THE CHOICE OF THE GEOMETRICAL PARAMETERS OF BLADE CASCADE AS AN MAJOR FACTOR OF EFFICIENCY OF THE AXIAL-FLOW IMPELLER

Authors

  • О. Г. Гусак Sumy State University, Ukraine
  • І. П. Каплун Sumy State University, Ukraine
  • О. А. Матвієнко Sumy State University, Ukraine

DOI:

https://doi.org/10.20535/2305-9001.2012.65.33962

Keywords:

Axial impeller, Pump stage, Submersible pump, Water supply

Abstract

Purpose. Determining the range of optimal values of peripheral density of the blade cascades of an axial impeller with low specific speed (ns ≈ 300) by means of numerical simulation.
Design/methodology/approach. Series of small-sized axial impellers were designed, in which the relative axial length changed at 0.8, 1.0, 1.2, 1.4 from the base axial length and the number of blades changed from 6 to 10. Hub/tip ratio and blade setting angle of the impeller remained unchanged. Numerical simulation in the software ANSYS CFX was conducted and dependences of head and the hydraulic efficiency from flow rate were obtained.
Findings. The optimum range of values of the density of the blade cascades of an axial impeller with low specific speed was obtained, which corresponds to τ = 0,95 ... 1,25. Higher values should be chosen as needed to provide high pressure ratio.
Originality/value. Obtained limiting value of density of the blade cascades of an axial impeller can be used in the design of axial turbomachinery with low flow rate at work on an incompressible medium

Author Biographies

О. Г. Гусак, Sumy State University

к.т.н., доц.

І. П. Каплун, Sumy State University

к.т.н., доц.

References

A. Gusak, O. Demchenko, I. Kaplun Proceedings of the 4th international meeting on Cavitation and dynamic problems in hydraulic

machinery and systems IAHR-WG 2011. Edited by: A. Gajic, M. Benisek, M. Nedeljkovic. Investigation of small-sized axial-flow stage of a

borehole pump for water supply. Belgrade: University of Belgrade, Faculty of Mechanical Engineering, 2011. P.143 – 150

A. Gusak, O. Demchenko, I. Kaplun Energy-efficient borehole pumps based on axial stages of low specific speed. MOTROL 12d, 2010. p. 45-54.

Yevtushenko A., Yelin A., Lilak N., Tverdokhleb I. Multistage Submersible Axial-Flow Pump. Patent application. No. 10607686 from 26.06.2003 (USA)

Kaplun I.P. Nasos bagatostupeneviy osoviy [Multistage axial-flow pump]. Patent Ukrainy no u201010364. 10.03.2011.

O.G. Gusak, O.A. Demchenko, I.P. Kaplun, Promislova gIdravlika ta pnevmatika, 2010, no 4(30), pp. 8-11.

Krupnyie osevyie i tsentrobezhnyie nasosyi. Montazh, ekspluatatsiya i remont. Spravochnoe posobie (Large axial and centrifugal pumps.

Installation, maintenance and repair. A Reference Guide). Moskow: Mashinostroenie, 1977,184 p.

Mihaylov A.K., Malyushenko V.V. Lopastnyie nasosyi. Teoriya, raschet i konstruirovanie (Vane pumps. Theory, calculation and design).

Moskow: Mashinostroenie, 1977, 288p

A.N. Papir Osevyie nasosyi vodometnih dvizhiteley (osnovyi teorii i rascheta) (Axial pumps water-jet propulsion (basic theory and design)).

Leningrad: Sudostroenie, 1985, 242 p.

O.G. Gusak O.A. Demchenko, I.P. Kaplun, Naukovi pratsi DonNTU. Seriya girnicho-elektromehanichna, 2011, no 21, pp.. 44-58.

Dovzhik S.A. Issledovanie po aerodinamike osevogo dozvukovogo kompressora (The study of the aerodynamics of subsonic axial

compressor). Moskow: TsAGI, 1968, 279p.

Stepanov A.I. Tsentrobezhnyie i oseve nasosyi. Teoriya, konstruirovanie i primenenie (Centrifugal and axial flow pumps. The theory, design

and use). Moskow: Mashinostroitelnaya literatura, 1960, 463 p.

Zimnitskiy V.A., Kaplun A.V., Papir A.N., Umov V.A Lopastnyie nasosyi: cpravochnik (Blade Pumps: Handbook). Leningrad:

Mashinostroenie, 1986, 334 p.

Gryanko L.P., Papir A.N Lopastnyie nasosyi (Blade pumps). Leningrad: Mashinostroenie, 1975, 432 p.

ANSYS CFX 10.0 SolverModels. Release 10.0 [Elektronnyiy resurs], 2008. 549p. Rezhim dostupa: http://www.ansys.com.

Published

2015-03-03

Issue

Section

Статті