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Abstract. A nonlinear viscoelastic problem of the mechanics of composites is solved within the framework of a second-order
nonlinear theory. A viscoelastic functional is used to construct general defining relations. A stochastic boundary value problem for
determining the stress concentration and its relaxation in polymer composite materials (PCM) is solved. To derive the complete
system of second-order viscoelastic equations, the method of successive approximation is used. A generalization of the
correspondence principle to nonlinear viscoelastic media is obtained. The relaxation functions averaged over the viscoelastic matrix
and elastic inclusions and the stress concentration parameters are determined. Examples are given showing the importance of the
mutual influence of nonlinear elastic and viscous properties of the components on stress redistribution near inclusions in
multicomponent PCMs. As a practical result, one can note the possibility of predicting the long-term strength of a material when a
viscoelastic stress field is known near inclusions.
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Introduction. Computer modeling of the overall, smeared properties of composite viscoelastic materials is the
problem of a practical importance [1, 2, 3]. Its solutions being the evaluation of stress concentration in microstructure
elements and the formulation of required criteria of durability which would correspond to classical methods of strength
theory [4, 5]. In the hereditary theory of viscoelasticity, the mechanical properties of the medium are given by elastic
constants, creep kernels, and relaxation kernel [5, 6, 10]. The problem of identifying the creep and relaxation kernels,
establishing the connection between kernels and determining the parameters of kernel is one of the main problems of
the theory of viscoelasticity [6, 8, 9]. In the case of a uniaxial stressed state, the heredity kernels and the parameters of
the nuclei are determined directly from the results of approximating the direct measurements of deformations or stresses
in the process of creep or relaxation by functions that define the kernel. A detailed analysis of the methods for selecting
the kernel structure and methods for determining the rheological parameters of linearly viscoelastic materials under a
uniaxial stressed state is presented in [6, 9, 10]. The task of identifying heredity kernels in a complex stress state is more
complex and reduces to establishing the relationship between the heredity kernel under a complex and uniaxial stress
state. The uniaxial stress state is realized directly in the experiment and is considered as the base one. But as to
composite material, a relationships would be established between the shear and volume creep kernels, as well as the
longitudinal and transverse creep kernel. A dependence between the creep kernels in the complex stress state of
multicomponent composite and local stress concentration are very important problems from the point of view of long-
term strength prediction.

Research objective. We consider here the overall response and creep behavior of a random multi-component
composites with nonlinear constituents. It was shown in [6] that for a nonlinear model described by means of
approximations with third-order splines, the limiting value of the small deformation at which the deformation takes
place linearly is 0.01. In the range [0,01; 0,09] we use the theory of small but nonlinear deformation. The shapes of the
initial undeformed and deformed body are approximately the same. In the framework of the Rabotnov’s type quasi-
linear theory, the response of the viscoelastic material at time ¢ is described by a linear law relating the stress o(¢) with

the elastic response o€ as follows [5]:
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Here o - the elastic second Piola—Kirchhoff stress tensor, coincides with Cauchy stress in the case of small
deformation [7], W (C,t) - instantaneous elastic potential, C - right Cauchy deformation tensor, F =1+ H - deformation

gradient, H :a—u - displacement gradient, g(¢) - isotropic reduced hereditary compliance tensor. It should be noted
X

that the function c®(f) here plays the role of the strain in the conventional theory of viscoelasticity. We use here

Stieltjes convolutions which ideally suited to the study of composites [4, 9]. Equations (1) is quasi-linear because o (¢)
is nonlinear in the deformation tensor C(¢), but the convolution operator is linear.

While the general theory is precisely that given in [8], the component form of the tensor equations is here given
in terms of the components of the compliance tensor. This choice is dictated by the fact that we are mainly interested in
the creep behavior of composites [6, 10]. Of course, if the creep compliance functions are known, then the stress
relaxation functions can be obtained by the usual procedure [3, 6, 9]. We assume that function W (C) is known in each

of volumes a viscoelastic material with the properties governed by the stored energy function of third order as to
displacement gradient. So the stored energy in the viscoelastic material may be expressed according to the Staverman-

Schwarzl formula as follows
W =3 § 1 B2y =ty)an(n)an(ey) 5 [ 1 Gl =ty =1y an(n Jan(ry on(s)
0 0~ 0700 (2)
m=C-1=H+H! +H H=c+HTH.

E(t) - four order linear relaxation tensor, G(¢) - six order isotropic nonlinear relaxation tensor [2]. Second order

u)|»—«
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—_—

approximation gives such a relations
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The subscript in parenthesis stays for the order of approximation of nonlinear displacement, J; is the Kronecker delta,

E(t) - is relaxation function of viscoelasticity or elastic modules tensor in the case of linear elastic strain theory.
Function G(t) is relaxation function of nonlinear viscoelasticity or Lame third order constants tensor in pure elastic
case. Using the technique described in the previous works [5,8] the solution can be written as the convolution type

integral over B¢ domain
e(l)(xl”):F(xl’xz’t’t')”(l)(xz’f)’ )

*
T (xl 2%y t, t’) - is an operator with the kernel expressed through derivatives of the Green's function u (xl 2%y ,t,t') .

Take now multi-phase isotropic material with the viscoelastic matrix being reinforced by randomly oriented in
space inclusions of ellipsoid form. The result of I'(x, y,7,¢") convolution with any two rank tensor function b(y,t) may

be obtained by integral

(T*b),; = ,Jg u (i, jyp (=B )y + ag; u (i jy (E =3y (5)

With boundary condition b(y,t) = bO, V y € 0B it transformed to more simple relation
*
(U*b),; = ; Ui, yp = PEBOE) 50 7ay. (6)

After differentiation (2) the viscoelastic strain-stress relations may be written as [8]
e(t) = [{ (Jt—1)+ D(s,t —t))do(t), o) = [{(EC—1)~G(p,t —1)))de(t)), (7)
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J(), D(s,t),and E(t), G(p,t) are the creep compliances and stress relaxation stiffness tensors, respectively, s(J,,J5)
and p(l,,1;) - scalar functions of stress and strain invariants. For example here /,- main invariants of the nonlinear
Green deformation tensor 1, i.e.

. 1(2 2.). 1 3, 3 )
[ =tr(n); 12:5(11 —tr(n )), 13=§(tr(n -1 —31112),

HZ%(FTF—I); F=ox/oX =1+H;  x(0)=X+u(X.1), ®

X - coordinates of initial state, x(¢#) -coordinates of current, deformed state.

Basic maintenance and results of research. The complete analogy between the general theory of elasticity and
the properties of a viscoelastic medium follows immediately from the theory of viscoelastic strain-stress relations
derived Biot [4] in the context of thermodynamics. It was shown that the mechanics of viscoelastic media may be
obtained from the theory of elasticity by the simple rule of replacing the elastic coefficients by operators. We realize
here a similar applications and extend the correspondence principle to a quasi-linear viscoelastic medium with
constitutive equation (1). If E(¢),G(p,t) and J(¢),D(s,t) are smooth functions of ¢ variable, then applying the Carson

transform [9]

* _
CUWy=1 ) =zI e ©)
to (3) gives
* * % % % * % *
s (2)=(E (9)=G (p,2)e (2), e (9)=(J (2)+D (s,2))s (2), (10)
the star indicates the transformed function in the Carson domain, and z is the transform variable. Nonlinear response of
composites may be in principle described as disturbance of linear problem, linearization or expansion in series [5, 7].

Known solution of the equations of displacement for the n step, we substitute it into the equations for the n+1 step,
and so on. In second order theory of viscoelasticity we have the sequence

@0y = eu (1) + €2 1y (1), @)= a0y +euy ). (11

Here u(l) (¢) - solution of the linear viscoelasticity problem [6]. As to quasi-linear approach (1) we deal with
constitutive equations for statistical fluctuations of first and second order displacement, deformation and stress in the
reference representative volume written in the form

1 2 2
¢ =gt -1)de Vi) -c"P 0, “P ()= Gely (0 (12)

The representative volume of composite material we consider here as an infinite homogeneous viscoelastic solid
which contains a set of disoriented ellipsoidal inclusions. We require () =0 for ¢# < 0. Subsequently the reference
configuration of the inclusion material may spontaneously jump at ¢ =0 and thereafter is smoothly changing in such a
way that the new reference configuration is obtained by giving the old reference configuration a not known strain e(t) .
We solve this problem by using an extension of method [5, 8] to nonlinear viscoelastic deformation. By taking the
Carson transforms we can reduce (6), (7), (12) to the corresponding elastic problem. Thus following [9], we obtain a
representation theorem for the Carson transform of the Green’s function in (6). Upon application of the Carson
transform, the boundary value problem for the local stress and strain fields in matrix and inclusions becomes like a
linear elastic problem in the Carson domain. Then the method proposed in [1, 3] can be applied to construct the model
of effective behavior of the composite. Hence, it follows from (1) and (7) that

~% %k sk sk Pt %k % sk
T (=T (J 2.0 (e) D (@=D (J (2.D (5.2 . (13)
Note that the constant ¢, -volume concentration of phases remains unchanged after transforming from the time
domain to the Carson domain. This distinguishes the Carson transform from the Laplace transform.
t
5 -15* I §time” ~*
J@)=(LC) J (z)=— —J (2)dz. 14
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~k %
When the expressions for J (z), D (p,z) are complicated, it is difficult to evaluate analytically the integrals

given in (9). Accordingly, a suitable numerical method is usually needed. There exist efficient algorithms for
numerically evaluating the inverse Laplace transform. We use here the Fortran90 program from NAG-Fortran library.
Statistical averaging of expression performed to define the mean deformation of anisotropic inclusions randomly
oriented in volume. The result is overall response of such a composite isotropic one.

<e(t) >= JO)f o glt—1))d <o > +J(0) <P (1) > (15)
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As an example write here the expressions for second order Lame operators v, (¢), that connected with third
invariant of deformation 13 (n) , in Carson domain

*
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Here we denote iy (2), Vs, (2), V3, (z) are the relaxation functions of third order of r-component in Carson

domain, Taking into account (11) the constitutive equation for isotropic composite material may be written in form
~ 2 2
(o(2)) = i(2) {2 (n)+ (alll () + aglj ((n) +o 4l (<n>))1 +asl () {e)+ o (e) } (17)
Parameters «, are connected with determined in (11) v,., for example 0 = 41+ V3 /w) [8].

We consider boron and SIC-glass (elastic) spheres in epoxy resin matrix. The experimental data for the
polymer is taken from the paper of [10]. This particular polymer is rather useful for test purposes since its behavior at
long times is markedly different from its behavior at short time. Rheological parameters of epoxy resin were determined
from experimental data [10] with method proposed earlier in [6]. Stress concentration near inclusions and overall creep
response are modeled in the three-component composite with epoxy resin viscoelastic matrix. Instant nonlinear elastic
properties of phases are in Table 1.

Table 1
Constituent nonlinear elastic material constants, GPa, for the B/SiC/Epoxy composite
Material E v v, v, Vv,
Boron 467.3 0.361 -840.0 -420.0 -390.0
SiC 440.3 0.171 -227.2 31.5 -170.75
Epoxy resin 3.15 0.382 13.3 4.09 -10.02

The solution of the system (10) is obtained by means of the Carson transform, where the kernel of shear relaxation are
the fractional exponential functions of Rabotnov

d m
&Ra(l):—ggEm (—Bf ), m=1+a. (18)
Here Em (2) is the Mittag-Leffler function—

0 t”l

E ()= X

n:OF(1+mn)' (19)

Experimental creep data from [10] were used for identification rheological parameters of epoxy resin. Using
methodology presented in [6] we obtain

£=0.0189,r ™, B=0.052,hr"™; a=-0.4790. (20)
Figure 1.a shows the original experimental results of epoxy resin creep under uniaxial tension at different stress levels.
From the analysis of which, in particular, the conclusion follows that the matrix is not linearly deformed, and, thus, the
necessity of attracting a nonlinear theory of viscoelasticity. In Fig. 1.b shows the instantaneous curve of the nonlinear
dependence of stress strain obtained as a result of processing isochronous creep curves. The dashed curve corresponds
to the linear deformation variant. Circles indicate experimentally measured points. As we can see, the response of the
epoxy resin is essentially nonlinear even within the limits of small but nonlinear deformations. In Fig. 1.c shows the
calculated creep curve, constructed using the results of identification of the rheological parameters of the Rabotnov
kernel (18). In Fig. 2 shows the calculated creep curve, constructed using the results of identifying the rheological
parameters of the Rabotnov kernel. The circles indicate the experimental values. It can be noted that the proposed
algorithm for determining the viscoelastic parameters of the binder can well be used for further analysis of the
composite.
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In Fig. 2.a shows the curves that illustrate the dependence of the overall nonlinear second-order relaxation
function v;(c,) on the filler concentration c,. The dashed curve corresponds to the instantly elastic response of the

material. The solid curve describes the corresponding dependence at the time moment of the order of 10000 hours. In

€, % Nonlinear epoxy resin data ED10
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e, mm

Fig. 1. Long term nonlinear creep data (a) and creep data for epoxy resin ED 10 (b) and nonlinear stress-strain elastic
response (c)

Fig. 2.b shows the curves of the stress concentration coefficient k“(cl,<0'“>) in the matrix material under uniaxial

tension. The dashed curve corresponds to the instantly elastic state of the material. The solid curve describes the
corresponding dependence at the time moment of the order of 10000 hours. In Fig. 2.c, as an illustration of possible
nonlinear effects, the dependence of the shear stress concentration coefficient klz(c1,<0'“>) in the matrix material under

uniaxial tension is given. As before, the dashed curve corresponds to the instantly elastic state of the material. The solid
curve describes the corresponding dependence at the time moment of the order of 10000 hours.
Poisson coefficient

Stress concentration Stress concentration

viet)
k()

Fig. 2. Elastic and longterm nonlinear relaxation (a) stress concentration in epoxy resin matrix (b) and shear stress
concentration in matrix, elastic and longterm response (c)

Summary

Increasing the reliability of composite structures is inevitably associated with the development of new modern
models of strain and redistribution of stresses in microstructure elements. To take into account possible nonlinear
effects during long-term operation, a nonlinear viscoelastic problem of the mechanics of composites is considered in the
framework of a second-order nonlinear theory. A viscoelastic functional is used to construct general defining relations.
The behavior of viscoelastic matrix is described using physically and geometrically nonlinear theories. Physical
nonlinearity corresponds to the situation when the region of linear behavior is actually not observed even for small but
nonlinear deformations. These two effects may be taken into account simultaneously in solving some problems of creep
mechanics of polymers and PCM. We use here the most convenient quasi-linear model of the Rabotnov type. Examples
are given showing the importance of the nonlinear elastic and viscous properties of the components on stress
redistribution near inclusions in multicomponent PCMs. As a practical result, one can note the possibility of predicting
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the long-term strength of a material when a viscoelastic stress field is known near inclusions. As a conclusion we can
notice that the nonlinear viscoelastic model suggested may be useful for prediction of long-term durability and
nondestructive control problems of composites.

KoHueHTpaunist HANpPy:KeHb B HEJIHIHHUX B’ SI3KOMPYKHUX KOMIIO3UTAX
B.I1. MacJsioB

Anomauyia. Po3e’sizano neninitiny 8'A3KONpydscHy 3a0auy Mexawiku KOMNO3umie 6 pamkax HemiHitHoi meopii opye020 Nopsoky.
Buxopucmano 6'azxkonpyocnuii @pynxyionan ons no6yoosu 3a2aibHUX SUHAUATbHUX CNig8ioHowleHb. Po3g’azano cmoxacmuuny
Kpatiogy 3a0ayy no 6U3HA4eHHIO KOHYeHmpayii Hanpyocens ma ii perakcayii @ nonimeprux komnosumuux mamepianax (IIKM). [ns
OMPUMAHHA NOGHOI cucmemu pIGHAHL 8'A3KONPYICHOCMI OpY2020 NOPAOKY BUKOPUCTHAHO MemoO HOCTIO08HOI anpoxcumayii.
Ompumano y3acanbheHHs NPUHYuny GionogiOHOCmi Ha HeniHiliHI 8 A3KOYNPYIICHI cepedosuwa. Busnaueno ycepeoweni no
8'A3KONPYIICHIIL Mampuyi [ NPYICHUM GKIIOUEHHAM QVHKYil penaxcayii i napamempu Konyenmpayii Hanpycenv. Hagedeno
NPUKIaou, wo NOKA3VIOMb GAMNCIUSICMb  63AEMHO20 6NAUGY HENIHIUHUX NPYIUCHUX [ 6A3KUX 61acmugocmeil CKIA006UX Ha
nepepo3noodin Hanpyscenb nobausy 6Knouenb 6 bacamoxomnonenmuux IIKM. B saxocmi npakmuuno20 pe3yibmamy MOICHA
BIOZHAYUMU MOHCIUBICMb NPOSHO3YEAHHA MPUSATLOT MIYHOCII Mamepiany, KOIU 8i00MO 6'I3KONPYICHE NONe HANPYHCEeHb NOOAUZY
BKIIIOUEHD.

Knrouosi cnosa. 6 ’a3konpyscrull KomMnosum, Heninitina deghopmayis,; cnadkoge A0po, idenmupikayia,; Komn 1omepHe MOOen08aHH s

KoHuenTpauus HanpsikeHU B HEJIMHEHMHBIX BA3KOYNIPYITMX KOMIIO3UTAaX
B.I1. MaciioB

Aunnomayus. Pewena nenuneiinasn 6s13K0ynpyaas 3a0a4a MeXanuky KOMNO3UMOo8 6 paMKAx HeAuHeluHol meopuu 6mopo2o nopsaoKa.
Hcnonvsyemces easkoynpyeuil QyHKyuonan 015 nocmpoenus obwux onpeoersiowux coomuouwienuil. Pewena cmoxacmuueckas
Kpaesas 3a0aud no onpeoeneHuto KOHYeHMpayuy HanpsaXcenuil U ee pelaKcayuil 8 NOIUMEPHbIX KOMno3umuvlx mamepuanax (ITIKM).
Jlna evieoda noiHOU cucmemvl YPAGHEHULl GA3KOYNPY2OCU 8MOPO20 NOPAOKA UCHOAb3YEMCsa Memoo NOCAe008ameNbHOl
annpoxcumayuu. IloryueHo 06o6ujeHue NPUHYUNA COOMBEMCMBUs HA HeluHellHble 8a3Kkoynpyeue cpedvl. Onpedenenvl ycpeOHeHHble
nO BA3KOYNPY20l MAmMpuye U ynpy2um GKIOYeHUAM QYHKYUU perakcayuu u napamempsl KoHyenmpayuu Hanpscenuil. Ilpusedenvl
npuMepbl, NOKA3bIBANWIUE BANCHOCHb B3AUMHO20 GIUAHUSL HETUHEUHbIX VAPY2UX U GA3KUX CBOUCME COCMABNAIOWUX HA
nepepacnpedenenue HanpsiceHuti 86nu3u exkmovenull 8 mHocokomnonenmuvix IIKM. B xauecmee npaxmuueckoco pezynbmama
MOICHO OMMEMUMb 603MONUCHOCHIL NPOSHOZUPOSAHUS O0NI20BPEMEHHOU NPOUHOCU MAMEPUANd, KO20A U3BECTNHO 653KOYNpY20e noe
HanpsAceHutl 8OIU3U BKIIOYEHUII.

Knuiouesvie cnosa: esskoynpyzuii komnosum, neaunetinas de@opmayus; Haciedcmeennoe a0po; UOeHMuPuKayus, KoMnvlomepHoe
Mooenuposanue
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