
Mech. Adv. Technol., Vol. 9, No. 4, 2025, рр. 401–408 

ISSN 2521-1943 Mechanics and Advanced Technologies 

© The Author(s)2025. Published by Igor Sikorsky Kyiv Polytechnic Institute 
This is an Open Access article distributed under the terms of the Creative Commons License Attribution4.0 Inter-
national (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited 

 

DOI: 10.20535/2521-1943.2025.9.4(107).340386 
UDC 539.3 

Numerical Analysis of 2D Elastic Torsion Problem 
for a Rod by the Method of Matched Sections 
 
Kostiantyn Slovak1 -  ORCID: https://orcid.org/0009-0001-0266-7672 
Igor Orynyak1 -  ORCID: https://orcid.org/0000-0003-4529-0235 
Kirill Danylenko1 -  ORCID: https://orcid.org/0009-0007-6101-6582 

 
 
 
 
 

Received: 30 October 2025 / Revised: 20 November 2025 / Accepted: 24 December 2025 
 
Abstract. Torsion problem is treated here as Saint Venant’s semi-inverse task for prismatic bars, which allows to consider 2D geometry 
instead of 3D one. The novelty of the paper is that at the first time it tackles the problem by the method of matched section, MMS – a 
new numerical approach for multiphysics problems. Like finite element method it supposes the continuous distribution of all parameters 
within the element, and like volume element method it keeps the conservation laws and equilibrium for each element and the body as 
a whole. The main idea of MMS is to substitute the partial differential equations (stemmed from required conservation laws) by the 
ordinary ones by introducing the additional constants, which can be later found from the continuity conditions at the center of element. 
The governing equations for torsion are broken out on two independent (along each coordinate axis passed through the centers of the 
opposite sides) equations, which relate two governing parameters (angle of rotation and torque) at the beginning with those at the end 
of the element. Each element contains 8 unknowns, so 4 above connection equations are supplemented by continuity conditions between 
elements and the boundary conditions. In addition to rectangular element the simplified version of the triangular one is proposed 
which is used to account for the outer boundary configuration. Numerical verification is performed for different shapes of cross-section 
and for composite cross-section. The results show the efficiency of the method, and high accuracy is attained even for small grids. 
Keywords: method of matched sections, transfer matrix method, elastic plane body, torque, angle of rotation, boundary conditions.

1. Introduction 

Understanding of the straight elastic beam behavior 
is a cornerstone for a successful analysis of structural me-
chanics problems. The beam has 12 degrees of freedom 
(governing parameters) characterizing 4 different elemen-
tary problems: 2 DOFs for the compression-tension prob-
lem; 4 DOFs for bending around one direction perpendic-
ular to the beam axis; 4 DOFs for bending around another 
direction; and 2 DOFs for the torsion. The differential re-
lations between the governing parameters exist for each 
task. For compression and bending problems these rela-
tions are established from the elementary 1D considera-
tions.  

Contrary to them the torsion problem for a straight 
beam requires a detailed 2D analysis. The usual goal of it 

is: a) to establish the differential relations between 2 char-
acteristic DOFs – rotational moment versus angle of rota-
tion important to analysis of the beam deformation; b) give 
the detailed distribution of the stresses due to torsion.  

The solution to the torsion problem is remarkable in 
that it treats a seemingly three-dimensional elasticity prob-
lem as a 2D one. This approach was introduced by Saint 
Venant in 1853, and since that is called the Saint Venant’s 
semi-inverse method. He assumes the pattern of the dis-
placement field, where two in-plane components change 
linearly with respect to the distance to some point, and out-
of-plane displacement (warping function) depends only on 
in plane coordinates. Eventually he showed that warping 
function should satisfy the Laplace differential equation, 
which appears due to consideration of equilibrium in axial 
direction. Supplemented by traction-free boundary condi-
tions, it eventually leads to the Neumann-type potential 
problems [1].  

Alternative formulation of the torsion problem was 
suggested by Prandtl in 1903, which based on the concept 
of stress function which satisfied exactly the axial equilib-
rium equation. In this formulation the stress function must 
satisfy Poisson’s equation, where the boundary conditions 
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are of Dirichlet type where the sought function itself is 
taken as an arbitrary constant on lateral boundary of the 
beam. Such formulation was suitable for early production 
of analytical solutions for simple cross sections that are cir-
cular, elliptical, rectangular, and equilateral triangular. 
They are widely presented in textbooks on theory of elas-
ticity [2].  

But analytical solutions lack versality and are rarely 
applied nowadays. To treat complicated geometries with 
voids, different inclusions, anisotropic properties the nu-
merical methods are developed and applied. Most popular 
are finite-difference, boundary-element, finite-element, 
and finite volume methods.  

The finite-difference method, FDM, had been em-
ployed in [3] for arbitrary and multiply connected cross 
sections with materials of variable shear module. Yet FDM 
is not popular one due to the loss of accuracy at formulation 
the conditions on the curved boundaries. Further develop-
ment of FDM consists in combination of it with analytical 
tools. the generalized finite difference method (GFDM) is 
employed for the elastic-plastic torsion analysis in [4], 
where the computational domain is divided into of overlap-
ping sub-domains and a system of linear equations based 
on Taylor series expansion and moving least squares is 
constructed.  

Boundary Element Method (BEM) requires a 
boundary-only discretization, thus reduces the number of 
unknowns by one order comparing to other numeric tech-
niques. Yet BEM uses the analytical relation between the 
state at the boundary and in inner points, thus it restricted 
mostly to elastic problems. Nonuniform torsion of compo-
site bars was considered in [5] and was further extended to 
composite bar consisting of inclusions embedded in a ho-
mogeneous matrix [6]. Polynomial interpolation for the un-
known function over each boundary element is proposed in 
[7] and general criterion is established for selecting the best 
combination of polynomial degree and edge discretization 
to provide the best accuracy. 

The finite-element method, FEM, is most widely 
employed numerical technique for solution of multiphysics 
problems in general. Hellinger-Reissner principle for elab-
oration of a hybrid-stress finite element method is proposed 
in [8]. Galerkin based finite element method considered 
warping function with additional continuity conditions is 
proposed in [9]. Strain gradient elasticity problem is treated 
in [10] to analyze torsion problems involving prismatic 
bars of very small dimensions. Very often the problem of 
torsion is considered as a part of coupled torsional and flex-
ural shearing stresses distribution in prismatic beams and 
related with determination of the center of shear [1]. Iso-
parametric 4-noded finite element based on Prandtl’s stress 
function. is developed in [11]. Triangle finite elements are 
developed in [12], where the warping function and La-
grange variational principle are used for the torsion prob-
lem formulation and the problem of bending is treated on 
the basis of the Castigliano variational principle. Further 

modification of [10] for threatment the shearing stress is 
proposed in [13] using the nine-noded isoparametric ele- 
ment. Despite of popularity FEM has some disadvantages 
mostly related with that equilibrium equations are satisfied 
in a weak sense, i.e. “they are not in equilibrium with the 
body forces and do not have tractions that equilibrate with 
the static boundary conditions and are not continuous be-
tween elements” [14].  

Finite volume method can preserve the equilibrium 
withing the element and for the body as whole. It substi-
tutes the continuity of main functions by their gains within 
the volume element. In spite of long history [15], it is em-
ployed mostly to the fluid mechanics problems governed 
by parabolic and hyperbolic partial differential equations. 
Semi-analytical solution to the Saint Venant’s semi-in-
verse method by finite volume method to the torsion prob-
lem of prismatic homogeneous and heterogeneous bars of 
cross sections made up of rectangular components is pro-
posed in recent work [16]. It is based on finite-volume 
framework developed in [17] where the analyzed domain 
is meshed into rectangular subvolumes. Method [16] is fur-
ther extended in [18] to enable analysis of arbitrary cross 
sections characterized by curved boundaries, which is pro-
vided by incorporating parametric mapping  

Method of matched section is a powerful alternative 
to FEM. It is developed for various structural mechanics 
problems as well as to transient heat task [19]–[23], where 
the versality of the method, efficiency, easiness of analyti-
cal modifications and various meshing advantages are 
broadly presented. The goal of this paper is to apply this 
method for the torsion problem which still requires some 
specific treatment of the boundary conditions as compared 
with plane body task [20]. 

2. Problem statement 

Consider a rectangular element, Fig 1, with sides 
equal to a  and b  along the x  and y  directions respec-
tively. Unknown parameters (stress and transverse dis-
placement) are shown on Fig. 1. 

 

 
Fig. 1. The general scheme of rectangular plane 
element 

Write down the equation of equilibrium for the 
Saint-Vernant torsion problem: 
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where x
xτ  and y

yτ  are shear stresses along x  and y  axis 

respectively. 
Hooke’s law for shear stress can be written as follows: 
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where ( ),w x y  – transverse displacement (warping func-
tion). 

These equations are completed with displacement 
field components which are simple rotation equations: 

 ( ) ( ), Tu x y z y y= −θ − , (3a) 

 ( ) ( ), Tv x y z x x= θ − , (3b) 

where u  and v  are displacements in x  and y  directions 
respectively, θ  is an angle of rotation, Tx  and Ty  are co-
ordinates of the center of torsion. Angle of rotation and co-
ordinates of the torsion center are supposed to be unknown. 

The formulation should be completed by specifica-
tion of outer loading. It is assumed that the cross-section is 
subject to external torsion moment M , while the external 
forces in both directions x  and y  are equal to zero, i.e.: 

 0x yF F= =  (3d) 

3. Solution by MMS 

3.1. Rectangular element 

According to the main idea of the method, the ele-
ment considered as two orthogonal beams along x and y 
directions in the middle of the element. Each beam is char-
acterized by two parameters which depend only on one var-
iable. Rewrite the differential equation (1a) as follows: 
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. (4) 

To split this equation into two ordinary equations, let 
assume that: 
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Substituting (5a) into (4), we obtain: 
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Integrating equations (5) we get solutions for 
stresses in both directions: 

 ( ) ,0
x x
x xx Axτ = τ + , (6a) 

 ( ) ,0
yy

y yy Ayτ = τ − , (6b) 

where lower index “0” denotes the value of the parameter 
at the beginning of the element shown on Fig 1. Constant 
A  is supposed to be unknown, but we will write extra 

equation to determine it later. 
By differentiating (3) with respect to z , we get: 

 ( )T
u y y
z
∂

= −θ −
∂

, (7a) 

 ( )T
v x x
z
∂

= θ −
∂

. (7b) 

Differences Ty y−  and Tx x−  refer to the distance 
to the center of torsion, therefore y  and x  in these equa-
tions should be associated with the global coordinate sys-
tem. As these terms are related to the x  and y  beams re-
spectively which are located at the center of element, we 
can rewrite (7) as follows: 
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where cx  and cy  are coordinates of left bottom corner of 
the element which are supposed to be known from the grid. 

Substituting (8) and (6) into (2), we can rewrite is as 
follows: 
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Integrating equations (8) we get solutions for trans-
verse displacement: 
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As θ , Tx  and Ty  are unknown, we need to get rid 
of non-linearity in equations (9). Assume that: 
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 TX x= θ , (11a) 

 TY y= θ . (11b) 

Substituting (11) in (10) we get the following equa-
tion which is linear in respect to unknown variables: 
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As we introduced a new unknown constant A  we 
should complete our four equations with one more. As we 
describe transverse displacement with two functions along 
both sides, the last equation is continuity of this displace-
ment in the center of element: 

 
2 2
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. (13) 

For each element we have 9 unknown – stresses and 
displacement on each side and introduces constant A . (6) 
and (11) are four equations which connect unknown pa-
rameters inside element. Equation (13) grants continuity of 
displacement. Last four equations are boundary conditions 
or equations of connection between neighbor elements 
(conjunction equation). 

We also have three global unknowns – X , Y  and 
θ  so we need three more equations. First one is a moment 
equation: 

 ( )

0

n
i

i
M M

=

=∑ , (14) 

where ( )iM  – moment caused by element with index i  
around center of global coordinate system, M  – moment 
applied to the body, n  – number of elements. ( )iM  is ex-
press in terms of stresses for basic elements. 

To avoid linear dependency, we also should change 
one of boundary conditions for stress with boundary con-
dition for transverse displacement. In total we still need 
two more equations to complete system. They are bound-
ary conditions for transverse displacement as well. We 
need them to uniquely determine w  function. It can be ei-
ther two addition values of derivative in both directions (9) 
at some point or simple two more value of function w  in 
other points. We can also suppose a torsion center to be 
known, so we need only 1 value of transverse displacement 
in some point. 

3.2 Right triangular element 

The right triangular with angle ϕ  is shown in Fig. 2. 
In contrast to a rectangular element, we have only five un- 

knowns – stresses and displacements on legs and tangent 
stress on hypotenuse. 

Solution for triangular element is based on our solu-
tion of rectangular element. As functions for shear stresses 
are intersected only on hypotenuse, we assume constant A  
to be zero, so stresses become constant along both sides. 

 

 
Fig. 2. The general scheme of right triangular 
plane element 

Consider projection of stresses in the direction of the 
hypotenuse and in the direction normal to it: 

 ,0 ,0cos sinyx s
x y−τ ϕ+ τ ϕ = τ , (15a) 

 ,0 ,0sin cos 0yx n
x yτ ϕ+ τ ϕ = τ = . (15b) 

Equation (15b) is completed with boundary condi-
tion as we assume that the hypotenuse is not connected to 
other elements. These two equations together with (13) are 
completed with two conjunction equations or boundary 
conditions along legs. 

4. Examples of calculations 

Show a few examples for different grid density, dif-
ferent shapes of cross-sections and non-constant shear 
module body. In most cases the next physical parameters 
are introduced: length of the cross-section (along x direc-
tion) 0.08l = , height of the cross-section 0.04h = , 
Young’s modulus of material 112 10E = ⋅ , Poisson’s ratio 

0.29v =  and torsion moment 1000M = . All values are 
given in SI. 

4.1 Rectangular cross-section 

Firstly, let demonstrate consistency of result. The re-
sults of calculations for different number of elements in 
grid are given in table 1. It should be noticed that results 
are linearly interpolated as in our approach we get results 
in the middle of element not at the edge exactly. Theoreti-
cal values are provided in Timoshenko’s “Theory of elas-
ticity” [1]. 
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It can be seen that results tend to exact values while 
the density of grid in increasing. Even for 8 8×  grid accu-
racy for stresses and angle of rotation is about 3 %. For 
displacement such accuracy is achieved on 32 32×  grid. 

Next examples have constant meshing 32 32× . Re-
sults of calculations for different ratios of rectangle with 
constant height are given in table 2. 

The results are stable for different ratios of sides of 
rectangle. Stresses and angle of rotation have accuracy 
about 0.5 % for most cases. The average error for displace-
ment is 2.7 %. It should be noticed, that in case of square 

cross-section ( / 1l h = ) the displacementі is compared in 
point ( )/ 4, 0l  as it becomes zero in ( )0, 0 . 

4.2. Isosceles-triangular cross-section 

Developing right triangular element allows us to 
process more complex shapes of cross-section. For next ex-
amples we will not compare displacement as they are not  
provided for complex shapes. Results of calculations for 
different ratios between height and length of the base of 
isosceles triangle are given in table 3. 

Table 1. Comparison of results for rectangular cross-section depending on the number of elements in grid. 

N M×  ,0 , Pa
2

x
x

l τ  
 

 ( )0, 0 , w m  θ  

2×2 62 500 000 1.008·10–6 0.018896 
4×4 36 500 621 2.908·10–6 0.012581 
8×8 32 718 427 3.480·10–6 0.011392 

16×16 31 930 379 3.756·10–6 0.011110 
32×32 31 775 362 3.898·10–6 0.011041 
64×64 31 775 534 3.972·10–6 0.011023 

Exact [1] 31 758 130 4.038·10–6 0.011002 

Table 2. Comparison of results for rectangular cross-section depending on the ration between sides ( 0.04h = ) 

l
h

 Method ,0 , Pa
2

x
x

l τ  
 

 ( )0, 0 , mw  θ  

1.0  
Present (32×32) 74 123 069 2.047·10–6 0.035913 

Exact [1] 75 120 192 2.099·10–6 0.035738 
Relative error 1.33 % 2.33 % 0.49 % 

1.5  
Present (32×32) 44 952 674 2.751·10–6 0.017194 

Exact [1] 45 093 795 2.967·10–6 0.017139 
Relative error 0.31 % 7.28 % 0.32 % 

2.5  
Present (32×32) 24 298 895 4.466·10–6 0.008101 

Exact [1] 24 414 062 4.582·10–6 0.008094 
Relative error 0.47 % 2.61 % 0.09 % 

3.0  
Present (32×32) 19 533 684 4.792·10–6 0.006394 

Exact [1] 19 506 866 4.891·10–6 0.006386 
Relative error 0.14 % 2.05 % 0.13 % 

6.0  
Present (32×32) 8 759 759 5.472·10–6 0.002825 

Exact [1] 8 709 587 5.521·10–6 0.002808 
Relative error 0.58 % 0.85 % 0.61 % 

10.0  
Present (32×32) 5 028 150 5.698·10–6 0.001621 

Exact [1] 5 008 012 5.758·10–6 0.001615 
Relative error 0.40 % 1.08 % 0.37 % 
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It also should be noted that first and third cases cor-
respond to equilateral and right triangle respectively. Ap-
proximations [2] become exact solutions in these cases. It 
explains why these triangles have better accuracy com-
pared to others. 

4.3 L-shape cross-section 

L-shape is important in mechanical engineering. The 
L-shape scheme is shown in Fig. 3. 

This figure is special because it usually has very 
small thickness. As a result, FEM methods may be unsta-
ble. Results of calculations for cross-section with thick L-
shape are given in table 4. It can be seen that accuracy of 
results gets worse comparing to rectangular case – about 4 % 
in average. Despite the 32 32×  grid, L-shape is approxi-
mated by only 4 or 8 functions in both direction in our case. 
So the accuracy is approximately the same for rectangular 

cross-section with 8 8×  grid. It can be easily fixed by in-
creasing the mesh density in problem regions (left and bot-
tom sides). 

 

 
Fig. 3. L-shape scheme 

Table 3. Comparison of results for isosceles-triangular cross-section depending on the ration between height and length of the 
base ( 0.04h = ) 

l
h  

Method ,0 , Pa
2

x
x

l τ  
   

 θ  

2
3  

Present (32×32) 313 076 0847 0.234706 
Approximation [23] 313168 208 0.232744 

Relative error 0.029 % 0.41 % 

3  

Present (32×32) 608 784 732 0.557664 
Approximation [23] 619 331 882 0.567314 

Relative error 1.71 % 1.70 % 

2 
Present (32×32) 781 871 911 0.778438 

Approximation [23] 778 914 334 0.771972 
Relative error 0.38 % 0.89 % 

2 3  

Present (32×32) 2 159 300 432 3.118653 
Approximation [23] 2 093 918 508 3.042724 

Relative error 1.68 % 2.20 % 

Table 4. Comparison of results for L-shape cross-section depending on different ratios between sizes 

,  , l h c  Method ,0 ,  Pa
2

x
x

l τ  
 

 θ  

l = 0.41 
h = 0.04 
c = 0.005 

Present (32×32) 1 677 563 074 4.328153 
Approximation [1] 1 600 000 000 4.128000 

Relative error 4.85 % 4.85 % 
l = 0.08 
h = 0.04 
c = 0.005 

Present (32×32) 1 084 763 367 2.798689 
Approximation [1] 1 043 478 260 2.692173 

Relative error 3.96 % 3.96 % 
l = 0.04 
h = 0.04 

c = 0.0025 

Present (32×32) 6 412 126 745 33.086 
Approximation [1] 6 193 548 387 31.958 

Relative error 3.53 % 3.53 % 
l = 0.08 
h = 0.04 

c = 0.0025 

Present (32×32) 4 217 887 747 21.764 
Approximation [1] 4 085 106 382 21.079 

Relative error 3.25 % 3.25 % 
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4.4. Inconstant shear module 

Present study also allows us to easily change physi-
cal parameters on different regions and stay stable. Con-
sider square with side 0.04a =  divided in half. Top half 
has constant Young’s modulus 11

2 2 10E = ⋅  and the bottom 
half has changing Young’s modulus. 

Results of calculations for square cross-section con-
sist of two different materials given in table 5. Numerical 
solution is provided in [3], where the shear stress factor is 
calculated as follows: 

 
1

max
max aG

τ
τ =

θ
. (16) 

Table 5. Comparison of results for square cross-section 
consist of two different materials depending on ratios be-
tween their Young’s moduli. 

1

2

E
E

 Method maxτ  

1  
Present (32×32) 0.6478 
Numerical [24] 0.6583 
Relative error 1.60 % 

2  
Present (32×32) 1.1659 
Numerical [24] 1.1780 
Relative error 1.03 % 

5  
Present (32×32) 2.5905 
Numerical [24] 2.6082 
Relative error 0.68 % 

10  
Present (32×32) 4.8862 
Numerical [24] 4.9053 
Relative error 0.39 % 

Conclusion 

The method of matched sections has been proven to 
be a stable and simple solution for different physical tasks. 
In this task it has been applied to torsion problem (or Saint-
Venant’s problem). As in other problems, partial differen-
tial equations are substituted by ordinary equations. In this 
way all physical and kinematic parameters accurately sat-
isfy these ordinary equations. 

1. The method of matched sections is first applied to 
the torsion problem. For each element it was described 8 
unknowns and relations between them. 

2. The right triangular element is described. It allows 
to more accurately process the problem for complex 
shapes. 

3. Numerical verification is performed for different 
shapes of cross-section and for composite cross-section. 
The results have shown that the method is effective and 
stable in all cases and has high accuracy for small grids. 
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Чисельний аналіз задачі плоского пружного кручення стержня методом 
узгоджених перерізів 

К. Словак1  •  І. Ориняк1  •  К. Даниленко1   
1  КПІ ім. Ігоря Сікорського, Факультет прикладної математики, кафедра прикладної математики, Київ, Україна.  

Анотація. Задача кручення розглядається тут як напівобернена задача Сен-Венана для призматичних стрижнів, що дозво-
ляє розглядати двовимірну геометрію замість тривимірної. Новизна роботи полягає в тому, що вперше ця задача розв’язу-
ється методом узгоджених перерізів (МУП) – новим чисельним підходом для мультифізичних задач. Подібно до методу скі-
нченних елементів, він передбачає неперервний розподіл усіх параметрів усередині елемента, а як у методі об’ємних елемен-
тів – задовольняє законам збереження та рівноваги як для кожного елемента, так і для тіла в цілому. Основна ідея МУП 
полягає в тому, щоб замінити частинні диференціальні рівняння (які випливають із законів збереження) на звичайні, вводячи 
додаткові константи, які згодом визначаються з умов неперервності в центрі елемента. Керуючі рівняння для задачі кру-
чення розбиваються на незалежні (вздовж кожної координатної осі, що проходить через центри протилежних сторін) рів-
няння, які пов’язують два керуючих параметри (кут закручування та крутний момент) на початку з відповідними на кінці 
елемента. Кожен елемент містить 8 невідомих, тому 4 наведені вище рівняння зв’язку доповнюються умовами неперервно-
сті між елементами та граничними умовами. На додаток до прямокутного елемента запропонована спрощена версія три-
кутного, яка використовується для врахування конфігурації зовнішньої границі. Чисельна перевірка виконана для різних форм 
поперечного перерізу та для складених перерізів. Результати демонструють ефективність методу й високу точність, яка 
досягається навіть на грубих сітках. 
Ключові слова: Метод узгоджених перерізів, метод початкових параметрів, пружне пласке тіло, крутний момент, кут 
закручування, граничні умови. 
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