MACHINING STRATEGIES FOR GEAR CUTTING WITH DISC-SHAPED MILLING TOOLS

Authors

  • Sergej Pasternak Institute for Machine Tools, University of Stuttgart, Stuttgart, Germany
  • Yuriy Danylchenko Department of Applied Mechanics, National Technical University of Ukraine “KPI”, Kyiv, Ukraine http://orcid.org/0000-0002-5375-950X
  • Uwe Heisel Institute for Machine Tools, University of Stuttgart, Stuttgart, Germany

DOI:

https://doi.org/10.20535/2305-9001.2015.74.44330

Keywords:

gear cutting, disc-shaped milling tool, machining strategy

Abstract

Purpose. Classification of different machining strategies underlying the known methods for gear cutting with disc-shaped milling tools as well as preliminary determination of their advantages and disadvantages before profound studies by simulations and experiments.

Design/methodology/approach. This paper is concerned with the analysis of the different methods for gear cutting with disc-shaped milling tools in order to determine their advantages or disadvantages in terms of flexibility, productivity and machining quality as well as to make a classification of the machining strategies underlying these methods.

Findings. By analyzing the gear cutting methods, it was found that they differ in strategies for material removal, tool movement and tool engagement. These strategies define advantages or disadvantages of the machining methods as well as their optimal application areas. Further, it was shown that some of the gear cutting methods are based on similar or even the same machining strategies.

Originality/value. The results of the analysis show that none of the known methods for gear cutting with disc-shaped milling tools is universally applicable. Some of them provide a higher productivity and flexibility, and the others – a better machining quality. It means that, in order to select a perfectly suitable machining method with the optimal process parameters for each individual manufacturing task and thereby to increase the efficiency of the gear manufacturing, the profound knowledge about achievable productivity, flexibility and quality parameters are required. The proposed classification of the machining strategies underlying the gear cutting methods creates a basis for further theoretical and experimental studies of the mentioned parameters.

Author Biography

Yuriy Danylchenko, Department of Applied Mechanics, National Technical University of Ukraine “KPI”, Kyiv

Кафедра прикладной механики, зав. кафедрой

References

Bouzakis, K.-D. et al.: Manufacturing of cylindrical gears by generating cutting processes: A critical synthesis of analysis methods. CIRP Annals – Manufacturing Technology 57 (2008) 2, 676-696.

Karpuschewski, B.; Knoche, H.-J.; Hipke, M.: Gear finishing by abrasive processes. CIRP Annals – Manufacturing Technology 57 (2008) 2, 621-640.

Linke, H.: Stirnradverzahnung: Berechnung, Werkstoffe, Fertigung. München, Wien: Carl Hanser Verlag, 1996.

Litvin, F. L., Fuentes, A.: Gear Geometry and Applied Theory. 2nd Edition. Cambridge, New York, Port Melbourne, Madrid, Cape Town: Cambridge University Press, 2004.

Koganov, I. A.: Progressive machining of tooth profiles and form surfaces (Title in Russian). Tula: Prioksky Publishing House, 1970.

Roth, K.: Zahnradtechnik – Evolventen-Sonderverzahnungen zur Getriebeverbesserung: Evoloid-, Komplement-, Keilschräg-, Konische-, Konus-, Kronenrad-, Torus-, Wälzkolbenverzahnungen, Zahnrad-Erzeugungsverfahren. Berlin, Heidelberg, New York: Springler Verlag, 1998.

Heisel, U.; Pasternak, S.; Storchak, M.; Stehle, T.: Jede Verzahnung mit einem Werkzeug herstellbar. In: dima – die Maschine (2009) 5, 44-45.

Verzahnverfahren. Blagut, E. M.; Danilchenko, Yu. M. et al. Patent der Ukraine UA15843U, IPC В23F 5/00. Veröffentlicht am 17.07.2006.

Jankevich М.; Dziatkovich V.: The Shaping of working profile of cycloid planetary pinion. 1st International Conference „Power Transmissions 2003“, Minsk, Belarus. Internet: http://www.chipmaker.ru

Verzahnverfahren für die Kegelradbearbeitung auf den NC-Werkzeugmaschinen. Nesterov, V. Ya.; Demichev, V. A., Gurvich, E. L. Patent der UdSSR SU1720815, IPC В23F 9/00. Veröffentlicht am 23.03.1992.

Wermeister, G.; Scherbarth, S.: Neuer Weg zu präzisen Verzahnungen. WB Werkstatt und Betrieb (2011) 12, 54-55.

Zipse, H.; Siegler, R: Mit dem Mut zur Lücke. mav Kompetenz in der spanenden Fertigung (2010) 6, 26.

Danilchenko, Yu. M.; Krivosheya, A. V.; Pasternak, S. I.: Formgebungskinematik von Stirnrädern beliebiger Verzahnungsprofile mit Scheibenfräsern. Informationsblatt der NTUU „KPI” – Maschinenbau (2005) 46, 104-108.

Danilchenko, Yu .M.; Krivosheya, A. V.; Pasternak, S.I.: Mathematische Simulation der Bahnen von Scheibenwerkzeugen bei der Bearbeitung von Zahnrädern beliebiger Verzahnungsprofile. Informationsblatt der NTUU „KPI” – Maschinenbau (2006) 49, 112-118.

Danilchenko, Yu. M.; Pasternak, S. I.; Krivosheya, A. V.: Produktivität der Konturbearbeitung von Verzahnungen mit Scheibenwerkzeugen. Informationsblatt der NTUU „KPI” – Maschinenbau (2008) 53, 215-225.

Heisel, U.; Danylchenko, Yu.; Pasternak, S.; Storchak, M., Schaal, M.: Modellieren des Verzahnens mit Scheibenwerkzeugen. In: ZWF – Zeitschrift für wirtschaftlichen Fabrikbetrieb 105 (2010) 7-8, 649-654.

Pasternak, S. I.; Danilchenko, Yu. M.; Storchak, M. G.; Krivosheya, A. V.: Experimentelle Untersuchung der Konturbearbeitung von Stirnrädern mit Scheibenwerkzeugen. Internationaler wissenschaftlich-technischer Sammelband der NTUU „KhPI“ Probleme von Maschinenantrieben (2010) 26, 94-101.

Downloads

Published

2015-10-20

Issue

Section

Статті