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Abstract. Torsion problem is treated here as Saint Venant’s semi-inverse task for prismatic bars, which allows to consider 2D geometry
instead of 3D one. The novelty of the paper is that at the first time it tackles the problem by the method of matched section, MMS — a
new numerical approach for multiphysics problems. Like finite element method it supposes the continuous distribution of all parameters
within the element, and like volume element method it keeps the conservation laws and equilibrium for each element and the body as
a whole. The main idea of MMS is to substitute the partial differential equations (stemmed from required conservation laws) by the
ordinary ones by introducing the additional constants, which can be later found from the continuity conditions at the center of element.
The governing equations for torsion are broken out on two independent (along each coordinate axis passed through the centers of the
opposite sides) equations, which relate two governing parameters (angle of rotation and torque) at the beginning with those at the end
of the element. Each element contains 8 unknowns, so 4 above connection equations are supplemented by continuity conditions between
elements and the boundary conditions. In addition to rectangular element the simplified version of the triangular one is proposed
which is used to account for the outer boundary configuration. Numerical verification is performed for different shapes of cross-section
and for composite cross-section. The results show the efficiency of the method, and high accuracy is attained even for small grids.

Keywords: method of matched sections, transfer matrix method, elastic plane body, torque, angle of rotation, boundary conditions.

1. Introduction

Understanding of the straight elastic beam behavior
is a cornerstone for a successful analysis of structural me-
chanics problems. The beam has 12 degrees of freedom
(governing parameters) characterizing 4 different elemen-
tary problems: 2 DOFs for the compression-tension prob-
lem; 4 DOFs for bending around one direction perpendic-
ular to the beam axis; 4 DOFs for bending around another
direction; and 2 DOFs for the torsion. The differential re-
lations between the governing parameters exist for each
task. For compression and bending problems these rela-
tions are established from the elementary 1D considera-
tions.

Contrary to them the torsion problem for a straight
beam requires a detailed 2D analysis. The usual goal of it
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is: a) to establish the differential relations between 2 char-
acteristic DOFs — rotational moment versus angle of rota-
tion important to analysis of the beam deformation; b) give
the detailed distribution of the stresses due to torsion.

The solution to the torsion problem is remarkable in
that it treats a seemingly three-dimensional elasticity prob-
lem as a 2D one. This approach was introduced by Saint
Venant in 1853, and since that is called the Saint Venant’s
semi-inverse method. He assumes the pattern of the dis-
placement field, where two in-plane components change
linearly with respect to the distance to some point, and out-
of-plane displacement (warping function) depends only on
in plane coordinates. Eventually he showed that warping
function should satisfy the Laplace differential equation,
which appears due to consideration of equilibrium in axial
direction. Supplemented by traction-free boundary condi-
tions, it eventually leads to the Neumann-type potential
problems [1].

Alternative formulation of the torsion problem was
suggested by Prandtl in 1903, which based on the concept
of stress function which satisfied exactly the axial equilib-
rium equation. In this formulation the stress function must
satisfy Poisson’s equation, where the boundary conditions
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are of Dirichlet type where the sought function itself is
taken as an arbitrary constant on lateral boundary of the
beam. Such formulation was suitable for early production
of analytical solutions for simple cross sections that are cir-
cular, elliptical, rectangular, and equilateral triangular.
They are widely presented in textbooks on theory of elas-
ticity [2].

But analytical solutions lack versality and are rarely
applied nowadays. To treat complicated geometries with
voids, different inclusions, anisotropic properties the nu-
merical methods are developed and applied. Most popular
are finite-difference, boundary-element, finite-element,
and finite volume methods.

The finite-difference method, FDM, had been em-
ployed in [3] for arbitrary and multiply connected cross
sections with materials of variable shear module. Yet FDM
is not popular one due to the loss of accuracy at formulation
the conditions on the curved boundaries. Further develop-
ment of FDM consists in combination of it with analytical
tools. the generalized finite difference method (GFDM) is
employed for the elastic-plastic torsion analysis in [4],
where the computational domain is divided into of overlap-
ping sub-domains and a system of linear equations based
on Taylor series expansion and moving least squares is
constructed.

Boundary Element Method (BEM) requires a
boundary-only discretization, thus reduces the number of
unknowns by one order comparing to other numeric tech-
niques. Yet BEM uses the analytical relation between the
state at the boundary and in inner points, thus it restricted
mostly to elastic problems. Nonuniform torsion of compo-
site bars was considered in [5] and was further extended to
composite bar consisting of inclusions embedded in a ho-
mogeneous matrix [6]. Polynomial interpolation for the un-
known function over each boundary element is proposed in
[7] and general criterion is established for selecting the best
combination of polynomial degree and edge discretization
to provide the best accuracy.

The finite-element method, FEM, is most widely
employed numerical technique for solution of multiphysics
problems in general. Hellinger-Reissner principle for elab-
oration of a hybrid-stress finite element method is proposed
in [8]. Galerkin based finite element method considered
warping function with additional continuity conditions is
proposed in [9]. Strain gradient elasticity problem is treated
in [10] to analyze torsion problems involving prismatic
bars of very small dimensions. Very often the problem of
torsion is considered as a part of coupled torsional and flex-
ural shearing stresses distribution in prismatic beams and
related with determination of the center of shear [1]. Iso-
parametric 4-noded finite element based on Prandtl’s stress
function. is developed in [11]. Triangle finite elements are
developed in [12], where the warping function and La-
grange variational principle are used for the torsion prob-
lem formulation and the problem of bending is treated on
the basis of the Castigliano variational principle. Further

modification of [10] for threatment the shearing stress is
proposed in [13] using the nine-noded isoparametric ele-
ment. Despite of popularity FEM has some disadvantages
mostly related with that equilibrium equations are satisfied
in a weak sense, i.e. “they are not in equilibrium with the
body forces and do not have tractions that equilibrate with
the static boundary conditions and are not continuous be-
tween elements” [14].

Finite volume method can preserve the equilibrium
withing the element and for the body as whole. It substi-
tutes the continuity of main functions by their gains within
the volume element. In spite of long history [15], it is em-
ployed mostly to the fluid mechanics problems governed
by parabolic and hyperbolic partial differential equations.
Semi-analytical solution to the Saint Venant’s semi-in-
verse method by finite volume method to the torsion prob-
lem of prismatic homogeneous and heterogeneous bars of
cross sections made up of rectangular components is pro-
posed in recent work [16]. It is based on finite-volume
framework developed in [17] where the analyzed domain
is meshed into rectangular subvolumes. Method [16] is fur-
ther extended in [18] to enable analysis of arbitrary cross
sections characterized by curved boundaries, which is pro-
vided by incorporating parametric mapping

Method of matched section is a powerful alternative
to FEM. It is developed for various structural mechanics
problems as well as to transient heat task [19]-[23], where
the versality of the method, efficiency, easiness of analyti-
cal modifications and various meshing advantages are
broadly presented. The goal of this paper is to apply this
method for the torsion problem which still requires some
specific treatment of the boundary conditions as compared
with plane body task [20].

2. Problem statement

Consider a rectangular element, Fig 1, with sides
equal to a and b along the x and y directions respec-

tively. Unknown parameters (stress and transverse dis-
placement) are shown on Fig. 1.

% wg
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Fig. 1. The general scheme of rectangular plane
element

Write down the equation of equilibrium for the
Saint-Vernant torsion problem:
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oty (x,y) N ot} (x,)
Ox oy

=0, (1)

where 7 and 1) are shear stresses along x and y axis

respectively.
Hooke’s law for shear stress can be written as follows:

r;f(x,y):G[ﬁ”(@jy>_angy>], o
v (x,y):G[—av(;’y)_ﬁwgay)j, (2b)

where w(x,y) — transverse displacement (warping func-

tion).
These equations are completed with displacement
field components which are simple rotation equations:

(3a)
(3b)

u(x,y)=—92(y—yT),
v(x,y)z@z(x—xT),

where u and v are displacements in x and y directions
respectively, 6 is an angle of rotation, x; and y; are co-

ordinates of the center of torsion. Angle of rotation and co-
ordinates of the torsion center are supposed to be unknown.
The formulation should be completed by specifica-
tion of outer loading. It is assumed that the cross-section is
subject to external torsion moment M , while the external
forces in both directions x and y are equal to zero, i.e.:

F,=F,=0 3d)

3.Solution by MMS

3.1. Rectangular element

According to the main idea of the method, the ele-
ment considered as two orthogonal beams along x and y
directions in the middle of the element. Each beam is char-
acterized by two parameters which depend only on one var-
iable. Rewrite the differential equation (1a) as follows:
ot (x) , o1 (v)

———tt——=0. 4
Ox oy @

To split this equation into two ordinary equations, let
assume that:

a X
% () =const = 4. (5a)
ox
Substituting (5a) into (4), we obtain:
ot
7 (y) =—4. (5b)

oy

Integrating equations (5) we get solutions for
stresses in both directions:

Ty (x) =1y +4x, (62)

W (y)=1l0 -4y, (6b)
where lower index “0” denotes the value of the parameter
at the beginning of the element shown on Fig 1. Constant
A 1is supposed to be unknown, but we will write extra
equation to determine it later.

By differentiating (3) with respect to z , we get:

ou
g——e(y—J’T), (72)
Y _f(xxy). (7b)
oz

Differences y—y; and x—x; refer to the distance
to the center of torsion, therefore y and x in these equa-

tions should be associated with the global coordinate sys-
tem. As these terms are related to the x and y beams re-

spectively which are located at the center of element, we
can rewrite (7) as follows:

ou b b
=0 —+y.—y, |=—0——0y +0y,, 8
> (2 Ve yrj 5~ Vet r (8a)

@=9(g+xc—xT):9£+9xc—9xT,
2 2

oz (86)

where x, and y, are coordinates of left bottom corner of

the element which are supposed to be known from the grid.
Substituting (8) and (6) into (2), we can rewrite is as
follows:

+6§+6yc -0y,

ox G oz G
(%a)
0 17 v -4
() = _M_@ = _Ly_e__exc +0x;
oy G 0z G
(9b)

Integrating equations (8) we get solutions for trans-
verse displacement:

2

xT§,0+AL b
w' (x)=wj ——————=+0—x+06y.x—0y;x, (10a)
G 2
2
yTio_Ay*
B 2 a
w (y)=wj - c —OEy—9x0y+9xTy. (10b)

As 0, x; and y; are unknown, we need to get rid
of non-linearity in equations (9). Assume that:
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X =6x,, (11a)

Y =6y, (11b)

Substituting (11) in (10) we get the following equa-
tion which is linear in respect to unknown variables:

2

N x
XTyog+A— b
w' (x)=wp —T+95x—Yx , (12a)
2
yrt -4
Y= - 2 9% xy. (126
w”(y)=w; c Sy &y, (12b)

As we introduced a new unknown constant 4 we
should complete our four equations with one more. As we
describe transverse displacement with two functions along
both sides, the last equation is continuity of this displace-
ment in the center of element:

7[5)-(5)

For each element we have 9 unknown — stresses and
displacement on each side and introduces constant A4 . (6)
and (11) are four equations which connect unknown pa-
rameters inside element. Equation (13) grants continuity of
displacement. Last four equations are boundary conditions
or equations of connection between neighbor elements
(conjunction equation).

We also have three global unknowns — X, ¥ and
0 so we need three more equations. First one is a moment
equation:

(13)

(14)

where M) _ moment caused by element with index i
around center of global coordinate system, M — moment

applied to the body, n — number of elements. M () s ex-
press in terms of stresses for basic elements.

To avoid linear dependency, we also should change
one of boundary conditions for stress with boundary con-
dition for transverse displacement. In total we still need
two more equations to complete system. They are bound-
ary conditions for transverse displacement as well. We
need them to uniquely determine w function. It can be ei-
ther two addition values of derivative in both directions (9)
at some point or simple two more value of function w in
other points. We can also suppose a torsion center to be
known, so we need only 1 value of transverse displacement
in some point.

3.2 Right triangular element

The right triangular with angle ¢ is shown in Fig. 2.
In contrast to a rectangular element, we have only five un-

knowns — stresses and displacements on legs and tangent
stress on hypotenuse.

Solution for triangular element is based on our solu-
tion of rectangular element. As functions for shear stresses
are intersected only on hypotenuse, we assume constant A
to be zero, so stresses become constant along both sides.

Fig. 2. The general scheme of right triangular
plane element

Consider projection of stresses in the direction of the
hypotenuse and in the direction normal to it:

X y : —
Ty COSQ+T) (SINO="T", (15a)

TroSinQ+1, gcosp=1"=0. (15b)

Equation (15b) is completed with boundary condi-
tion as we assume that the hypotenuse is not connected to
other elements. These two equations together with (13) are
completed with two conjunction equations or boundary
conditions along legs.

4. Examples of calculations

Show a few examples for different grid density, dif-
ferent shapes of cross-sections and non-constant shear
module body. In most cases the next physical parameters
are introduced: length of the cross-section (along x direc-
tion) /=0.08, height of the cross-section h=0.04,

Young’s modulus of material £ =2- 10", Poisson’s ratio
v=0.29 and torsion moment M =1000. All values are
given in SI.

4.1 Rectangular cross-section

Firstly, let demonstrate consistency of result. The re-
sults of calculations for different number of elements in
grid are given in table 1. It should be noticed that results
are linearly interpolated as in our approach we get results
in the middle of element not at the edge exactly. Theoreti-
cal values are provided in Timoshenko’s “Theory of elas-
ticity” [1].
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It can be seen that results tend to exact values while
the density of grid in increasing. Even for 8x8 grid accu-
racy for stresses and angle of rotation is about 3 %. For
displacement such accuracy is achieved on 32x32 grid.

Next examples have constant meshing 32x32 . Re-
sults of calculations for different ratios of rectangle with
constant height are given in table 2.

The results are stable for different ratios of sides of
rectangle. Stresses and angle of rotation have accuracy
about 0.5 % for most cases. The average error for displace-
ment is 2.7 %. It should be noticed, that in case of square

cross-section (//h =1) the displacementi is compared in
point (//4,0) as it becomes zero in (0,0).

4.2. Isosceles-triangular cross-section

Developing right triangular element allows us to
process more complex shapes of cross-section. For next ex-
amples we will not compare displacement as they are not
provided for complex shapes. Results of calculations for
different ratios between height and length of the base of
isosceles triangle are given in table 3.

Table 1. Comparison of results for rectangular cross-section depending on the number of elements in grid.

NxM 5 (é,Oj,Pa w(0,0),m 0
2x2 62 500 000 1.008-10°¢ 0.018896
4x4 36 500 621 2.908-10°° 0.012581
8x8 32718 427 3.480-10° 0.011392

16x16 31930379 3.756-10° 0.011110

32x32 31775 362 3.898-10°¢ 0.011041

64x64 31775534 3.972-10° 0.011023

Exact [1] 31758 130 4.038-10°¢ 0.011002

Table 2. Comparison of results for rectangular cross-section depending on the ration between sides (/2 = 0.04 )

/ /
Z Method T; (Enojypa W(an)sm e

Present (32x32) 74 123 069 2.047-10°6 0.035913

1.0 Exact [1] 75 120 192 2.099-10° 0.035738
Relative error 1.33% 2.33 % 0.49 %

Present (32x32) 44952 674 275110 0.017194

L5 Exact [1] 45093 795 2.967-10-6 0.017139
Relative error 0.31 % 7.28 % 0.32 %

Present (32x32) 24298 895 4.466-10-6 0.008101

2.5 Exact [1] 24 414 062 458210 0.008094
Relative error 0.47 % 2.61 % 0.09 %

Present (32x32) 19 533 684 479210 0.006394

3.0 Exact [1] 19 506 866 4.891-10-6 0.006386
Relative error 0.14 % 2.05 % 0.13 %

Present (32x32) 8 759 759 5.472:10°6 0.002825

6.0 Exact [1] 8 709 587 552110 0.002808
Relative error 0.58 % 0.85 % 0.61 %

Present (32x32) 5028 150 5.698-10°6 0.001621

10.0 Exact [1] 5008 012 5.758-10-6 0.001615
Relative error 0.40 % 1.08 % 0.37 %
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Table 3. Comparison of results for isosceles-triangular cross-section depending on the ration between height and length of the

base (h=0.04)
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% Method T (é, OJ,Pa 0
5 Present (32x32) 313076 0847 0.234706
E Approximation [23] 313168 208 0.232744
Relative error 0.029 % 0.41 %

Present (32x32) 608 784 732 0.557664

\/§ Approximation [23] 619 331 882 0.567314
Relative error 1.71 % 1.70 %

Present (32x32) 781871911 0.778438

2 Approximation [23] 778 914 334 0.771972
Relative error 0.38 % 0.89 %

Present (32x32) 2159300 432 3.118653

2\/§ Approximation [23] 2093918 508 3.042724
Relative error 1.68 % 2.20 %

Table 4. Comparison of results for L-shape cross-section depending on different ratios between sizes
o1
l,h,c Method T, (E,Oj, Pa 0

[=0.41 Present (32x32) 1677563 074 4.328153

h=0.04 Approximation [1] 1 600 000 000 4.128000
¢=0.005 Relative error 4.85% 4.85%

[=0.08 Present (32x32) 1084 763 367 2.798689
h=0.04 Approximation [1] 1043 478 260 2.692173
¢=0.005 Relative error 3.96 % 3.96 %
1=0.04 Present (32x32) 6 412 126 745 33.086
h=0.04 Approximation [1] 6 193 548 387 31.958
¢ =0.0025 Relative error 3.53 % 3.53 %
1=0.08 Present (32x32) 4217 887 747 21.764
h=0.04 Approximation [1] 4 085 106 382 21.079
¢ =0.0025 Relative error 3.25% 3.25%

It also should be noted that first and third cases cor-
respond to equilateral and right triangle respectively. Ap-
proximations [2] become exact solutions in these cases. It
explains why these triangles have better accuracy com-
pared to others.

4.3 L-shape cross-section

L-shape is important in mechanical engineering. The
L-shape scheme is shown in Fig. 3.

This figure is special because it usually has very
small thickness. As a result, FEM methods may be unsta-
ble. Results of calculations for cross-section with thick L-
shape are given in table 4. It can be seen that accuracy of
results gets worse comparing to rectangular case — about 4 %
in average. Despite the 32x32 grid, L-shape is approxi-
mated by only 4 or 8 functions in both direction in our case.
So the accuracy is approximately the same for rectangular

cross-section with 8x8 grid. It can be easily fixed by in-
creasing the mesh density in problem regions (left and bot-

tom sides).

Fig. 3. L-shape scheme
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4.4. Inconstant shear module

Present study also allows us to easily change physi-
cal parameters on different regions and stay stable. Con-
sider square with side a =0.04 divided in half. Top half

has constant Young’s modulus £, =2-10'" and the bottom

half has changing Young’s modulus.

Results of calculations for square cross-section con-
sist of two different materials given in table 5. Numerical
solution is provided in [3], where the shear stress factor is
calculated as follows:

T

= _ _“max

T = -

: 16
er: (16)

Table 5. Comparison of results for square cross-section
consist of two different materials depending on ratios be-
tween their Young’s moduli.

E _
E_2 Method Tnax
Present (32x32) 0.6478
1 Numerical [24] 0.6583
Relative error 1.60 %
Present (32x32) 1.1659
2 Numerical [24] 1.1780
Relative error 1.03 %
Present (32x32) 2.5905
S Numerical [24] 2.6082
Relative error 0.68 %
Present (32x32) 4.8862
10 Numerical [24] 4.9053
Relative error 0.39 %
References

Conclusion

The method of matched sections has been proven to
be a stable and simple solution for different physical tasks.
In this task it has been applied to torsion problem (or Saint-
Venant’s problem). As in other problems, partial differen-
tial equations are substituted by ordinary equations. In this
way all physical and kinematic parameters accurately sat-
isfy these ordinary equations.

1. The method of matched sections is first applied to
the torsion problem. For each element it was described 8
unknowns and relations between them.

2. The right triangular element is described. It allows
to more accurately process the problem for complex
shapes.

3. Numerical verification is performed for different
shapes of cross-section and for composite cross-section.
The results have shown that the method is effective and
stable in all cases and has high accuracy for small grids.
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YnceabHUI aHATI3 3a1a4] IVIOCKOT0 MPYKHOT0 KPYY€eHHS CTEP:KHS METOAOM
Y3IO/I’KeHHMX Nepepisin

K. Caorak' e I. Opunsik' ¢ K. Janunienko’
U KIII im. Izops Cixopcwkozo, Paxyromem npukiaonoi mamemamuxu, kageopa npuxiaonoi mamemamuxu, Kuis, Yrpaina.

Anomauin. 3adaua kpyuenns posenaoacmocs mym sk Hanieooeprena sadaya Cen-Benana 0nist npusmamudnux CmpudiCHie, wjo 00360-
JIAIE pO32na0amu 0808UMIPHY 2eoMempiio 3amicms mpusumipnoi. Hosusna pobomu noasieae 8 momy, wjo énepuie ys 3a0aia po3s ‘sa3y-
€MbCsL MEMOOOM Y320004cerux nepepizie (MYTI) — nosum uucenvHum nioxo0om 0 Myrvmuizuunux saday. I1odi6Ho 0o memooy cKi-
HYEHHUX elleMenmis, 8iH nepedbauac Henepepeuull po3noodin ycix napamempis ycepeouti elemenma, a sik y Mmemooi 06 €MHUX eleMeH-
Mi6 — 3A0080MbHAEC 3AKOHAM 30€PedCeHHs Ma PI6HO8A2U AK Ol KOXCHO20 elleMeHma, max i 014 mina 6 yinomy. Ocnosna ioea MYII
nonseac 6 momy, wob 3aminumu 4YacmunHi Ougepenyianvhi pisHAHHA (AKI GUNIUBATOMD I3 3AKOHIE 30epedicents) HAa 36UUAlIHi, 600U
000amKosi KOHCMAanumMu, Ki 32000M GUIHAYAIOMBCSL 3 YMOG HenepepsHocni 68 yenmpi enemenma. Kepyioui piguauns ons saoaui kpy-
YeHHsl PO30UBAIOMbCS HA HE3ANEINHCHI (830081C KONCHOI KOOPOUHAMHOT OCI, W0 NPOXOOUMb Yepe3 YeHmpu NPOMULENHCHUX CIOPIH) pi6-
HAHHS, SKI N08 3VI0Mb 084 KEPYIOUUX napamempu (Kym 3aKpyuyeants ma KpymHuil MOMeHM) Ha noYamKy 3 6i0N0GIOHUMU HA KIHYI
enemenma. Koowen enemenm micmumso 8 nHegioomux, momy 4 nageoeHi suuje pisHAHH 36 S3K) 00NO0BHIOIOMbCA YMOBAMU HENEPEPEHO-
CMi MidiC eeMeHmam ma epanuyHumMu ymosamu. Ha 000amox 0o npamokymuozo eremenma 3anponoHo8ana cnpowena 8epcis mpu-
KYMHO20, 5IKA BUKOPUCMOBYEMbCSL 0TIl 6PAXY6atHs KOHGIeypayii 306Hiwnb0l epanuyi. Yucenoha nepesipka 6UKOHana Oisi pisHUX hopm
nonepeunozo nepepizy ma 0isl CKiaoenux nepepisie. Pesynomamu oemoncmpyiomo egpexmueHicmo memooy i 6UCOKY MOYHICMb, SIKA
docsaeaemvpcsl HA8IMb HA 2pyoOuUx CimKax.

Kniouogi cnosa: Memoo y3eo0oicenux nepepizie, Memoo noyamrKogux napamempis, npydicie nidacke mino, KpYmHuui MOMeHm, Kym
3aKpYYY8aANH S, SPAHUYHI YMOBU.
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