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Abstract. A model is proposed for the fatigue life estimation of the material with consideration of microstructure, stress
concentration and cyclic load ratio. In the fatigue life estimation, the factors, such as grain size, stress concentration and cyclic load
ratio are taken into account in the parameter representing the fatigue limit. In order to fill the model, it is sufficient to have results
from monotonic tensile testing and characteristics of microstructure of the initial material. The model is tested using the fatigue
testing results for specimens of Ti—6A1-4V titanium alloy condensate prepared by electron-beam physical vapor deposition method
(EB PVD-method). The specimens had manufacturing defects, such as column defects of different diameters reaching the specimen
surface. The model is also tested using the experimental fatigue data for the Ti—6A1-4V titanium alloy taken from the literature for
various cyclic load ratios. Comparison between results of calculation and experiment showed a good agreement. The approach
proposed can be used for the rapid assessment of fatigue resistance characteristics in new materials development, and also for the
remaining life evaluation of structures with no costly and long-term fatigue and fatigue crack growth resistance tests.
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Introduction. Until recently, a strong opinion existed within the scientific community studying material fatigue
problems that it is not possible to calculate the fatigue life or S-N curve of material without performing the fatigue or
fatigue crack growth resistance testing. However, in recent years, this opinion is gradually changing due to the
introduction of microstructure parameters into the fatigue process description. At present, it is generally agreed that the
high-cycle fatigue (HCF) process is divided in two stages: crack nucleation stage and crack growth stage. It was
proposed in [1] to estimate the life (the number of load cycles) to failure, N,,,, as the sum of two lives: the life to

fatigue crack initiation, N, and the life during fatigue crack growth, Npqq:
Nyt = N; + Npcg 1)

To evaluate the fatigue life to the initiation of a microstructurally short crack (MSC) of depth equal to one grain
size, d, in smooth specimens of titanium alloys subjected to regular cyclic symmetrical uniaxial loading, the following

equation was obtained [1]:
2
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where M is the mean Taylor factor relative to the direction of o,, which is determined from the texture analysis of the
initial material, E is the elastic modulus and v is Poisson’s ratio, both determined from the monotonic tensile test data,
o_, is the fatigue limit for a fully-reversed loading cycle (the parameter to be calculated), o, is the applied stress
amplitude, A; is the number of load cycles.
The fatigue limit can be evaluated using the phenomenological formula for o_, as a function of the grain size d
proposed by Herasymchuk in [2]:
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where 4= (O'f +o, )/ 2, B= (ap -0y )/72' , 0y Is the internal friction stress in the lattice, o, = ME(2(1+ V))71 1072,

“

o, is the proportionality limit, b is the Burgers vector module.

The fatigue life at the second stage of fatigue failure, N, i.e., during fatigue crack growth from the initial
depth /=d to its final depth / =/, , is calculated as follows [1]:
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m is calculated by formula (12) where K, (the threshold SIF for a long crack (LC)) is substituted for K, (the
threshold SIF for a physically small crack (PSC)); m'd is calculated by formula (12) where Kt'h, 4 (the threshold SIF for

a MSC) is substituted for K, ;, K;h, 4 1s calculated by formula (11) where Y, is substituted for Y, ; /, is the final crack
depth that is adopted as a fatigue failure criterion; % is the distance between neighboring parallel slip planes in the
lattice, depending on which slip system is activated relative to the mean Taylor factor M; ¥, and Y, are the geometrical
factors for the deepest point on the front of a semi-circular surface plane crack: ¥, = 0.73 (for a LC and PSC), Y} (for
a MSC) depending on M is calculated by formula [3]:

Y, :YZ(Z« [i/(a/i, +1)-1). (18)

Equation (6) representing the sum of the lives during the crack growth in three phases is obtained by the
integration of the corresponding equations for growth rate in each phase. During the first phase, lasting from depth /
equal to the grain size d to depth /; determined by equation (7), the PSC grows along the slip bands in each grain. At
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this depth, /;, the mechanism of further PSC growth is changed, and the second phase begins when the PSC is
propagated in a plane perpendicular to the direction of the applied tensile stress o, down to depth l; determined by

equation (17). The crack of such size, l; , can be already considered as a long crack on the assumption that the cyclic
plastic zone size ahead of the crack tip reaches the grain size, d, and applied SIF reaches the value of K, (equation
(15)), and the third phase, the growth of the LC down to its final depth, /,, is started. A detailed description of the

crack growth rate equations for these phases of the fatigue crack growth is presented in [3].

The validity of the above fatigue life model was verified using the results of simple bending fatigue tests for
smooth specimens of different two-phase titanium alloys with three different types of microstructure. The calculation of
S-N curves showed satisfactory agreement with the experimental results [1].

The purpose of this paper is to apply the above-mentioned approach to the case where a fatigue crack emanates
and grows from the notch tip, and also in the presence of the cycle asymmetry, which, as a rule, takes place in structures
operating under alternating load conditions.

Stress concentration. It is seen from expression (3) that the coefficient f from (2) is determined in terms of the
elasticity parameters £ and v, and texture parameter M , with o, being the amplitude of nominal applied stresses. In

general case, the exponent in equation (2) differs from 2 and depends on the stacking fault energy and slip morphology.
As was experimentally found by many researchers, the value of 2 is satisfactorily suited for titanium alloys and some
other alloys [1]. Hence, an important conclusion follows that the factors, such as grain size and stress concentration,

should be taken into account in the calculation of N; in terms of the parameter representing the fatigue limit. Thus, for

the calculation of the fatigue life (or S-N curves) to crack initiation, in the presence of the above-mentioned factors, it is
necessary to be able to calculate the fatigue limit with consideration of these factors.
The effect of stress concentration on the fatigue limit is usually represented by fatigue notch factor, K , defined

by the ratio of the fatigue limit of smooth specimens, o_;,, to the fatigue limit of notched specimens, o_; x . In [4]

Lukas and Klesnil proposed an empirical formula for determining K, of the following form:

K, =K /\1+45-( Jp, (19)

where K, is the elastic stress concentration factor for a notch of radius p , . is the so-called “critical distance”. This

formula works well for the so-called “blunt and shallow” notches ( K, < 4),Cespecially for circular or elliptical holes.
A critical distance in formula (19), l: , 18 the distance from the notch tip (in the direction perpendicular to &, ), at which
the elastic local stress reaches the level o_;, under the action of the nominal stress o, equal to o4 . In the
derivation of the formula similar to that in (19), different meanings of l: were given by different authors, thus adjusting
formula (19) for better agreement with experimental results. In general, they associated / : with an additional crack size,
[, , which was introduced by El Haddad [5] in order to use the approaches of linear-elastic fracture mechanics during

the short crack analysis, and which was determined from equation (14) by substituting the experimentally established
threshold SIF for a LC, K, and the fatigue limit of smooth specimens, o_, . However, these parameters, l: and [,

have a different physical meaning. Thus, l: , along with the above mentioned meaning, represents a distance from the

notch tip, at which the local stress elastic-plastic distribution curve in the vicinity of the notch tip reaches the maximum
level [6]. In contrast, the parameter /,, as was shown in [3], represents the depth of a PSC from the surface of the

smooth specimen, at which the maximum level of crack closure is reached and crack growth rate reaches the minimum,
and the mechanism of further crack growth is changed. In this case, the SIF at its tip reaches the threshold value for a
LC, K,;, , under the action of o, maximally close to o_; .

Analyzing the classical dependence of the fatigue limits of notched specimens on K, [7], which shows that for
K, > 4 the fatigue limit is independent of K,, it can be concluded that for low K, <4, the behavior of notched

specimens is similar to that of smooth ones. In other words, if in the smooth specimens at their fatigue limit, non-
propagating cracks of grain size, i.e. MSC, can appear, as is stated in [§], then, in the specimens with blunt and shallow
notches at their fatigue limits, non-propagating cracks of the same size can arise. But in the specimens with deep and
sharp notches, i.e., for K, > 4, non-propagating cracks of greater size, i.e. PSC, will occur at their fatigue limits due to

the crack closure, and the fatigue strength becomes independent of K, and is determined primarily by the notch depth

and threshold stress, o, , for PSC. On this basis, it was assumed that for such low K, the parameters /. from equation
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(19) and /. from equation (4) are equal. Thus, in view of (4) and (19), the formula for calculating the fatigue limit of

specimens with blunt and shallow notches ( K, < 4) is of the following form:

o = EI;/E WL +45/p, (20)

where /, is calculated by equation (5).
After the crack has been initiated at the notch tip at a stress level higher than the fatigue limit, it initially grows

under stress gradient conditions until it leaves the notch-stress field. The depth of this notch-stress field, / *, can be
calculated using the below formula proposed by Dowling [9]:

I =p/(1<f—1). 1)
As was proposed by Chan [10], in the fatigue life estimation, the average stress amplitude, &,(/), can be used

instead of the applied stress amplitude o, for a crack growing in the notch-stress field. It is calculated by the following
simplified formula:

G, (=K, -o,-(1-1/p). (22)

Thus, the fatigue life during the crack growth emanating from the notch tip will be calculated by the same

equation (6), but one of three growth segments will be divided in two parts depending on the distance / * with respect to

the characteristic segment sizes, /, and /, .
To confirm the validity of the above-proposed model for calculating the fatigue life of specimens with surface
notches, fatigue test results for specimens of (« + f)—titanium alloy Ti—-6A1-4V condensate obtained by the EB PVD

method [11] were used. EB PVD coatings of the Ti-6Al-4V alloy were prepared by deposition of the same but cast
alloy onto flat substrates. Composite workpieces of the condensate/substrate system were fabricated in the same
manner. During deposition, some big droplets depart from the surface of the melt, settling in the condensate and
forming columns, which grow and reach the condensate surface. These columns are efficient surface stress
concentrators and adversely affect on the fatigue resistance characteristics of the Ti—-6A1-4V alloy condensate [11]. The
investigation of specimen fatigue fracture surfaces revealed that for almost all but three specimens, crack initiation
occurred within the concentrator on the condensate surface. In three specimens, fatigue cracks were initiated on the
substrate surface. Therefore, the latters were considered to be such that represent a relatively defect-free condensate, or,
in other words, to be “smooth” specimens. The most typical fatigue fracture surfaces are shown in Fig. 1.

s oo

Fig. 1. Typical fatigue fracture surfaces of specimens: (a) fracture from the notch (2 = 200 pm); () fracture from the notch

(2p = 20 pm); (c) fracture was initiated on the side of the substrate

To perform the fatigue life estimation of specimens of the Ti—6A1-4V alloy condensate, we used the following
basic data: £ =1.2510° MPa, v =0.3, o, =820MPa, d =3.5 um [11]. From the crystallographic texture analysis of

the condensate [11] it was concluded that under cyclic loading, the slip and fatigue crack initiation, took place in the
prismatic planes of close-packed hexagonal (c.p.h.) crystals of the titanium & —phase. Therefore, it is assumed that
b=2510""mand h=b3=433-10""m [3]- Based on the above crystallographic orientation of « —grains and also
taking into account that every o — crystal has three slip directions in the prismatic planes, it may be concluded that a

grain (d = 3.5 pm) with the orientation most favorable for slip will always be found on the specimen surface along the
perimeter of notches under study (2p = 20...300 um). Thus, M is assumed to be equal to 2, i.e., the lowest value of

this parameter. The theoretical stress concentration factors K, for each tested specimen with a notch of an appropriate
diameter 2p were calculated by finite element method (FEM). In this case, the notch, or stress concentrator, was

simulated by a through hole located at the center of the region 200 mm in length, 10 mm in width and 1 mm in
thickness.
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Figure 2 illustrates the elastic distributions of local stresses from the concentrator tip in the direction
perpendicular to o, =o_; for different arbitrary concentrator diameters on the specimen surface. Here, o_; for each

concentrator diameter 2p was calculated by formula (20). The horizontal line corresponds to o_;, of a smooth
specimen, i.e., it is calculated by formula (20) for K, =1 and p=oo. The arithmetic mean of the abscissas of
intersection of the corresponding local distribution curves with the horizontal o, =0, (L), , equal to 13.72 um, is
in good agreement with /., =13.8 pm determined by formula (5), which confirms the validity of the above assumption
about the identity of these critical distance parameters. Ideally, the local stress distribution curves for different p and
the horizontal o, =0, (that is, for p =o00) must intersect at one point. However, as evidenced in Fig. 2, this is not

observed in reality, since the distribution curves are obtained purely theoretically, whereas the fatigue limits are
calculated from equation (20) in view of (5), which are of an empirical nature.
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Fig. 2. FEM analysis of elastic distributions of local stresses at the concentrator tip

Fig. 3a depicts the results of fatigue tests performed according to the specified criterion /, = 0.1 mm for alloy Ti-
6Al-4V composite (condensate-substrate) specimens, in nominal stress amplitude, o, vs. number of load cycles, N,

coordinates. The S-N curves calculated by the proposed model for the defect-free condensate (curve 1) and condensate
with the largest stress concentrator (curve 2) are plotted in this same figure. As seen from Fig. 3a, practically all the
experimental points (open circles) representing specimens with defects of various sizes lie in the region bounded by
these curves. Solid square symbols represent specimens in which the fracture started on the side of the substrate, which
is indicative of a higher fatigue strength of the defect-free condensate as compared to the substrate. Therefore, the fact
that these points lie slightly below the calculated curve 1 is fully justified.

A comparison between the calculated and experimental lives for each tested specimen is shown in Fig. 3b, where
a good agreement between the calculated and experimental data is seen.
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Fig. 3. Comparison between the calculated and experimental results. (a) calculated fatigue curves: curve 1 for the defect-free
condensate (p =, K, =1), curve 2 for the condensate with a concentrator in the form of a through hole of diameter
2p =300 pm (K, =2.913) ; (b) comparison between the calculated N_, and the experimental lives N, . o, m correspond

to the experimental data; o denotes the fracture initiated from the defect in the condensate, m denotes the fracture initiated
from the substrate surface. Symbols with arrows correspond to unbroken specimens

Cycle stress ratio. To perform fatigue life estimation in the case of asymmetrical loading cycle, it is proposed to
use the same approach as for the case with the notch. That is, the cycle stress ratio effect is taken into account in the
equation for fatigue life to crack initiation in terms of the effect of applied mean-stress on the fatigue limit. At present,
the fatigue strength for the asymmetrical cycle of loading is defined by the stress range, Aoy, or by the maximum
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cycle stress, ., r» as the empirical power function of the fatigue limit for a fully-reversed loading cycle and the
applied mean stress, as follows [12]:

Aoy = Ao (1—(cm/cL)” ) : (23)
where o,, is the applied mean stress, o, is the fatigue limiting condition (either yield stress, oy, , or ultimate tensile
strength, oy7g), (i.€., the design criterion shifts from fatigue to yielding or to fracture when the limiting or critical

condition is reached), and #n is the exponent 1 or 2, indicating how fast/slow the fatigue limiting condition is reached.
For titanium alloys, it is assumed that n=1 and o; =0,,. Then, in view of Ac_; =20_, , R=0, /O'max and

o, = (O'min + O max )/ 2, the following expression is obtained from (23) for fatigue limit estimation at various cycle stress

ratios, R,
20
AG, = = 24
O i (0,(1+B) (00,1~ R) @
and
6max,R = AGR /(1 - R) (25)

Then, the equation for fatigue life to crack initiation taking into account the cycle stress ratio is represented in
the following manner:

Ny =B /(s ~ ) (26)
or
N, =(1-R}*B*[(Ac—Acy ), 7)
where £ is calculated by formula (3).
At the stage of crack growth, equation (6) is used with no change since the key parameter /; (see equation (8))
defined by the ratio of AK,, to Ao is constant for a certain material and is independent of the stress ratio. It is only

needed to substitute o for o_, and o,

max

max.R for o, in equations (6) — (17).
To confirm the validity of the above-proposed approach, experimental fatigue testing data of Ti-6Al-4V titanium
alloy specimens were used for various cycle stress ratios taken elsewhere from the literature [13]. The following basic

data are used in the calculations: £ = 1.1-10° MPa, v= 0.3, 5,,= 915 MPa, 0,=0.75-0y,=686 MPa, d = 20-10°°

m, M =2.174 (are taken from [13]), 5=2.5-10""m, # =4.5-10"" m (are taken from [3]). Considering that fatigue tests
in [13] were carried out on 3 mm dia. specimens subjected to uniaxial cyclic loading until their complete fracture, the
final depth, /, =2 mm, of a semicircular crack was taken as a fatigue failure criterion on the assumption that 1 mm is

due to the final (instantaneous) rupture of the specimen.
Figure 4 illustrates the comparison of the calculated S-N curves and experimental data in coordinates: o,,, Vs.

Ny (left) and Ao vs. N,,, (right). As seen, there is a good agreement between the calculated curves and

experimental data, which thus confirms the validity of the proposed approach. However, some experimental data

representing fatigue fracture results for a relatively high applied stress, 0, >0y, show the fatigue life values one

order of magnitude lower than the calculated ones. This indicates that the proposed model can be used only for HCF

conditions, i.e when the applied stress, o, , is within the elastic region of the static stress-strain curve.

In the case when the both factors, i.e., the stress concentration and cycle stress ratio, are present, it is only needed to
substitute equation (20) for o_; in (24), and to calculate the fatigue life to crack initiation using equation (26) or (27).
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Fig. 4. Comparison between the calculated fatigue curves and experimental fatigue data of titanium alloy Ti-6Al-4V for
various R. Experimental data were taken from [13]
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Conclusions

1. The approach proposed can be used for the rapid assessment of fatigue resistance characteristics in new
materials development, and also for the remaining life evaluation of structures with no costly and long-term fatigue and
fatigue crack growth resistance tests.

2. To fill the model proposed, it is necessary to determine the elasticity characteristics, such as elastic
modulus, E', Poisson's ratio, v, the proportional limit, o ,, and the yield stress, o, , from monotonic tensile tests of

standard specimens of the alloy under study, and also the mean grain size, d , mean value of the Taylor factor, M , the
magnitude of the Burgers vector, b, the distance between neighboring parallel slip planes in the lattice, depending on
which slip system is activated relative to the tension direction, /4, from the analysis of microstructure and texture of the
initial material. The theoretical stress concentration factor, X, , for the corresponding radius p at the notch tip needs to
be calculated using FEM or simplified proper formulas taken from handbooks.

3. The model proposed for calculating the fatigue life to crack initiation is applicable for:

. the high-cycle fatigue region under regular cyclic uniaxial loading;

. planar slip metals and alloys;
. shallow and blunt stress concentrators (K, <4 );
. crack nucleation on the surface of a material.

4. In the calculation of fatigue life to crack initiation, the factors, such as grain size, stress concentration and
cyclic load ratio, are taken into account by the parameter representing the fatigue limit.

TeopernuHa oiHKAa BTOMHOI JOBIOBIiYHOCTI 32 PeryJsipHOro HMKJIIYHOIO
HABAHTAKEHHA

Ourer I'epacumuyk, Ouena I'epacumuyk

Anomauia. 3anpononosano Mmooenv OnA  OYIHKU GMOMHOI 008208I4HOCMI Mamepiany 3 Ypaxy8aHHaAM MIKDOCHIPYKMYPU,
KOHYeHmpayii Hanpyscenv | acumempii yuxkiy Hasawmadxcewus. Modenb anpo606anHo HA pe3yabmamax 6MOMHUX SUNPOOYEAHb
3paskie i3 KoHOeHcamy mumanogo2o cnaagy Ti—6A1—-4V, ompumanozo memooom eieKmpoOHHO—NPOMEHEBO20 OCAOHCEHHA Y 8AKYYMI 3
naposoi ¢paszvt (EB PVD— memod). 3pasku manu mexuonoziuni degpexmu y 6ueasioi Koaou pizHoeo oiamempa, sKi GUXOOUNU HA
nogepxmio 3paska. Modenb maxooic nepegipeHo Ha eKCnepuMeHmanrbHux emomuux oanux cniagy Ti—6A1-4V, ezamux 3 rimepamypu,
02151 Pi3HUX acumempitl Yukay Hasanmaxcenns. IIopieHanns pesyibmamie po3spaxynky i eKcnepumenmy nokasaio 3a008inbHuil 30ie.
Mna nanognenns mooeni O0OCMAMHbO MAmMu pe3yibmamu unpobysanb HA KOPOMKOYACHUL po3mse MAa Xapakmepucmuku
MIKPOCMPYKMYpU 8UXioHo2o mamepiany. 3anponoHosanuii nioxio modce 6ymu UKOpUCMAanuill 01l eKCnpec-oYiHKu XapaKxmepucmux
onopy 8MOMHOMY DYUHYBAHHIO HA emani po3poOKu HOBUX MAmMepianis, a MaxKoxic Oni OYIiHKU 3ATUUKOBO20 Decypcy eleMeHImie
KOHCMPYKYIH, €3 3aCmOoCy8aHHsA KOWMOBHUX | 00820MPUBAIUX BUNPOOYBAHL HA BMOMY Md BMOMHY MPIYUHOCTIUKICIb.

Kniouosi cnosa: emomua 006206iunicms, KOHYEHMPAYis HANPYICEHb, ACUMEMPIL YUKTY, 6aeamoyuxiosa 6moma,; Mikpocmpykmypa,
Mmumanosi cniasu

TeopeTnyeckas oeHKa yCTAJOCTHOM J0JITOBEYHOCTH NMPH PEryJISAPHOM
MHKJIMYeCKOM HATPYKEeHHH

Outer I'epacumuyk, Enena I'epacumuyk

Aunomayus. Ilpeonodxcena mooderb Onia OYeHKU YCMANOCHHONU OO0N208EYHOCNU MAMEPUAN C YHemOM MUKPOCHPYKMYDbL,
KOHYEHMpayuu HANpsjsCeHull U acumempuu Yukia Hazpyxcerus. Moodenv anpobupoeana Ha pe3yibmamax yCmanioCmHbix
ucnvimaHnuil 06pa3yo8 U3 KOHOeHcama mumarnoeozo cnaasa Ti-6A1-4V, noryuenno2o Memooom 21eKMPOHHO-TYHEB020 OCANCOCHUS 8
sakyyme u3z napogoii gasvr (EB PVD- memoo). Obpasyel umenu mexuonozuieckue oeghekmol 6 guoe KOIOHH pazHo2o ouamempad,
KOMopble 8bIX00UNU HA NOBEPXHOCMb 00pasya. Modens makdice npoeepena Ha SKCHEPUMEHMATbHBIX YCMATOCHHBIX OAHHBIX CRIA6A
Ti-6A1-4V, e3amuix u3 aumepamypul, Ol PA3IUYHLIX AcUMMempuli yukia Haepyxcenus. CpaeHenue pe3yibmamos paciema u
9KCNepUMEeHma NnoKasano yooeiemeopumenvioe cosnadenue. [isa HANOIHeHUs MOOenu OOCMAMOYHO UMEMb pe3yibimamobl
UCNBIMAHUTL HA KPAMKOSPEMEHHOe PACMANCEHUe U XAPAKMEPUCTNUKU MUKDOCMPYKIMYPbL UCXO0H020 Mamepuand. TIpeonoscentblil
nOOX00 MOXcem Oblmb UCNONL308AH Ol IKCHPECC-OYEHKU XAPAKMEPUCMUK CONPOTMUBIEHUs YCMATOCHHOMY PA3PYWEHUIO HA dmane
PaspabomKu HOBbIX MAMEPUANos, a Makdxice ONsL OYEeHKU OCMAMOYHO20 Pecypca SNEeMEHmO8 KOHCMPYKYulli 6e3 npumeHeHus
00PO2OCMOAWUX U OIUMENbHBIX UCHBIMAHUIL HA YCMAIOCHb U YCMATOCHHYI0 MPEuWUHOCMOUKOCMY.

Kmoueswvie cnosa: ycmanocmuasi dOﬂZOGQ’{HOth,' KOHYermpayusi Hanp;mceHuﬁ; acummempus Yuxkid, MHOCOYUKI08dAs YCmdaloCmb,
MUKpocmpyKkmypa, muniaHoeble cnjiaebl
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