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Анотація. У роботі здійснено подальший розвиток результатів досліджень [1]–[5] на основі системного аналізу з викори-
станням інтерпретаційно-формального підходу в новому науково-технічному напрямі – технологічній інтерпретації близь-
ких за змістом положень векторного та тензорного аналізу. Це дозволяє розширити формальне поле подання технологічних 
процесів у межах концепції їх “технологічного смислу” та підвищити формальну спроможність опису ТП. Розкриваються 
результати досліджень у практико-виробничому аспекті, що стосується ТП, передбачаючи застосування векторного та 
тензорного аналізу в координатний підхід, технологічний простір, скалярний добуток, матричний тензор, а також прик-
лади тензорного та векторного аналізу в технології композитних АКЗ. Визначається, що вектори (тензори) можуть бути 
задані різними способами, залежно від технологічного контексту (технологія полімерних композиційних матеріалів – ПКМ), 
а набір компонент є лише його зображенням у певному (по деталізації) базисі. Використовується координатний підхід, а 
також можливість інших способів завдання і роботи з векторами (тензорами) на прикладі звичайних векторів і простих 
тензорів другого рангу, характерних потужною ідеєю ортогональності. Оскільки, за 2-гим вектором та тензором стоять 
реальні технологічні об’єкти, в тому числі: автономна динамічна система (АДС), конструктивно-технологічні рішення 
(КТР), технологічні процеси (ТП), у вигляді контрваріантних та коваріантних векторів тощо.  
Показано інтерпретаційну відповідність технологічного тлумачення контраваріантних і коваріантних координат вектора, 
а також встановлено характер зв’язків між технолого-контраваріантними та технолого-коваріантними координатами. 
На прикладі продемонстровано інваріантність укрупнених етапів складного технологічного процесу в різних системах ко-
ординат, що підтверджує незмінність технологічного вектора за умови перетворення його координат. 
Ключові слова: вектор, тензор, базис, символ Кронекера, скалярний добуток, косинус подібності, АДС, КТР, ТП, ПКМ.

1. Вступ 
1.1. Характеристика підходу 

Сучасний етап розвитку науки характеризується 
взаємопроникненням, найперше, математики, зокрема 
в  технологіях виробництва, в тому числі – композицій-
них АК [1]–[4], [7] та ін. Так, в опублікованому ком-
плексі статей [1]–[4] під загальною назвою “Альтерна-
тивні технології композитних високонавантажених 
конструкцій: якісний метод прийняття багатокритеріа-
льних рішень” об’єктами вихідного моделювання є 

важкоформалізуємі технолого-оціночні багатофак-
торні процеси виготовлення композитних АК. Тому 
важливими стають рішення з опорою на науково-тех-
нічні дослідження. Але часто такі моделі створюють 
інваріантно, без врахування практики. Адже дуже ве-
ликий вплив має суб’єктивний підхід, досвід  розроб-
ника і достатньо великий рівень знань технологічної 
практики. В зазначених публікаціях представлена ав-
тономна сис-тема (АДС), де предметом моделювання є 
комплексний ТП, його етапи та зв’язки між ними. Як 
розвиток попередніх результатів розглянута можли-
вість залучення так званого монофакторного підходу 
[9]–[14] в напрямку спрощення шляхами технологіч-
ного пристосування до ідей та положень неевклідової 
геометрії [9], [15], [20]. Так, в даній статті, як подаль-
ший розвиток застосування на практиці (композитні 
АК) ідеї та положення векторного та тензорного аналізу 
[9], [15]–[22]. 
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1.2. Основні засади розвитку конструктивно-
технологічних рішень крил літаків із ПКМ 

Полімерні композитні матеріали (ПКМ) донині і 
по теперішній час з широким застосуванням в конст-
рукціях агрегатів повітряних суден транспортної кате-
горії, забезпечуючи низку незаперечних переваг перед 
металами. Це підвищення вагової віддачі, надійності і 
ресурсу, а також економічних показників [1]–[6], [9], [10]. 
Взагалі, конструктивні рішення – це розділ проєкту, 
який детально описує всі матеріали, з яких зроблена та 
чи інша конструкція, всі вузли кріплення та розрахо-
вані всі навантаження [12]. Відмінною фундаменталь-
ною особливістю ПКМ і технологічних процесів виго-
товлення елементів конструкцій з них (літаки) є одно-
часне створення матеріалу і виробу [1], [12]. Таким чи-
ном, йдеться про взаємопов’язаність конструктивно- 
технологічних рішень (КТР) в контексті створення і 
виробництва композитних ефективних конструкцій. 
Адже ПКМ, як двокомпонентно-складові матеріали, 
зберігають свою ідентичність в композитах, створюю-
чи “гібридний” матеріал, який має покращені структур-
ні властивості, більш того, забезпечуючи синергізм та 
інноваційність процесів [1], [9]–[12]. Це досягається 
тим, що при розробці авіа конструкцій із них, процеси 
проєктування, створення матеріалу і технології їх ви-
готовлення, є невід’ємними частинами одна від одної. 
Тому “принципи” надійності та технологічність КТР 
закладаються саме в цій “зв’язці”.Зазначені переваги 
реалізуються шляхом повних і удосконалення існую-
чих конструктивно-технологічних рішень. (КТР) агре-
гатів літаків [2], [6], [9], [10]. Тому викликає великий 
інтерес до розробки нових КТР типових структур із 
ПКМ. На прикладі в [4] приведений аналіз проєкту 
News-New Evolution Wing Structure. 

1.3. Векторно-технологічний аналіз 

Векторне і тензорне числення мають не лише 
суто-прикладне значення, як підготовка необхідної 
бази для класичної механіки чи електродинаміки. Тут 
має місце і для технології, щоб віднайти шляхи і під-
коди для практичних значень у цій науці та техніці. Се-
ред цих підходів –технологічне відображення матема-
тичних виразів та формул [9], [15]–[23]. 

1.3.1. Векторний простір, його розмірність і век-
торний базис. Як відомо [9], до поняття “вектора” від-
носять не тільки спрямований відрізок. Векторами мо-
жуть бути названі найрізноманітніші об’єкти, що утво-
рюють, векторні простори. До цих об’єктів належать 
КТР і технологічні процеси (ТП) виготовлення компо-
зитних об’єктів. Взагалі технологічний простір – це ба-
гатовимірний об’єкт. 

Обґрунтування. Розглянемо множину v елемен-
тів a, b, c, які можна складати один з одним, множити 
на довільне число, отримуючи елементи тієї ж мно- 

жини. Операція складання повинна мати властивості 
комутативності і асоціативності (дві умови). Передба-
чається також, що множина містить нульовий елемент 
О, а також для будь якого елемента існує елемент – а. 
При множенні на число також повинно виконуватися 
ряд чотирьох умов [9]. 

Тобто будь-яка множина елементів, на якій вве-
дено операції додавання і множення на число, що во-
лодіють зазначеними в [9] властивостями утворюють 
лінійний і векторний простір. При цьому самі елементи 
множини називають векторами. Говорячи про скла-
дання елементів множини і множення їх на число, слід 
зауважити, що дії вимагають послідовності в кожному 
конкретному випадку. Тому для векторів, як спрямова- 
них відрізків операція складання визначається прави-
лом паралелограма, або трикутника, а множення на 
дійсне число позначається на довжині вектора, і мож-
ливо, напрямку (в разі від’ємного множника). Розмір-
ність векторного простору називають максимально 
число незалежних векторів. Тоді його базисом розмір-
ності N називають будь-яку сукупність лінійно неза-
лежних векторів. Тому в статті при формалізації ТП 
застосовані положення векторного аналізу найперше, 
визначення векторного базису [9], [15].  

1.3.2. Векторний базис. Система будь-яких трьох 
впорядкованих лінійно незалежних векторів е1, е2, е3 
називається векторним базисом тривимірного прос-
тору. Детальніше базисом в просторі називається дові-
льно впорядкована трійка некомпланарних векторів 
е1, е2, е3 тоді будь-який вектор, що належить простору, 
можна однозначно розглядати за цим базисом:  

 1 2 3a a a= + +1 2 3a e e e  (1) 

Коефіцієнти біля базисних векторів у формулі (1) 
є координатами відповідно в просторі – а (а1, а2, а3) [9]. 
Якщо вектори базису е1, е2, е3, взаємно ортогональні та 
їх довжини рівні одиниці, то вони називаються ортами 
прямокутної системи координат і позначаються і1, і2, і3. 
В статті орти використовуються, як базисні вектори. 
Взагалі ж, базис – це множина векторів, які в різних 
комбінаціях утворюють решту векторів на площині чи 
в просторі. Базисний вектор – це вектор однієї мно-
жини. Водночас кількість векторів базису не залежить 
від вибору базисних векторів і дорівнює розмірності 
простору. Векторний простір позначається Pn чи L. В 
статті матриці є нотацію для описання лінійних відоб-
ражень. Поняття лінійної комбінації є одним з ключо-
вих в лінійній алгебрі. Це вираз, побудований на мно-
жині елементів шляхом множення кожного елемента 
(наприклад, в статті це орти) на коефіцієнти з подаль-
шим додаванням результатів [9], [15]–[20]. 

1.4. Тензори 

Багато завдань геометрії, механіки та фізики 
приводять до поняття тензора, який має більш склад- 
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ний характер, ніж поняття “вектор” і є деяким його уза-
гальненням. Однак, в той час, як для кожного вектора 
існує проста геометрична інтерпретація у вигляді на-
правленого відрізка, для тензорів подібного простого 
наочного представлення немає місця. Тому є необхід-
ність дати доповнююче, а практично нове визначення 
вектора шляхом узагальнення, що дозволяє охопити і 
більш складний випадок тензора.  

Тензор (від лат. tendere, “тягнутись, простира-
тися”) – математичний об’єкт1 [9], що узагальнює такі 
поняття як скаляр, вектор, ковектор, лінійний оператор 
і білінійна форма. Вивченням тензорів займається тен-
зорне числення. 

Відомо, що за своєю математичною природою 
величини бувають трьох типів: скаляри, вектори, тен-
зори. Такий підхід до застосування величин при моде-
люванні дозволяє сформулювати і фізичні закони а ін-
варіантному виді. Інваріантність розуміється в такий 
спосіб – якщо в просторі змінити систему координат 
(для фізики це пов’язано з можливістю зміни системи 
відліку), то це приводить до відповідних змін в описі 
процесів й явищ, але форма запису не повинна зміню-
ватися. Тому представляється доцільним використати 
скалярні, векторні й тензорні величини, які при таких 
перетвореннях не змінюють запису законів. Напри-
клад, відстань між точками М1 і М2 – інваріант при пе-
реході від системи Оху до системи О1 х1 у1 (рис. 1). 
 

 
Рис. 1. Незалежність інваріанта тензора (відс-
тань між точками М1 і М2) від вибору системи 
координат (Oxy і O1x1y1) [20] 

Тензор рангу1 (m, n) над векторним простором V 
є елемент тензорного добутку m просторів V та n спря-
жених просторів V* (тобто просторів лінійних функ- 
ціоналів (1-форм) на V): 

 ( ) 1 1m
n

m n
r T V V V V V∈ = ⊗ ⊗ ⊗ ⊗ ⊗ 

 

 (2) 

Сума чисел m + n називається валентністю тен-
зора. Тензор рангу (m, n) також називається m разів 
контраваріантним та n разів коваріантним. 

Тензор може розглядатися з двох сторін – в гео-
метричній інтерпретації і як абстрактне поняття (п. 3). 

Таким чином, вектор (тензор) – це єдиний об’єкт, 
який може бути заданий різними способами, в тому 
числі і технологічно, залежно від контексту, а набір 
компонент є лише його зображенням у певному базисі, 
користуючись яким у задачі, яка розглядається, може 
бути зручно або ні [9]. 

Стосовно зазначених в статті технологіям ком-
позитних АК, то тут червоною ниткою проходить [1]–
[7], [9]–[14] оформлене представлення ряду принципо-
вих ідей та положень векторного та тензорного аналізу 
[15]–[25], а саме: структурованість, агрегатність, зв’яз-
ність та можливі перетворення об’єктів. В технологіч-
ному трактуванні в спрощенні йдеться про техноло- 
гічні перетворення (у вказаній загальності) низки напів-
фабрикатів ПКМ у готовий виріб (АК). 

Слід зазначити, що у всієї своєї могутності фор-
малізму тензорного аналізу, що проявляється не у всіх 
областях, досить часто використовують як і в даній 
статті його спрощений варіант. 

Мета статті 

Розкрити результати авторських досліджень у 
практико-виробничому аспекті , що стосується ТП, пе-
редбачаючи застосування векторного та тензорного 
аналізу: 

– координатний підхід, технологічний простір, 
скалярний добуток, матричний тензор; 

– приклади тензорного та векторного аналізу в 
технології композитних АК. 

2. Приклад технологічної структури та 
зв’язності у векторному відображенні 
2.1. Нові конструктивно-технологічні  
рішення крил літаків із ПКМ: аналіз NEWS-
проєкта [4], [9] 

News – це проект у відповідності зі стратегією 
нової дочірньої компанії STELIA Aerospase R&T по роз-
робці композитних конструкцій з високим потенціалом 
в технічній та економічній галузях. В планах STELIA 
Aerospace – це удосконалення технології LR1 (Liquid 
Resin Infusion) – інфузії [2], [4], [5], [9] саме на прикладі 
шляхом виготовлення в якості демонстратора відсіка 
крила інфузійно-інтегральної конструкції рис. 2 та 3. 

Тут йдеться про переваги вибраної інтегральної 
інфузійної технології, включаючи мінімізацію етапів 
складання, автоматизацію процесу, економічний без-
автоклавний процес формування.  

Задачі, що потребують рішення: 

1Тензор рангу (0; 0) є скаляр; рангу (1; 0) – вектор; рангу (0; 1) – 
ковектор (коваріантний вектор), тобто елемент простору VK;  
рангу 0,2 – білінійна форма: рангу (1; 1) – лінійний оператор [9]. 

https://uk.wikipedia.org/wiki/%D0%9B%D0%B0%D1%82%D0%B8%D0%BD%D1%81%D1%8C%D0%BA%D0%B0_%D0%BC%D0%BE%D0%B2%D0%B0
https://uk.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%BD%D0%B8%D0%B9_%D0%BE%D0%B1%27%D1%94%D0%BA%D1%82
https://uk.wikipedia.org/wiki/%D0%A1%D0%BA%D0%B0%D0%BB%D1%8F%D1%80
https://uk.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80
https://uk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80
https://uk.wikipedia.org/wiki/%D0%9B%D1%96%D0%BD%D1%96%D0%B9%D0%BD%D0%B8%D0%B9_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80
https://uk.wikipedia.org/wiki/%D0%91%D1%96%D0%BB%D1%96%D0%BD%D1%96%D0%B9%D0%BD%D0%B0_%D1%84%D0%BE%D1%80%D0%BC%D0%B0
https://uk.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BD%D0%B7%D0%BE%D1%80%D0%BD%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BD%D0%B7%D0%BE%D1%80%D0%BD%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D0%B8%D0%B9_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%96%D1%80
https://uk.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BD%D0%B7%D0%BE%D1%80%D0%BD%D0%B8%D0%B9_%D0%B4%D0%BE%D0%B1%D1%83%D1%82%D0%BE%D0%BA
https://uk.wikipedia.org/wiki/%D0%A1%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%B8%D0%B9_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%96%D1%80
https://uk.wikipedia.org/wiki/%D0%A1%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%B8%D0%B9_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%96%D1%80
https://uk.wikipedia.org/wiki/1-%D1%84%D0%BE%D1%80%D0%BC%D0%B0
https://uk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D1%82%D1%80%D0%B0%D0%B2%D0%B0%D1%80%D1%96%D0%B0%D0%BD%D1%82%D0%BD%D0%B8%D0%B9_%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80
https://uk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%B2%D0%B0%D1%80%D1%96%D0%B0%D0%BD%D1%82%D0%BD%D0%B8%D0%B9_%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80
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– виготовлення конструкції за один цикл: об- 
шивка + стригери лонжерони + нервюри; 

– виготовлення конструкції “в розмір” (вилу-
чена операція обрізки після затвердіння);  

– одержання якісної поверхні.  
 
 

 
Рис. 2. Експериментальний інтегральний від-
сік крила (інтегральна технологія) 

 
Рис. 3. Температурний режим просочення 
(influsion) та затвердіння (cure) зібраної конст-
рукції (зв’язуюче марки RTM6 фірми Hexcel) 

Принцип проєктування та виготовлення полягає 
в тому, щоб створити конструкцію крила із складання 
тільки двох агрегатів інтегрального типу: перший (об-
шивка + стрингери + лонжерони + нервюри), другий 
(кришка: обшивка + стрингери). Тут напрошується 
аналогія з векторами; де відсік крила – узагальнений 
вектор, а два вказаних вище агрегати – це базисні век-
тори. В статті йдеться не тільки про ефективність залу-
чення інноваційних технологій, а також й про можли-
вість їх формалізації (в помірному форматі). 

2.2. Векторний (координатний) базис у відобра-
женні ТП 

На основі [9], [15], [20] та скороченню в р. 1, бу-
демо вважати, що технологічний процес (ТП) у форма-
лізованому вигляді (при технологічному втіленні може 

бути представлений вектором r, наприклад, препре-
гово-автоклавний процес (ПАП) з його подальшою 
структуризацією, наприклад, автоклав та оснастка 
(форма). Будемо вважати, що ці два вектори при взає- 
модії об’єднані за допомогою точкового добутку, де 
результат є скалярним (скалярний добуток). Його та-
кож ще можна називати “внутрішнім продуктом”. Су-
марний вакуум-автоклавний процес формування пред-
ставлений на рис. 4, графіком у вигляді кривих. Анало-
гічно це стосується і технолого-конструктивних рі-
шень (КТР). З огляду на це, першим у технологічному 
втіленні базисом векторного простору є повна система 
у вигляді впорядкованого набору базисних векторів у 
лінійному просторі. Наприклад, в табл. 1 та 2 предс-
тавлена в спрощенні структура базису ПАП у разі ви-
готовлення композитної (вуглепластик) панелі крила 
літака [3], [7], [9]. 

 

 
Рис. 4. Графіки функцій формування компо-
зитних панелей: а – вакуумне формування, b – 
автоклавне формування, c – сумарне вакуум-
автоклавне формування 

Із можливих варіантів тут представлена в пер-
шому наближенні два взаємних приклади [9], [14]–[20] 
базисів ТП, а саме базис – 1 (a, b, c) для ПАП І альтер-
нативний до нього інтегрально-інфузійний ТП з бази-
сом – 2 (a′, b′, c′) Водночас, вектори цих базисів струк-
турно являють собою лінійну комбінацію базисних 
векторів. Тобто, в будь-якому векторному просторі 
мають місце різні базиси, за рахунок, наприклад, пере-
бору векторів базису, а також за рахунок того, що век-
тори можна вибрати різним чином, змінивши напрям 
цих векторів. В такому разі базис є нормалізованим [9], 
а також як приклад, табл. 1 та 2. Відомо, що три век-
тори, які задані в прямокутній декартовій системі ко-
ординат, є лінійно незалежними, якщо визначник мат-
риці, складеної з їхніх координат, не дорівнює нулю. 

Щодо зазначених альтернативних варіантів ТП і 
КТР композитних АК, то вони зазначені в [9], [1]–[4], 
[14]–[20]. Саме в розрізі техніко-економічних і експ-
луатаційних властивостей. Тут в табл. 1 та 2, представ-
лені, як різновиди дві трійки базисних векторів (a, b, c) 
і (a′, b′, c′), що утворюють два координатних векторних 
КТР (р. 2). Визначивши двох звичайних матриць, що 
складається з координат вказаних базисних векторів, 
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мають наприклад, в першому наближенні значення 4 і 5. 
Тобто тут, детальніше, мають на увазі препрегово-ав-
токлавні технології (літаки В – 787 і А – 350 XWB) пер-
ший в експлуатації 13 років, а другий 10 [9]. А літак  

Таблиця 1. Вектори двох систем КТР та визначники 
матриць, складених з їхніх координат 

Варіанти КТР 
Трійки векторів, що 

утворюють базиси в R3 
Визначники 

матриці 

препрегова 
автоклавна 

1 2 32 3a i i i= + + , 

3b i= , 

1 2 33 2c i i i= + +  

4* 

інтегральне 
інфузійне 

1 2 32 3a i i i′ = + + , 

3b i′ = , 

1 2 33,5 2c i i i′ = + +  

5* 

1 2 3, ,i i i – орти прямокутної декартової системи координат 

* без порівняння варіантів КТР щодо несучої здатності та 
технічно-експлуатаційних властивостей крила 

 

МС-21 повинен був вийти в серійне виробництво у 
2016 році, але з тих пір терміни переносились більше 
10 разів. В 2025 році серійне виробництво знову пере-
несли вже на 2026 рік [9]. Ясно, що вибір варіанта (різ-
новиду) по двом різним технологіям має пройти дійс-
но техніко-економічне та експлуатаційне обґрунту-
вання. Тому тут за попередньо заявленим даним щодо 
економічної ефективності, перевага віддана інфузій-
ним технологіям [4], [9]. Це відображено в значеннях 
визначників матриці, поряд з тим в [1], [3], [9]–[14] і 
в табл. 2 зазначені низка дійсних переваг препрегово-
автоклавних технологій. 

В ній зі спрощенням поданий зміст компонентам 
векторів базису (a, b, c) першого різновиду зі спрощен-
ням (наявність кількох резервних показників). 

Таким чином, тут можна говорити про техноло-
го-векторний простір. 

3. Введення в технологічне відображення 
тензора (вектора) Контраваріантні (зви-
чайні) і коваріантні (дуальні) вектори 
3.1. Загальні технологічні положення 

За вектором та тензором стоять реальні техноло-
гічні об’єкти: ТП, обладнання, тощо, а тому вектор 
(тензор) – це тотожний опосередкований нормативний 

Таблиця 2. Векторна система базису в технологічній інтерпретації: вектор r  – препрегово-автоклавний ТП. Серійне 
виробництво 

Вектори базису вектора r  

Компоненти визначених векторів базису 

Позначення* Технологічне відображення формальних виразів і формул 

a  
Матеріали та технологічні процесі 

1i  Компоненти ПКМ, препреги фізико-механічні 
характеристики, технологічність 

22i  Схема технології виготовлення “сирої” панелі, обладнання, 
параметри ТП 

33i  Вакуум-автоклавне термосилове формування панелі, 
параметри ТП; габарити і форма панелі 

b  
Технологічна оснастка (ТО) 3i  ТО (форма) для вакуум-автоклавного формування 

формоутворюючий лист-метал (титан), Габарити 

c  
Порівняльна ефективність виробу. ТП 

і ТО 

13i  Підвищення фізико-механічних характеристик ПКМ, надій-
ності та контролепридатності матеріалу і виробу 

22i  Високий рівень зазначеної технології, як показник якості 
ТП, суттєво впливаючи на якість продукції 

3i  Висока доступність**, а також висока якість 
відформованої панелі 

* коефіцієнти (числа) біля ортів-координати r  в базисі a, b, c 
** здатність системи працювати безперервно без збоїв протягом заданого періоду часу [9] 
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набір чисел. Вектор (тензор) – це чи не єдині об’єкти, 
які можуть бути задіяні різними способами, залежно 
від технологічного контексту, а набір компонент є 
лише його зображенням у певному вибірковому базисі. 
Тут також може використовуватись координатний під-
хід, а також можливість інших способів завдань і ро-
боти з векторами (тензорами). Найперше, на прикладі 
звичайних векторів і простих тензорів другого рангу з 
потужною ідеєю ортогональності. Слід зазначити, що 
розмірність векторних і тензорних величин залежить 
від технологічної задачі, і якщо задача заздалегідь при-
зведе до безрозмірного вигляду, то і компоненти є без-
розмірними. При розв’язуванні задачі з технологіч-
ними величинами базис можна задати безрозмірним. 
Тоді компоненти векторів і тензорів є безрозмірними 
(по аналогії з фізичними величинами [9]). 

3.2. Приклади узагальненого вектора та його 
складових в технології ПКМ 

1. Як відомо [9], категоризація – прийом вико-
ристовування у структурній інтерпретації виділених у 
процесі описового аналізу найбільш суттєвих одиниць. 
Тут, як перший варіанті йдеться про технологічне ві-
дображення (в скороченні) конструктивно-технологіч-
них рішень (КТР) в цільовому напрямку (технологіч-
ність ПКМ, оснастка, автоклавне та інфузійне форму-
вання композитної панелі та ін. Детальніше, це у фор-
мальному вигляді: узагальнений вектор а – КТР та його 
складові категорії, або категорії: – вектор е1 – техноло-
гічні рішення (ТР), в скороченні це, наприклад дирек-
тивні ТП; – вектор е2 – конструктивні рішення (КР), в 
скороченні це, наприклад, ПКМ, технологічність конс-
трукції та ін. Вони детермінують найбільш характерні 
рішення. 

2. У другому прикладі йдеться про технологічну 
систему (ТС) у складі двох її підсистем, саме техноло-
гічного процесу (ТП) та технологічної оснастки (ОС). 
Сам факт об’єднання цих двох підсистем говорять про 
їх перехід з вихідного стану в робочий стан. Так, пере-
хід ОС в робоче положення, наприклад при автоклав-
ному формуванні пов’язане з наладкою вакуумної сис-
теми та ін. Детальніше у формалізованому вигляді цей 
варіант розглядається нижче. 

3.3. Геометричний узагальнений вектор а 
на площині: технологічно контраваріант-
ні (звичайні) та коваріантні компоненти 

3.3.1. Загальне визначення. Розглянемо вектор 
а (ТС). Як відомо, будь-який вектор можна задати на 
площині за допомогою двох неколінеарних векторів: 

 1 2a а а= +1 2e e  (3) 

Тут аi, i = 1,2 коефіцієнти розкладання (під верх-
нім індексом слід розуміти саме номер компонент, а не 

зведення у ступінь), так звані контрваріантні коорди-
нати вектора а. Геометрично – це можна зобразити так, 
як показано на рис. 5 [15]. Вектори е1, е2 є базисними 
(вектори базису), кут між ними, при умові 0ϕ ≠ , π 
може бути довільним, довільним також ненульова до-
вжина базисних векторів. Вказаний базис задає косоку-
тову систему координат на площині, з осями ( , )u v . 

Виходячи із рис. 5 довжини відрізків ОА1 і ОА2 
дорівнюють: 

 1 2
1 1 2 2,OA a e OA a e= = , (4) 

Нехай в (3) i (4) вектор e1 – ТР; а вектор e2 – КР. 
Аналогічне, приведене має місце і для ТС, ТП, ОС. 
Ясно, що зазначене в (3) не єдиний спосіб виз-

начити вектор а в даній системі координат, його мож- 
на також задати ортогональними проєкціями на осі 
( , )u v , а саме: 

 1 2
1 1 2 cos cosOB OA OA а а= + ϕ = + ϕ1 2e e  (5) 

 1 2
2 1 2cos cosOB OA OA а а= ϕ+ = ϕ+1 2e e  (6) 

 

 
Рис. 5. Задання базисом (вектори e1 e2) сис-
теми координат на площині 

Далі, виразимо довжини цих проєкцій через дов-
жину базисних векторів [15]. В результаті одержимо:  

 1
1

1

аOB
e

= , (7) 

 2
2

2

аOB
e

= , (8) 

де 1а = ⋅ 1а e  і 2а = ⋅ 2а e  – коваріантні координати век-
тора a. 

Зі спрощенням, коваріантний вектор – це такий 
математичний об’єкт, який діє на звичайний контрава-
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ріантний вектор і в результаті дає число-скалярний до-
буток цих векторів із звичайними властивостями ліній-
ності. Розмірність конвекторів збігається з розмірніс-
тю їх контраваріантних аналогів.  

Тобто один і той же вектор може бути записаний, 
як коваріантний (тобто набір коваріантних координат) 
і контраваріантний (набір контраваріантних координат). 

Контраваріантні вектори часто називають прос-
то векторами, а коваріантні – ковекторами або подвій-
ними векторами. Як відомо в математиці фіксація од-
нієї величино відносно інших змінюється відповідно 
до фіксованого математичного співвідношення. При 
розгляді коваріантних компонентів на будь-яку вісь, 
необхідно використовувати скалярний добуток [9]. 

В математиці, зазвичай контраваріантним векто-
ром називають сукупність (стовпець) координат век-
тора у звичайному базисі (контрваріантні координати).  

Зразок контраваріантного вектора – це вектор 
зміщення, записаний у вигляді набору збільшених ко-
ординат: dx1. Більш близьким до технологічного оха-
рактеризування є наступні дефініції. В цьому випадку 
формальне визначення контраваріантності, саме якщо 
воно зберігає порядок типів ( ≤ ); який упорядковує типи 
від більш специфічних до більш загальних; а контрава-
ріантний, якщо він може змінювати цей порядок [9]. 
Так, ковектор дозволяє призначити екземпляр змінної, 
тип якої є одним із найбільш загальних типів екземп-
ляра, тобто супертип. Контраваріант же лише дозволяє 
призначати екземпляр змінної, тип якої є одним із по-
хідних типів екземпляра, тобто підтип. 

Для можливості більш точного технологічного 
відображення необхідні додаткові пояснення. Вибе-
ремо базис в сполучному (спряженому) просторі так, 
що ( )i ig x x= , тобто ці функціонали знаходять і-ту ко-
ординату вектора. Тобто взагалі дуальний базис змі-
нюється збіжно зміні основного базису. Отже, його 
вектори будуть змінюватись, як основний базис – саму 
цю властивість називають коваріантністю. Саме лі-
нійні функціонали в координатному представленні в 
дуальному базисі називають коваріантними векторами 

чи коротко ковекторами. Зовнішньо ковектор вигля-
дає, як звичайний вектор – у сенсі звичайного набору 
чисел, представляючи координатами (рис. 5, рис. 6), В 
табл. 3. показана інтерпретація процесного циклу ПКМ. 
Значна відмінність ковектора від контрaваріантного 
вектора висновується (виявляється) в правилі перетво-
рення його координат при зміні базису: вони перетво-
рюються так, як базис. У відмінності від контраваріант-
них векторів, що перетворюються (координати) проти-
лежно базису. Для ідентифікації ковекторів використо-
вується, як це було задумано, нижній, або коваріант-
ний індекс [9]. 

 
 

 

Рис. 6. Конусоїда на проміжку від 
2
π

−  до 
2
π . 

Інтервал між точками –1т і 1т початок та за-
кінчення ТП 

Два базиси (e1, e2, e3) і (e′1, e′2, e′3) називаються 
взаємними, якщо їх вектори задовольняють співвідно-
шенням: 

 
0,
1,

i k
i k
≠

⋅ =  =
k

ie e  (9) 

Із зазначеного випливає, що кожний вектор ос-
новного базису перпендикулярний двом векторам 
взаємного базису, а з третім складає гострий кут. 

Таблиця 3. Косинус технологічної подібності (інтерпретація процесного циклу ПКМ) 

Назва, позначення Початок процесу Середня частина процесу Закінчення процесу 

Точки по осі Х –1т 0 1т 

Кути по осі Х ( )90
2
π

− °  0 ( )90
2
π

°  

Значення по осі Y 
Y = cos x 

0 1(М)* 0 

Коротке визначення 
Компоненти ПКМ напів-
фабрикати “сирі” об’єкти 

“Сира” цілісна панель і початок 
активної реакції зв’язуючого 

Готові панелі та її зразки – 
свідки 

* М – середина-точка зосередження технологічних відносин процесу. 
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3.3.2. Технологічне відображення. При виборі 
(визначенні) контраваріантних і коваріантних векто-
рів в їх технологічному трактуванні (технологічний 
вміст та зв’язки) були відображені особливості вказа-
них об’єктів і прийняті такі зазначені умови. В техно-
логічній адаптації це об’єкти ТП з виготовлення ком-
позитних АК. Наприклад, вуглепластикові панелі ке-
сона крила в альтернативних технологіях та ін., з роз-
робкою моделей формалізації, в т.ч. автономної ди-
намічної системи (АДС) [1]–[4], [10]–14]. 

В статті на основі поняття “довільний вектор” 
[4], [23], що саме застосовується в розумінні “техно-
логічний вектор”. Це не обов’язково направлений від-
різок, але тут кожному вектору можна поставити у від-
повідність деякий направлений відрізок, який має нап-
рямок вектора, який розглядається і довжину, що може 
дорівнювати числовому значенню його модуля (у пов-
ному масштабі). Тобто в основі поняття технологічний 
вектор або технолого-векторні величини лежить по-
няття геометричний вектор, таким чином, можна гово-
рити про адаптовані технологічні об’єкти, що постав-
лені у відповідності (в певному наближенні) до геомет-
ричних об’єктів.  

Далі для технологів, як і для фізиків за вектором 
і тензором завжди стоїть реальний об’єкт, а тому век-
тор (тензор) не тотожні набору чисел. Вектор (тензор) – 
це єдиний об’єкт, який може бути заданий різним спо-
собом, залежно від контексту, а набір компонент є 
лише його відображення у певному базисі користую-
чись яким у розглянутій задачі це може бути зручно 
або ні [9], [23]. 

При зазначеному відображенні слід вказати, що 
якщо визначено невироджений метричний тензор, то 
“коваріантний вектор і контраваріантний вектор” є 
просто різним представленням одного і того ж об’єкта. 
Однак, у випадку переймання щодо коваріантного век-
тора, то це представлення ТП вже більш розширене. 
Тут можливе застосування поняття “технолого-ко-
варіантний вектор”, або в більш широкому значенні 
“технологічний ковектор” розвитку (розмаху) ТП 

(ТКВР). Приймається, що дві складових взаємо-
пов’язаних частин ТКВР, саме вхідна та вихідна. 

На прикладі (рис. 5 табл. 4) елементів 3 та 4 ши-
роко представленої АДС [11]–[13], де контраваріантні 
координати цього вектора (вхідна частина), що надає 
цьому вмісту системо подібний характер, націлений на 
розвиток конкретного ТП. Так “сира панель” на “оснаст-
ці” (контраваріантні координати) проходить “термоси-
лове пропресування” в “автоклав” і (коваріантні коор-
динати). Тут можна провести певну аналогію з склад-
нопідрядним реченням (СПР), яке складається з голов-
ної та підрядної частин. Головна частина СПР, від якої 
ставиться питання до підрядної, а підрядна частина 
відповідає на поставлене питання. 

3.4. Підсумкові дані 

В позначеннях [24] щодо вказаних векторів має 
місце:  

1. v – звичайний (контраваріантний вектор – 
утворюючий векторний простір v. 

ω – дуальний подвійний вектор (ковектор), утво-
рюючий дуальний, спряжений простір ωk (часто – це 
простір vk). Наприклад такі пари: автоклав-форма; 
прес-штамп, верстат-пристрій тощо. 

2. Дуальний вектор приймає в себе звичайний 
вектoр і видає якесь число. Тобто: 

 ( ) а Rω = ∈v . (10) 

Йдеться про технологічне відображення зв’язку 
між вказаними векторами (приклад, між вказаними 
вище парами в різних технологіях). Найперше, цей 
зв’язок типу техніко-технологічне пристосування 
об’єктів у лінійно-функціональному ТП. Він формалі-
зовано відповідає певним властивостям, а саме дуаль-
ний простір повинен бути лінійний.  

Наприклад:  
( ) ( ) ( )а а v b+ = +ω ω ω ωv bω  

Таблиця 4. Альтернативні ТП. Векторно-технологічна система а на площині: контраваріантні і коваріантні координати 
з прикладами (рис. 5) 

Вектор a Автономна динамічна система: етапи 3 та 4 [11]–[13] 

Система координат 
Косокутова. Базисні вектори: е1, е2. 

Вісь u – суцільність виготовленої панелі, 
вісь v – технологічне оснащення 

Контраваріантні координати Коваріантні координати 
ОА1 – вісь u ОА2 – вісь v ОВ1 – вісь u ОВ2 – вісь v 

Фактор: суцільність “сирої” 
панелі 

Фактор: технологічна 
оснастка 

Фактор: теплосилове 
пропресування 

Фактор: технологічне 
обладнання 

 



464 Mech. Adv. Technol., Vol. 9, No. 4, 2025 

3. Далі в положеннях [9], [15] визначається кон-
траваріантні компонентні вектори – це його коорди-
нати при розвиненні за основним базисом, а коваріан-
тні компоненти – за взаємним: 

1 2 10,а а а  – контраваріантні компоненти вектора; 

1 2, nа а а  – коваріантні компоненти вектора. 
Зв’язок між вказаними компонентами (коорди-

натами) можливий тільки в просторі, де заданий мет-
ричний тензор [9]. 

4. Згідно [9] будемо вважати, що зміст контрва-
ріантного і ковектора різний лише тому саме, який з 
себе із представлених більш технологічно прийнятий 
(притаманний, природній), Як приклад задіяні в табл. 4 
об’єкти, в тому числі технолого-коваріантні та контра-
варіантні вектори. 

5. Таким чином мова йде про описову адекват-
ність, де правила створення добре сформованої конст-
рукції. 

4. Символ Кронекера. Скалярний добуток. 
Косинус подібності. (Початкове визначен-
ня та призначення) 

4.1. Символ Кронекера (або дельта Кронекера 
чи кронекеріан) – одиничний тензор 2-го рангу (по-
рядку). Може розглядатись, як операція скалярного 
добутку векторів. Це функція двох змінних, яка дорів-
нює 1, якщо змінні рівні, 0 в іншому випадку [9]. В лі-
нійній алгебрі символ Кронекера може використову-
ватись для запису умови ортонормативного базису 
( , ) = δi je e ij , а також в загальному випадку – для ви-

значення дуального базису. Матриця (g), що складена 
із елементів ( )ijδ  є одиничною. Вона вказує на те, що 
всі діагональні елементи дорівнюють 1, а всі недіаго-
нальні елементи рівні 0. Це проста, але потужна функ-
ція слугує фундаментальним побудовним блоком в ба-
гатьох математичних випадках чи операціях. Так, час-
то дельта Кронекера використовується в підсумуван-
нях і інтегралах для спрощення виразів шляхом вибір-
кового включення членів, заснованих на рівності ін-
дексів. Нижче наведений приклад: 

 
1 0 0

1,
0 1 0

0,
1 0 1

ij
i j
i j

 
=  δ = =  ≠   

. (11) 

4.2. Скалярний добуток – бінарна операція над 
векторами: результатом якої є скаляр. Два означення 
добутку векторів: 

– скалярним значенням двох векторів є число 
рівне добутку довжини цих векторів на косинус кута 
між ними.  

– скалярним добутком двох векторів також на-
зивають число, рівне добутку довжини одного з цих 
векторів на проєкцію іншого вектора на вісь, обумов- 

ному першим з вказаних векторів. 
Взагалі для векторного простору існують різні 

варіанти скалярного добутку. В статті застосовується 
узагальнююча форма запису скалярного множення, що 
не залежить ні від розмірності простору, ні від розгля-
даного (аналізованого) базису, всі властивості якого 
обрані в матриці g (р. 5 метричний тензор). 

Припустимо, що наш базис – декартовий, тобто 
ортонормований [9], [25]. Тоді матриця g стає одинич-
ною 

 
1 0 0
0 1 0
0 0 1

g
 
 =  
  

. (12) 

Нехай вектор a заданий в такому базисі. Квадрат 
довжини вектора, як відомо, це скалярний добуток 
вктора самого на себе, тобто: 

 2 1 2 3 1
11 12 13( )j i

ija a a g a a g a g a g a a= ⋅ = = + + +
    

 1 2 3 2 1
21 22 23 31( ) (g a g a g a a g a+ + + + +  

 2 3 3 1 2 2 2 3 2
32 33 ) ( ) ( ) ( )g a g a a a a a+ = + + . (13) 

В цьому випадку квадрат довжини вектора збі-
гається з заданим в прямокутній системі координат.  

4.3. Косинус подібності 

У другому випадку застосування розглядається 
так званий косинус подібності [9], [16]. Це коефіцієнт 
двох ненульових векторів, який обчислюється, як ко-
синус кута між ними Косинус 0° дорівнює 1 (рис. 6, то-
чка M), а всі інші значення кута в інтервалі (0, π) буде 
менше за 1. Отож, це оцінка напрямку, а не величини: 
два вектори з однаковим напрямком мають косинус по-
дібності 1, а два вектори, що утворюють кут 90° від од-
ного, мають подібність 0U, а два діаметрально направле-
них вектори мають подібність – 1, незалежно від їх дов-
жини. В статті в технологічному просторі, задіяні пе-
рша та друга чверті координатної системи (рис. 4, 6). 
Друга чверть, як і в роботах [11]–[13] пов’язується зі 
зв’язуючим r, а саме: ПКМ, “сирими” заготовками та 
панеллю (проміжок, 2 ,0π− ), а перша чверть (промі-
жок: 20, π ) з температурного початку активної реакції 
зв’язуючого та процесом повного затвердіння. Зазна-
чений проміжок та фактор cos 1ϕ = , як напрямок, 
може мати таке технологічне трактування: полімериза-
ція зв’язуючого. Значення cos 0ϕ =  в точці 1т3 означає 
остаточне затвердіння ПКМ. При цьому існуючі габа-
рити панелі тут мають незмінні розміри, (рис. 2). Функ-
ція cosy x=  є парною. Тому графік симетричний від-

носно Оy. Тоді, наприк-лад значення 3cos
6 2
π
= , мо-

жна зазначити дві точки , в другій та першій чверті, на 
рис. 3 це стадії “infusion” та “сure”.  
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5. Метричний тензор 

5.1. Введення 

Лінійний елемент (елемент довжини ds) [9], [22]. 
Зазначений математичний об’єкт грає вирішальну роль 
(свого роду у технологічному відображенні “меха-
ніка”, або навіть “механізм” зв’язку) розгорнутому фо-
рмулюванні метричного тензора (див. нижче), чи мет-
рики, що задіяно на тензорному полі. В спрощенні 
щодо тензора, то це узагальнення понять, що характе-
ризуються розміром і напрямом далі в скороченому 
складанні визначимо узагальнення. Для цього, напри-
клад розглядається прямокутний паралелепіпед, його 
вісім вершин: АА1, ВВ1, СС1, DD1. Далі зазначається ді-
агональ паралелепіпеда. Це, наприклад, відрізок АС1, 
що не лежить на одній його грані. В декартовій системі 
координат в елементарному паралелепіпеді виділені 
три ребра: dу1(АD), dу2(АА1), dу3(АВ). Тут позначається 
ds безкінечно мала відстань АС, з назвою ds елементом 
довжини чи лінійним елементом. Вираз для ds визна-
чається через диференціали dxr: 

 2 1 2 2 2 3 2( ) ( ) ( ) i ids dy dy dy dy dy= + + = . (14) 

Далі, через деталізоване просте визначення поз-
начень dуi і gmn отримано кінцевий результат: 

 2 m n
mnds g dx dx= . (15) 

Позначено, що gmn симетричний, а так як ds є ін-
варіант, то із (15) слідує, що gmndхmdхn також є інваріант 
при довільному контрваріантному векторі dxr. Звідсіля 
слідує, що gmn є коваріантний тензoр другого порядку під 
назвою фундаментальний чи метричний тензор [9], [22].  

Більш формально це тензор другого рангу на 
гладкому многовиді, що задає його локальні можли- 
вості, зокрема, визначає скалярний добуток. Простими 
словами, метричний тензор дозволяє вимірювати відс-
тані та довжини на викривленому просторі.  

Мета, заради якої метрику і метричний вектор 
введено в науковий простір – бажання описати будь – 
який простір за допомогою математичних формул – і 
по певній аналогії – визначити технологічний простір. 
Суть технолого-фізичного матричного простору в 
тому, що якщо відомі компоненти метрики матричного 
простору gmn, то можна “побудувати” простір. Коефі-
цієнти gmn можуть бути записано у вигляді двомірної 
матриці, що складається з рівного числа строк та стов-
бців (симетрія). Саме матричне представлення gmn тут 
має на увазі (15), яка являє собою формулу розрахунку 
ds2 в самому загальному вигляді, і тому вона справде-
ливо для кожних просторів [9]. 

Приклад, зв’язок між вказаними компонентами 
(координатами) можливий тільки в просторі, де зада-
ний метричний тензор [9]. 

5.2. Відображення порядку (рангу) векторів 

Тензор – об’єкт лінійної алгебри лінійно-перет-
ворюючий елемент лінійного простору в елементи дру- 

гого, зокрема (в окремості) тензорами є скаляри век-
тори, білінійна форма та ін. Сучасна математика розг-
лядає узагальнені простори, наприклад лінійний прос-
тір у лінійній алгебрі, простір подій у теорії ймовірнос-
ті, фазовий простір фізичної системи. Точками (елемен-
тами) цих просторів можуть бути геометричні фігури, 
функції, стани технологічної і фізичної системи 
тощо [9], [13]–[22]. 

Ранг, чи порядок тензора визначається числом 
осей: скаляр – тензор нульового порядку, вектор-тен-
зор першого порядку, матриця – тензор другого по-
рядку, куб-тензор третього порядку щодо відображень 
тензорів. 

Тензор першого порядку (вектор) відображена 
тензор першого порядку в тензор нульового порядку 
(скаляр), тоді, як тензор другого порядку відображає 
тензор першого порядку в першого порядку. Далі тен-
зор третього порядку відображає тензор першого по-
рядку в тензор другого порядку. 

Розглянемо об’єкт другого порядку. Найпрості-
шим видом такого об’єкта є добуток двох векторів, або 
об’єктів першого порядку. Такий добуток може бути 
трьох різних типів:  

1) добуток двох контраваріантних векторів;  
2) добуток двох коваріантних векторів;  
3) добуток контраваріантного та коваріантного 

векторів, такий об’єкт є змішаним тензором другого 
порядку. Він позначається за допомогою одного верх-
нього та другого нижнього індексів [9], [22]. 

6. Формальнa спроможність в області ТП: 
Перетворення координат на площині. 
Технологічний об’єкт (вектор) – виготов-
лення композитної панелі 

6.1. Загальна частина 

Йдеться про “формальну спроможність” в техно-
логічної області. Так, формалізація спроможності 
означає перетворення “спроможності” (здатності) у ві-
дому формальну систему, де форма стає важливим 
об’єктом дослідження. Це може бути виражено через 
формальні мови, правила, моделі які дозволяють окре-
слити цю область формалізації. 

При перетворенні координат завжди можна вка-
зати на величини (об’єкти), що залишаються незмін-
ними (інваріантними) при цьому перетворені [9]. Це 
фізичні величини; також тут можна вказати на техно-
логічні об’єкти (різноманітність процесів), що йдуть до 
однієї цілі виготовлення. Зазвичай, системи координат 
можуть буть переміщені або повернуті один до одного. 
При цьому скаляри, вектори, тензори визначаються 
своїми властивостями трансформації при зазначених 
перетвореннях. 

Так, на рис. 7 препрегово-автоклавна і інфу-
ційно-пічна технології виготовлення однієї і тієї ж ком-
позитної панелі в різних системах координат. Перша 
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зазначена технологія в декартовій системі, а друга – в 
косокутовій (п. 6.2). 

Вище було зазначено, що по взаємовідношенням 
ковектор приймає в себе вектор (діє на нього). Тут та-
кож важливим є питання збігу базисів. Якщо взяти ба-
зис декартової прямокутної системи координат (базис-
ні вектори взаємно перпендикулярні), то взаємний ба- 
зис збігається (співпадає) з ним. Тобто в декартових 
системах контраваріантні і коваріантні компоненти по 
напрямку осі (пряма лінія) збігаються [9], [20], [25]. 
Наприклад, в таб. 4 та на рис. 7 щодо контрваріантних 
компонент, то по осі х0х1 це “суцільність ПКМ”, а по 
осі y0y1 – “технологічна оснастка”. 
 
 

 
Рис. 7. Перехід векторів (рис. 2) в косокутовій 
системі координат до декартової 

Відносно дуальних векторів і їх коваріантних 
компонент, то по осі х0 х1 – це “Термосилове пропресу-
вання ПКМ”. Це многофакторний об’єкт, що включає: 
товщину композитної панелі, фізико-механічні харак-
теристики, структуру ПКМ: об’ємну доля зв’язуючого 
і армуючих волокон, пористість, якість відформованої 
поверхні, тощо. А по осі y0y1 – це “технологічне облад-
нання”. В афінній (косокутній системі) координат ба-
зис і кобазис не збігається. (рис. 5, рис. 7) 

6.2. Приклад (формалізація на основі [15] рис. 7)  

Нехай вектор а (виготовлення панелі) заданий в 
двох нормованих базисах – прямокутовому (e10, e20) – 
препрего-автоклавне ТП ( )( )0a  і косокутовому (e11, e21) 

– інфузійно-пічне ТП ( )( )1a . Перетворення із ко- 
сокутової системи в прямокутну виражається матри-
цею (16), зворотне перетворення матрицею (17). 

 01
cos sin
sin cos

A
ϕ ϕ 

=  ϕ ϕ 
, (16) 

 1
10 01

cos sin
cos 2 cos 2

sin cos
cos 2 cos 2

A A−

ϕ ϕ − ϕ ϕ = =
ϕ ϕ 

 − ϕ ϕ 

. (17) 

Задамо кут нахилу осей (рис. 7) 
6
π

ϕ =  (п. 4.2).  

Тоді в (18) тригонометричні функції мають такі 
значення: 

ня: 3cos30 , cos 60 0,5
2

° = ° =  і sin 30 0,5° ≡ . При об-

численні контраваріантних компонент вектора a в ко-
сокутових осях, для цього також необхідно знати ком-
поненти вектора в прямокутних координатах. 

Нехай такий вектор а0 має компоненти (18). 
Тобто 1(0) 3a = , а 2(0) 4a = . 

 (0) 3
4

a
 

=  
 

, (18) 

 (0) 1 0
0 1

g
 

=  
 

. (19) 

В (18) йдеться про технологічні векторні коорди-
натні величини. 

Ясно із (18), що отримана довжина цього вектора 
просто 5a = . 

Далі, як і в п. 4.2 метричний тензор в ортонор-
мованому базисі представляється одиничною матри-
цею (19). Тоді по аналогії з (13) має місце (20): 

( )2 (0) (0)(0) (0) (0) 1(0) 2(0) 1(0)
11 12

j i
ia g j a a g a a a a= = + +  

( )(0) (0)1(0) 2(0) 2(0)
21 22 (0) 3 3 4 4 9 16 25g a g a a+ + = ⋅ + ⋅ = + = . 

  (20) 

Тобто отриманий квадрат довжини вектора. 
Вказані вище положення і норми тензорного ана-

лізу дозволяють визначити контраваріантні коорди-
нати вектора a в косокутних осях (інфузійно-пічні ТП): 

 1(1) 1 1(0) 1 2(0)
1 2 3 4a a a a a= + = −  (21) 

 2(1) 2 1(0) 2 2(0)
1 2 3 4 3a a a a a= + = − +  (22) 

Отже, за вектором та тензором стоїть реальний 
технологічний об’єкт. При адоптації кожний вектор 
(наприклад, етап ТП) задається своїми компонентами 
(координатами), які залежать уже не тільки від самого 
вектора (виготовлення частково технологічного об’єк-
та етапу ТП), але й від розгалуженої координатної сис-
теми, яка розглядається. Далі проведена деталізація з 
наявності контраваріантних і коваріантних координат. 
Можна сказати, що вони є узагальненим зображенням 
вектора (тензора) у цій системи координат. Йдеться 
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про векторно-тензорний аналіз в контексті технологіч-
них операцій і тим самим, як наприклад, формальні 
спроможності в області ТП. 

Для того, щоб обчислити довжину вектора a в 
кожному базисі необхідно перетворити і метричний 
тензор: 

 
(1) (1)
11 12(1)
(1) (1)
21 22

g g
g

g g

 
=  
  

. (22) 

З метою скорочення виконаних обчислень, ниж-
че представлені їх остаточні результати [9], [15], а саме: 

 (1) (1) (1) (1)
11 12 21 22

3 31; ; ; 1
2 2

g g g g= = = = . 

Це остаточно, по аналогії з (20), надає змогу об-
числити довжину вектора а в новому базисі: 

 ( )2 (1) (1)(1) (1) (1) 1(1) 2(1) 1(1)
11 12

j i
ia g j a a g a g a a= = + +  

 ( )(1) (1)1(1) 2(1) 2(1)
21 22

33 3 4 3 6
2

g a g a a
 

+ + = − − + ×  
 

 

 ( ) ( )93 3 4 2 3 3 4 3 3 4 3
2

 × − + − − + − + = 
 

 

27 96 3 6 3 8 6 3 6 3 24 9 16 25
2 2

= + − − − − + + = + =  

  (23) 

Тобто доведено, що в косокутних координатах 
2 5=a . Таким чином, скалярний добуток і довжина 

вектора в технологічному трактуванні інваріантні, 
тобто незмінні при перетворенні координат.  

Але в технологічній інтерпретації йдеться про 
блок змінних (тензорний аналіз) і їх адаптивних версій 
значень, зокрема, для можливих цілей символьної 
розв’язки задач, а саме, в спрощенні: 

– кути нахилу осей (cos ϕ): 
– контраваріантні компоненти вектора: 

( , )1 2


nа а а ; 

– коваріантні компоненти вектора:  
( , )1 2 nа а а ; 

– зв’язки між вказаними компонентами (коорди-
натами). 

Висновки з проведеного дослідження АDC 

1. Як подальший розвиток попередніх результа-
тів робіт [1]–[5] на основі системного аналізу з інтерп-
ретаційно-формальному підходу в новонауково-тех-
нічному напрямку-технологічної інтерпретації уподіб-
нених (доволі зближених, співзвучних), а саме поло-
жень векторного та тензорного аналізу. Тобто йдеться 
про розширення щодо формального поля представ-
лення ТП в концепті “технологічний смисл” (форма-
льна спроможність в області ТП). 

2. Інтерпретація ТП, як низки положень і моде-
лей векторного та тензорного просторів (технолого-ве-
кторний та технолого-тензорний простори).  

3. Зазначена інтерпретативна адекватність тех-
нологічному перейманню (тлумаченню) контраваріан-
тним і коваріантним координатам вектора (технолого-
контрваріантні і технолого-коваріантні координати) та 
зв’язки між ними. 

4. Наведений приклад інваріантності укрупнених 
етапів складного ТП в різних системах координат, 
тобто незмінність технологічного вектора при перетво-
реннях його координат. 

Конфлікт інтересів 

Автори заявляють, що вони не мають жодного конф-
лікту інтересів щодо цього дослідження, включаючи фінан-
сові, особисті, авторські або будь-якого іншого характеру, 
які могли б вплинути на дослідження та його результати, 
представлені в цій статті. 

Використання штучного інтелекту 

Автори підтверджують, що не використовували тех-
нології штучного інтелекту при створенні даної роботи. 
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Formalization of Technological Processes Based on Vector and Tensor Analysis 
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Abstract. The work further develops the results of studies [1]–[5] based on a systematic analysis using an interpretative-formal approach 
in a new scientific and technical direction – the technological interpretation of provisions of vector and tensor analysis that are similar in 
meaning. This allows expanding the formal field of representation of technological processes within the concept of their “technological 
meaning” and increasing the formal capacity of TP description. The results of research are revealed in the practical and production 
aspects related to TP, providing for the application of vector and tensor analysis in the coordinate approach, technological space, scalar 
product, matrix tensor, as well as examples of tensor and vector analysis in composite AKZ technology. It is determined that vectors 
(tensors) can be specified in different ways, depending on the technological context (polymer composite materials technology – PCM), 
and the set of components is only its representation in a certain (in terms of detail) basis. A coordinate approach is used, as well as the 
possibility of other methods of specifying and working with vectors (tensors) using the example of ordinary vectors and simple second-
rank tensors, characterized by the powerful idea of orthogonality. Since the second vector and tensor represent real technological objects, 
including: autonomous dynamic systems (ADS), structural and technological solutions (STS), technological processes (TP), in the form of 
contravariant and covariant vectors, etc.  
The interpretative correspondence of the technological interpretation of contravariant and covariant coordinates of a vector is shown, and 
the nature of the relationships between technological contravariant and technological covariant coordinates is established. 
The example demonstrates the invariance of the enlarged stages of a complex technological process in different coordinate systems, which 
confirms the invariance of the technological vector under the condition of transformation of its coordinates. 
Keywords: vector, tensor, basis, Kronecker symbol, scalar product, cosine similarity, ADS, CTS, TP, PCM. 
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