DOI: https://doi.org/10.20535/2305-9001.2011.63.54409

СТРУКТУРНА МОДЕЛЬ ДВОВІСНОГО ДЕФОРМУВАННЯ САРЖЕВИХ ТКАНИН

Є. Л. Данильчук

Abstract


The biaxial deformation processes of woven fabrics are investigated. The structural model to predict the deformation behavior of twill weaves is proposed. The model is developed on the basis of the biaxial tension theory of woven fabrics. Efficiency of the model is proved by a good correlation between calculated and experimental data. The developed method of calculation can also be employed for other weave fabrics.

Keywords


The biaxial deformation processes of woven fabrics are investigated

GOST Style Citations


1. Кукин Г. Н., Соловьев А. Н., Кобляков А. И. Текстильное материаловедение (текстильные полотна и изделия) : [учебник для студ. вузов, обуч. по спец.: Технология тканей и трикотажа] – М. : Легпромбытиздат, 1992. – 272 с.

2. Склянников В. П. Оптимизация строения и механических свойств тканей из химических волокон / Владимир Петрович Склянников. – М. : Легкая индустрия, 1974. – 168 с.

3. Peirce F.T. The geometry of cloth structure // Journal of the Textile Institute Transactions.–1937. – Vol. 28, Issue 3. – P. 45–96.

4. Olofsson B. A general model of a fabric as a geometric-mechanical structure // Journal of the Textile Institute Transactions. – 1964. – Vol. 55, Issue 11. – P. T541–T557.

5. Leaf G. A. V., Kandil K. H. The initial load-extension behaviour of plain-woven fabrics // Journal of the Textile Institute. – 1980. – Vol. 71, Issue 1. – P. 1–7.

6. Grosberg P., Kedia S. The mechanical properties of woven fabrics. Part I: The initial load extension modulus of woven fabrics // Textile Research Journal. – 1966. – Vol. 36, №1. – P. 71–79.

7. Kawabata S., Niwa M., Kawai H. The Finite-deformation Theory of Plain-weave Fabrics, Part I: the Biaxial-Deformation Theory // Journal of the Textile Institute. – 1973. – Vol. 64, Issue 1. – P. 21–46.

8. Kawabata S., Niwa M. A Finite-Deformation Theory of the 2/2-Twill Weave Under Biaxial Extension // Journal of the Textile Institute. – 1979. – Vol. 70, Issue 10. – P. 417–426.

9. Кучер М. К., Данильчук Є. Л. Чисельні алгоритми розрахунків задач про двовісний розтяг тканин полотняного типу // Надійність і довговічність машин і споруд. – 2010. – Вип. 33. – С. 174 – 182.

10. Sagar T. V., Potluri P., Hearle J. W. S. Mesoscale modelling of interlaced fibre assemblies using energy method // Computational Materials Science. – 2003. – Vol. 28, №1. – P. 49–62.

11. Shrotriya P., Sottos N. R. Viscoelastic response of woven composite substrates // Composites Science and Technology. – 2005. – Vol. 65, Issue 3–4. – P. 621–634.

12. Xue P., Peng X., Cao J. A non-orthogonal constitutive model for characterizing woven composites // Composites Part A: Applied Science and Manufacturing. – 2003. – Vol. 34, Issue 2. – P. 183–193.

13. Carvelli V. Monofilament technical textiles: An analytical model for the prediction of the mechanical behaviour // Mechanics Research Communications. – 2009. – Vol. 36, Issue 5. – P. 573–580.

14. Boisse P., Zouari B., Gasser A. A mesoscopic approach for the simulation of woven fibre composite forming // Composites Science and Technology. – 2005. – Vol. 65, № 3–4. – P. 429–436.

15. King M. J., Jearanaisilawong P., Socrate S. A continuum constitutive model for the mechanical behavior of woven fabrics // International Journal of Solids and Structures. – 2005. – Vol. 42, Issue 13. – P. 3867–3896.

16. Kawabata S., Niwa M., Matsudaira M. Measurement of Yarn Thickness Change Caused by Tension and Lateral Pressure by Wire Method // Journal of the Textile Machinery Society of Japan. – 1985. – Vol. 31, №1. – P. 7–14.





Copyright (c) 2019 Journal of Mechanical Engineering NTUU "Kyiv Polytechnic Institute"