 1, faster rotational 

speeds produce more rapid temperature changes and a 

higher equilibrium temperature. Such speed-dependent 

thermal errors are crucial in modern high-speed machining, 

as expansions on the order of a few micrometers can force 

a precision component beyond its specified tolerance. 

Machine builders have pursued two general strate-

gies to tackle thermal errors: error avoidance and error 

compensation [2]. Error avoidance aims to minimize ther-

mal disturbances through design or environmental control – 

examples include symmetric machine designs, pre-ten-

sioned ball screws, cooling systems, or maintaining con-

stant ambient conditions. One approach is passive or active 

cooling of the ball screw, for example by internal cooling 

channels [1].  
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Fig. 1. Temperature dependence from rotational 
speed [14] 

In contrast, when error compensation is used, the 

machine is permitted to heat and deform, while a corrective 

offset is applied in the CNC controller to counteract the 

thermal expansion. Compensation techniques sense or pre-

dict the thermal-induced displacement and adjust the tool 

position command in real time to maintain accuracy. This 

approach is generally more convenient and cost-effective 

in practice than rigid avoidance of thermal effects [2]. 

Ball screw thermal error compensation requires un-

derstanding the relationship between temperature changes 

in the feed drive and the resulting axial growth. Research-

ers have developed a variety of modeling methods to cap-

ture this relationship, as well as sensor systems to monitor 

temperature and calibration techniques to measure the ac-

tual elongation for validation. High-speed ball screws pose 

particular challenges, as they heat rapidly and unevenly 

along their length, necessitating dynamic compensation mo-

dels. Moreover, sensors or estimation approaches must ac-

count for a moving heat source, namely the translating nut. 

This article reviews the state of the art in temperature 

compensation for ball screw feed drives, based exclusively 

on recent scientific studies. We organize the review into 

three thematic areas: Compensation methods – the model-

ing and control algorithms used to predict and offset ther-

mal errors; Temperature measurement methods – the tech-

niques and sensor arrangements for monitoring the thermal 

state of ball screws; and Accuracy measurement methods – 

how the resulting positioning errors are measured and 

quantified for model development and validation. Within 

each theme, we highlight key developments and compare 

the merits of different approaches. Finally, we discuss the 

trends and identify the most promising techniques. In par-

ticular, based on the literature surveyed, empirical model-

ing methods combined with advanced non-contact temper-

ature sensing and laser interferometer calibration emerge 

as highly effective solutions for ball screw thermal error 

compensation. 

Compensation Methods for Ball Screw Ther-

mal Errors 

Physics-Based and Analytical Models. These 

methods derive the thermal behavior from physical princi-

ples to predict screw expansion. FEM simulations and ana-

lytical heat transfer models have been used to describe tem-

perature distribution and expansion of ball screws. For ex-

ample, finite element thermal models can calculate the 

temperature profile along a screw under given operating 

conditions, which is then translated into axial growth. Xu 

et al. [1] present a classic example by developing thermal 

models based on the finite element method and a modified 

lumped-capacitance approach for a ball screw with and 

without an internal cooling system. In this work, the heat 

generated by the nut in the ball screw and the heat transfer 

coefficient are represented by the following formulas [1]: 

 0 00.12nH f v nM=  ; (1) 

 /u fluidh N k d= ; (2) 
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In (1), Hn denotes the thermal power generated by 

the nut; ƒ0 is a coefficient dependent on nut type and lubri-

cation method; ν0 represents the kinematic viscosity of the 

lubricant; n corresponds to the rotational speed of the 

screw; and M signifies the total frictional torque in the nut, 

including both preload and dynamic load. The convective 

heat transfer coefficient (2) h is defined via the Nusselt 

number Nu, which is calculated from the Reynolds number 

Re and the Prandtl number Pr as shown in (3), kfluid denotes 

the thermal conductivity of the ambient air and d represents 

the diameter of the screw where convection occurs. Such 

principle-based models can capture detailed effects such as 

heat generation at contacts and heat diffusion, but they of-

ten require extensive calibration of material properties, 

convective coefficients, and contact friction parameters to 

accurately reflect real conditions.  

An accurate physics model may also be computa-

tionally heavy for real-time use. To address the challenge 

of a moving heat source, represented by the nut traversing 

the screw, researchers have introduced techniques such as 

moving node renumbering in FEM [15] or finite difference 

formulations that shift the heat input along the screw over 

time [3]. Jedrzejewski et al. [15] developed a precise FEM 

model including moving heat sources and time-varying 

loads, enabling estimation of the nut’s thermal expansion 

contribution as it travels. Liu et al. [3] similarly treated the 

ball nut as a moving heat source in a finite difference ther-

mal simulation, which improved modeling accuracy under 

actual reciprocating motion conditions. As illustrated in 

Fig. 2, heat generated by the nut is unevenly distributed 

along the screw, resulting in a non-linear elongation pro-

file. Qiu et al. [17] further advanced theoretical modeling 

by incorporating the dependence of frictional heat genera-

tion on both speed and temperature. They derived a friction 

heat equation that includes screw raceway geometry and 

accounts for the drop in viscous friction torque as the 

grease warms. This yielded an analytical model where the 

steady-state temperature rise at different rotational speeds 

follows an exponential relationship with speed. These ap-

proaches yield a detailed understanding of screw thermal 
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behavior; however, implementing them for real-time com-

pensation is difficult due to computation complexity and 

the need to measure or estimate many physical parameters 

in operation. 

 

 
a 

 
b 

Fig. 2. Distribution of heat along the ball screw 
under different operating conditions [3]: axis 
movement along full stroke (a); movement in 
short range along the axis (b) 

Instead of purely relying on forward physical simu-

lation during machining, some strategies use physics-based 

hybrid models in a precomputed or auxiliary manner. In a 

recent hybrid compensation scheme, Geist et al. [16] em-

ploy pre-calculated thermo-elastic characteristic diagrams 

derived from FEM. These characteristic diagrams map 

thermal states to error values. During machining, a simpli-

fied structure model monitors thermal state of the machine 

and selects the appropriate precomputed map; if an unmod-

eled state is encountered, a new FEM simulation can be in-

itiated in a semi-automatic manner to update the compen-

sation. This method effectively outsources heavy compu-

tation to an offline process, allowing complex physics to 

inform real-time compensation with manageable computa-

tional load. Rong et al. [4] propose an iterative finite-dif-

ference thermal error model that is computationally effi-

cient for CNC implementation. By assuming an approxi-

mately linear relationship between heat generation, con-

vective cooling, and feed speed, they reduce the number of 

parameters that must be identified experimentally. The 

model updates the temperature and expansion state of the 

ball screw iteratively during operation. After compensa-

tion, the maximum thermal error decreased by 88.7 % in 

the X direction, 87.1 % in the Y direction, and 56.7 % in the 

Z direction. Such hybrid approaches highlight the ongoing 

integration of theoretical modeling with practical control. 

Empirical Modeling and Data-Driven Methods. 

Given the difficulties in obtaining a perfect physics model 

for complex CNC machines, empirical modeling has be-

come the backbone of most thermal error compensation 

systems. Empirical models utilize measured data, such as 

temperature and deformation, to determine how tempera-

ture at specific points relates to the resulting thermal ex-

pansion. A straightforward example is the multiple linear 

regression model used by Zhang et al. [12]. They separated 

the total screw positioning error into a geometric compo-

nent, caused by screw pitch errors and mounting alignment, 

and a thermal expansion component. By collecting data of 

screw expansion at various temperatures and positions, 

they fit a multiple linear regression model for the thermal 

error as a function of screw temperature and position along 

the axis. Their model, fitted for a specific mounting con-

figuration of the screw, could predict thermal drift at any 

position given the screw’s temperature, and compensation 

based on this model improved positioning accuracy signifi-

cantly. In a similar way, Chebyshev polynomial-based or-

thogonal least-squares method has been employed to de-

velop thermal error models that closely align with measu-

red thermal drift curves. [2]. The general form of least-

squares method is shown in (4). These linear models are 

straightforward, require modest computation, and have 

been successfully implemented in CNC controllers for 

real-time error correction. 

 1 1( ) ( )k ky a f x a f x= + + . (4) 

Empirical modeling often involves choosing a few 

key temperature-sensitive points on the machine structure 

to serve as inputs. The temperatures at these points are used 

as proxies for the overall thermal state. Determining the 

optimal sensor locations is non-trivial – the best locations 

are those whose temperature strongly correlates with the 

screw expansion. Miao et al. [5] demonstrated that tempe-

rature-sensitive sensor locations can drift under varying 

operating conditions, such as changes in ambient environ-

ment or spindle speed, thereby undermining a fixed model. 

They proposed using Principal component regression 

(PCR) to handle multi-collinearity among sensor readings. 

By effectively combining temperature inputs, the PCR-

based model achieved more stable accuracy even when the 

thermal pattern shifted, and their traverse optimization 

method helped choose an optimal subset of sensors auto-

matically. Another study by Liu et al. [6] introduced ridge 

regression for thermal error modeling, similarly aimed at 

improving robustness against collinear temperature inputs. 

By employing a ridge regression model, this approach mi-

ti-gated overfitting to noise or specific thermal scenarios 

and maintained superior predictive stability. Using this 

method, the thermal error along the Z axis was reduced 

from over 40 micrometers to below 10 micrometers.  

These studies highlight that, even within empirical 

linear models, careful algorithm choices can markedly im-

prove performance in real machining environments where 

thermal conditions are not identical to the training data. 
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Beyond linear models, a variety of machine learning 

techniques have been explored for thermal compensation. 

Artificial neural networks (ANNs) have long been used 

due to their ability to approximate nonlinear relationships 

between temperatures and error. Zhang et al. [7] combined 

grey system theory with neural networks, creating hybrid 

grey-neural models that outperformed stand-alone neural 

nets in both accuracy and robustness on a five-axis ma-

chine tool. Their serial and parallel grey neural network 

models could better generalize from limited training data 

(a frequent scenario in thermal testing) compared to basic 

back-propagation networks. Support Vector Regression 

(SVR) is another machine learning approach applied to 

thermal error modeling. Miao et al. [18] compared SVR 

against linear models on a CNC spindle and found that 

SVR maintained strong prediction accuracy even when 

trained on a small data set, whereas linear models’ accu-

racy degraded with sparse data. However, with more abun-

dant data, all models improved and advantage of SVR be-

came less pronounced or even unstable, indicating that 

model selection may depend on practical data availability 

and required robustness. 

More recently, deep learning models have gained at-

tention for thermal compensation. Zhou et al. [19] pro-

posed a comprehensive error compensation method for a 

CNC ball screw drive, employing a deep learning model 

based on a Long short-term memory (LSTM) neural net-

work optimized by a whale optimization algorithm. Their 

deep model could capture complex thermal error patterns 

and was implemented in the machine’s numerical control 

system in real time. During the experiments, applying this 

compensation reduced Z-axis error from ±14.5 microme-

ters to ±6 micrometers. This marked improvement demon-

strates the potential of modern neural network models in 

handling the nonlinear, time-dependent nature of thermal 

errors. The downside is that neural networks require more 

extensive training data and careful validation to ensure they 

do not overfit to specific thermal cycles. Nonetheless, as 

CNC controllers and industrial PCs become more power-

ful, deploying such models is increasingly feasible. 

Real-Time Implementation Considerations: Re-

gardless of modeling approach, implementing thermal er-

ror compensation on an actual CNC machine involves 

practical considerations. The model must run fast enough 

not to impede the control cycle. Empirical models are typ-

ically algebraic and execute quickly, an advantage over it-

erative physics simulations. For example, a simple regres-

sion or even a multi-layer neural network can be computed 

in a fraction of a millisecond on modern hardware. Many 

researchers have successfully embedded their compensa-

tion algorithms into CNC controllers or external modules. 

Pajor et al. [8] developed an on-line neural network com-

pensation system for a conventional CNC axis: they instru-

mented a ball screw with sensors and implemented an 

ANN model in the controller that adjusted position com-

mands in real time. This exemplifies that even relatively 

advanced models can be deployed on industrial equipment 

effectively. 

Another implementation challenge is maintaining 

model accuracy over long-term machine operation. Ma-

chine characteristics can evolve over time due to factors 

such as wear and lubrication changes, which may alter ther-

mal behavior. Zimmermann et al. [20] addressed this with 

an adaptive compensation approach: their Thermal adap-

tive learning control (TALC) framework periodically up-

dates the model using new data and employs Group – least 

absolute shrinkage and selection operator (Group-LASSO) 

auto-regressive with exogenous (ARX) models to automa- 

tically re-select the most relevant temperature inputs as 

conditions evolve. This underscores the benefit of adaptive 

and self-learning models in compensation of ball screw er-

rors, especially for long-running precision machines where 

initial models might drift over months of use. 

Finally, a few methods dispense with physical tem-

perature sensors entirely and infer thermal error from other 

signals. One innovative approach uses the CNC’s internal 

servo data. Zhou et al. [9] proposed modeling thermal de-

formation of a ball screw using real-time motor current, 

motor speed, and axis position information from the CNC 

system, instead of direct temperature measurements. Used 

by authors formula (5) expresses Qp as the heat generated 

in the ball screw, where I denote the current in the drive 

motor, S the distance covered by the nut, and k the coeffi-

cient of heat generated by the work of motor. 

 pQ k I S=   . (5) 

They reasoned that motor load and motion data indi-

rectly reflect heat generation through friction work and 

could be employed to predict expansion. They built a 

model via multiple linear regression relating these internal 

signals to the thermal drift of the screw. Experiments on a 

small machine tool showed this sensor-less method could 

estimate the screw expansion in both warm-up and cool-

down phases with high accuracy. Similarly, Xu et al. [15] 

developed a compensation system that required no temper-

ature or position feedback during operation – all inputs to 

the model were given by command signals and a pre-cha-

racterized thermal model of the screw. These open-loop 

predictive approaches remove the cost and lag associated 

with sensors, though they typically require extensive off-

line identification of model parameters and may be sensi-

tive to unmodeled disturbances such as unexpected friction 

changes. In practice, purely sensor-less methods are still 

less common than sensor-based empirical models, but they 

demonstrate the range of strategies being explored. 

Temperature Measurement Methods for 

Ball Screws 

Effective thermal compensation hinges on accu-

rately capturing the thermal state of the ball screw in real 

time. Traditionally, this is accomplished using contact 

temperature sensors such as thermocouples, attached to 

strategic points on the screw or related structures. A com- 
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mon approach is to mount temperature sensors near the 

ends of the screw, nut, and bearing housings, where much 

of the heat is generated or conducted. For example, in a 

study on an X-axis of a drilling machine, three key temper-

atures were monitored: the ambient end of the screw, the 

nut end, and the motor-side bearing [21]. These were found 

to correlate with the thermal expansion the screw, and pro-

vided inputs to a compensation model. Many researchers 

use between 2 to 10 sensors distributed along the screw. 

Pajor et al. [8] implemented a diagnostic system featuring 

nine thermistor sensors evenly distributed along a pre-ten-

sioned ball screw, along with an additional sensor on the 

machine frame. By measuring a temperature profile along 

the screw, their system could better capture the non-uni-

form heating pattern and thus improve the effectiveness of 

the compensation. The sensors were inserted into trans-

verse holes in the screw and wired out through an axial 

bore via a slip ring collector, allowing continuous readings 

from the rotating screw. Similarly, Tanaka et al. [10] de-

veloped a ball screw with a built-in wireless temperature 

sensor array. They embedded 25 miniature temperature 

sensors along length of a ball screw, with wireless trans-

mission of the data from the rotating screw to a base sta-

tion. This overcame the longstanding issue of how to in-

strument a fast-moving, rotating component without tan-

gled wires or slip rings. Although contact sensors typically 

offer high reliability and accuracy, integrating them within 

a ball screw and performing subsequent maintenance can 

be both costly and technically challenging. 

Important question is where to place these sensors 

for the best predictive power. The optimal sensor locations 

may not be obvious, as different regions of the screw and 

machine heat up at different rates depending on duty cycle 

and environment. Researchers have applied statistical ana- 

lyses to select temperature-sensitive points. One technique 

is fuzzy clustering and correlation analysis to identify 

which sensor positions have the strongest relationship to 

the thermal error. Miao et al. [18] used such methods on a 

spindle system to choose sensor locations, and then built 

models relating those temperatures to axial drift. More di-

rectly, some studies simply trial multiple sensor place-

ments and evaluate model accuracy. An important finding 

by Miao et al. [5] was that the contribution of certain sen-

sors can change with different operating conditions. This 

variability means a fixed set of sensor inputs could yield 

high accuracy in the scenario it was trained on but lose ef-

fectiveness elsewhere – a lack of robustness. To address 

this, they proposed employing principal component regres-

sion to ensure that the temperature inputs to the model re-

main orthogonal and thus independent. They also intro-

duced a “traverse optimization” method to systematically 

search for the best combination of sensor points for the 

PCR model. The result was a compensation model less sen-

sitive to which specific sensors were included, thus more 

resilient to changes.  

While most implementations use wired contact sen-

sors, there is growing interest in non-contact and advan-

ced sensing for ball screws. Infrared (IR) thermography is 

a powerful non-contact method to obtain the temperature 

distribution over a surface. Modern infrared cameras can 

capture the entire thermal field of a machine component in 

real time. Mayr et al. [22] noted that IR cameras are com-

monly used in research to measure temperature on machine 

tool structures. The temperature difference between cold 

and warm condition of the ball screw is shown on Fig. 3.  

 

 
 a b 

Fig. 3. Ball screw in cold condition (a) and after 
4000 cycles (b) [22] 

As demonstrated by Zapłata [23], this method can 

capture detailed thermal profiles that reveal critical 

hotspots and gradients necessary for effective thermal error 

compensation. However, its accuracy is strongly depend-

ent on the precise calibration of the surface emissivity and 

careful management of ambient reflections, which can oth-

erwise lead to discrepancies compared to contact-based 

sensors. The thermogram on Fig. 4. reveals non-uniform 

emissivity across the screw.  

 

 

Fig. 4. Thermogram of the heated ball screw [23] 

To mitigate such issues, methods including the ap-

plication of high-emissivity coatings or using reference 

contact measurements have been proposed [23]. Overall, 

IR thermography offers a rapid and effective means to 

monitor transient thermal states in high-speed machining 

applications.  

Another non-contact approach is to measure proxies 

of temperature. We saw earlier that Zhou et al. [9] avoided 

temperature sensors by relying on motor current and other 

CNC internal signals. In essence, they treat the servo drive 

as a thermo-sensor: when the axis is under load, the current 

goes up, indicating friction work and thus heat generation. 

Over time, this method infers the temperature rise indi-

rectly. Although it does not directly measure temperature, 
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it eliminates the need for additional sensors and wiring on 

the machine. 

In addition to the screw itself, some approaches 

monitor temperature of the surrounding machine structure. 

Since the relative expansion between the screw and the ma-

chine frame matters, sensing both can improve compensa-

tion. For example, a sensor on the machine’s base or col-

umn can capture ambient drift. The system proposed by Pa-

jor at. al. [8] included a single sensor on the machine body 

to serve as a reference. In the research conducted by 

Tanaka et. al. [10], in addition to the 25 screw sensors, tem-

peratures were measured at 277 points on the machine 

structure using an array called LATSIS (Large-scale Array 

of Temperature Sensors in Series). The combination al-

lowed them to distinguish errors due to screw expansion 

versus those from the machine frame deformation, leading 

to more accurate overall compensation. 

Lastly, it is worth noting the importance of response 

time and noise in temperature measurements. Typical sen-

sors employed, such as small thermocouples or thermis-

tors, have response times on the order of seconds or faster, 

which is usually sufficient for the application. Non-contact 

IR can be near-instantaneous, but might be affected by sur-

face reflections or dirt. In either case, filtering techniques 

are often applied to temperature readings in compensation 

systems to smooth out noise. The ridge regression method 

by Liu et al. [6] inherently helps in noise reduction by regu-

larization. Another approach is sensor fusion, which com-

bines or averages readings from multiple sensors to mini-

mize the impact of any single noisy measurement. 

Accuracy Measurement and Validation 

Methods 

Developing and tuning a thermal error compensation 

system requires accurate measurement of the actual posi-

tional errors caused by thermal expansion. These accuracy 

measurements serve two main purposes: first, they supply 

ground truth data for modeling during the calibration or 

training phase, and second, they verify the effectiveness of 

the compensation by measuring residual errors once it is 

applied. Because these thermal expansions are relatively 

minor, often in the range of tens of micrometers across sev-

eral hundred millimeters of travel, high-precision measure-

ment instruments are required. 

The most prevalent tool for this task is the laser in-

terferometer. A laser interferometer can directly measure 

the linear displacement of an axis with sub-micrometer ac-

curacy over the full travel. According to ISO 230-2:2014 [24], 

calibrated laser interferometers are the preferred instruments 

for determining the accuracy and repeatability of numerica-

lly controlled axes, especially for linear axes up to 2,000 mm. 

In thermal error studies, a common approach is to drive the 

machine axis through a series of positions or cycles and then 

use a laser interferometer system to record the positioning 

error over time as the screw heats up. Pajor et al. explicitly 

report that they measured the axis positioning accuracy us-

ing a Renishaw XL-80 laser system shown on Fig. 5. 

 

 

Fig. 5. Measurement arrangement using a laser 
interferometer [8] 

They performed a sequence of movements and cap-

tured both the temperature readings and the corresponding 

expansion of the axis measured by the interferometer, with 

own encoder-based feedback of the machine considered as 

reference.  

One important detail is that many modern interfer-

ometers incorporate automatic environmental compensa-

tion for air temperature, pressure, and humidity that affect 

the laser wavelength. Pajor et al. [8] note that they enabled 

environmental compensation of the laser during tests to en-

sure that the measured errors were exclusively attributable 

to the thermal deformation under investigation.  

Typically, the thermal error manifests as a slowly 

changing bias in the axis length. Therefore, frequent measu-

rements are taken, for example every few minutes or after 

a predetermined number of cycles. Yu et al. [21] provide a 

good example of using a laser setup for thermal compensa-

tion development. In their work, they specifically measured 

the deformation of the screw for every 1 °C change in tem-

perature, controlling ambient conditions to isolate the effect. 

Another method for measuring thermal expansion is 

using displacement sensors such as eddy-current or ca-

pacitive sensors. Instead of measuring the entire axis 

travel, these sensors can directly measure the relative dis-

placement between two components. Tanaka et al. [10] 

used an eddy-current displacement sensor to measure the 

Z-axis thermal drift at the tool center point (TCP) while 

their machine ran through thermal cycles. The sensor was 

positioned to continuously monitor how much the spindle 

head moved relative to the machine base due to thermal 

growth of the structure and screw. Capacitive sensors simi-

larly can detect small changes in distance. However, these 

are typically used in research or calibration rather than in-

stalled permanently on industrial machines, except in some 

ultra-precision systems, because they require stable targets 

and are sensitive to environmental noise such as vibrations. 
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Some studies also use reference parts and measuring 

machines. For instance, to validate multi-axis compensa-

tion, researchers might machine a test piece and measure it 

on a coordinate measuring machine (CMM). In Rong et al., 

after applying their real-time compensation on a three-axis 

machine, they performed a test by machining a precision 

test piece (Fig. 6) and measuring its dimensions. This kind 

of validation is more indirect but very practical – ulti-

mately, the goal of compensation is to improve part accu-

racy, so checking a machined part under thermal load is a 

strong proof of effectiveness. However, when this measure-

ment method is used, additional factors such as tool defor-

mation must be taken into account, as they can influence 

the final result.  

 

 

Fig. 6. Test piece for measurement on coordinate 
measuring machine [4] 

Conclusion 

This review highlights that robust thermal error 

compensation in CNC ball screw feed drives requires a ho-

listic integration of advanced modeling, sensing, and calib-

ration techniques to maintain precision in machining ope-

rations. State-of-the-art compensation modeling approa-

ches span physics-based analytical models, empirical re-

gression models, and machine learning algorithms, each 

offering distinct advantages in predicting thermally indu-

ced displacements. Likewise, thermal monitoring methods 

range from traditional contact sensors to non-contact infra-

red thermography and even sensor-less inference strate-

gies, providing the data necessary to drive these models. 

Coupled with rigorous accuracy validation of models – emp-

loying laser interferometry, high-resolution displacement 

sensors, and coordinate measuring machine verification – 

these techniques ensure that compensation strategies can 

significantly mitigate positional errors caused by tempera-

ture variations. The practical importance of accurate ther-

mal compensation is evident in improved part quality and 

dimensional accuracy, as well as reduced downtime, while 

its theoretical importance lies in advancing the understand-

ing of machine tool thermo-mechanical behavior. The re-

viewed studies indicate that in some instances thermal er-

rors were reduced by as much as 85 %, achieving position-

ing accuracy of under 10 micrometers. Looking ahead, the 

authors plan to focus future research on empirical compen-

sation models enhanced by comprehensive non-contact 

thermal sensing data and calibration through laser interfer-

ometry, as this approach promises to yield more robust, 

adaptive compensation strategies and further elevate the 

precision and reliability of next-generation CNC systems. 
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Компенсація температурних деформацій в кульково-гвинтових парах 

верстатів з ЧПК. Огляд 

В. М. Кореньков1  •  Т. М. Скрипник1  

1  КПІ ім. Ігоря Сікорського, Київ, Україна 

Анотація: У даній статті представлено комплексний огляд методів температурної компенсації для кульково-гвинтових 
пар у верстатах з ЧПК, де похибки спричинені нагрівом складають до 70 % загальних похибок позиціонування. Кульково-
гвинтові пари особливо схильні до теплового розширення, оскільки фрикційне тепло, що генерується в гвинті, гайці та під-
шипниках, спричиняє осьове видовження, безпосередньо погіршуючи точність обробки. Проблема посилюється в умовах ви-

сокошвидкісної обробки, де підвищені швидкості подачі та цикли роботи створюють більше фрикційне нагрівання. Ми ана-
лізуємо три ключові аспекти термічної компенсації: підходи до моделювання, методи вимірювання температури та методи 
перевірки точності. Підходи до моделювання варіюються від фізичних аналітичних методів з використанням скінченних 
елементів та принципів теплопередачі до емпіричних методів, що використовують множинну лінійну регресію, аналіз голо-
вних компонент та алгоритми машинного навчання, включаючи штучні нейронні мережі. Стратегії моніторингу темпера-
тури охоплюють від традиційних контактних датчиків у стратегічних точках до передових бездротових масивів датчиків 
з вбудованими температурними датчиками вздовж довжини гвинта, а також безконтактну інфрачервону термографію 
для отримання детальних теплових профілів. Методології перевірки точності переважно використовують лазерну інтер-

ферометрію з субмікрометричною точністю, датчиками переміщення на основі вихрових струмів та координатно-вимірю-
вальні машини для верифікації оброблених деталей. Розглянуті дослідження демонструють значне покращення точності 
позиціонування, зі зменшенням термічних похибок до 85 % у деяких випадках, досягаючи точності позиціонування нижче 
10 мікрометрів. Емпіричне моделювання, посилене комплексним безконтактним термічним вимірюванням та калібруванням 
за допомогою лазерної інтерферометрії, є особливо перспективним підходом для надійної компенсації. Майбутні напрямки 
досліджень мають зосередитися на адаптивних моделях, які зберігають ефективність за різних умов експлуатації, оскільки 
стратегії компенсації продовжують розвиватися в напрямку підвищення точності та надійності систем ЧПК наступного 
покоління. 

Ключові слова: верстати з ЧПК; кульково-гвинтова пара; компенсація температурних деформацій; вимірювання темпера-
тури; вимірювання точності. 
 
 

 
 


