POWER INFLUENCE OF INERTIAL VISCOUS FLOWS ON THE TOROIDAL RESERVOIR WALLS
DOI:
https://doi.org/10.20535/2305-9001.2013.68.33903Keywords:
inertial flows, viscous incompressible fluid, toroidal reservoir, near wall decay flows, fluid vector decay, torque of fluid friction.Abstract
The experimental studies results of the inertial flow structure of a viscous incompressible fluid that rotates in the toroidal tanks with application to the liquid fuel dynamics on the spacecraft board. The dependencies of the structure of the near-wall flow, and graphical expressions for circular moments of the viscous fluid friction against the walls of the vessel are presented. The exponential curves of torque dependences during the time show the nonlinear relationship of inertial flows power influence on the toroidal reservoir walls. The presented experimental results form the base for the future inertial axisymmetric flows numerical modeling by the finite element methods. The paper provides empirical relationships for force impact of the mobile liquid and practical recommendations for the use of experimental measurements results.References
Zhukovsky N.Е. Izbrannye sochineniya. Gidrodinamika. Мoscow: Gostekhizdat, 1949, tоm 2, 656 p.
Rabinovich B.I. Neustoychivost zhidkostnikh raket I kosmicheskikh apparatov. Borba s ney. Polyot, 2006, No 10, p.25-33.
Коvalev V.А. Gidrodinamichna kartina inertsiynogo potoku nestislivoyi ridini u torovomu rezervuari. Visnik Sumskogo derzhavnogo universitetu, seriya “Теkhnichni nauki”, 2003, No 12 (58), p.45-49.
Коvalev V.А. Gidrodinamichniy opir vnutrishnyo-bakovikh pristroyiv inertsiynomu potokovi ridini u torovomy rezervuari.
Visnik Cherkasskogo derzhavnogo tekhnichnogo universitetu, 2004, vip.4, p.167-171.
Belyayev Yu.N., Yavorskaya I.M. Тecheniya vyazkoy zhidkosti vo vrashchayushchikhsya sfericheskikh sloyakh. Itogi nauki I tekhniki, Меkhanika zhidkosti i gaza, VINITI. Мoscow, 1983, 80 p.
Greenspan H. Теоriya vrashchayushchikhsya zhidkostey, Мoscow, Gidrometeoizdat, 1975, 304 p.
Smith S. The development of vertical layers in a rotating fluid. SIAM, Journal of Applied Mathematics. 1981. vol.40, No1. p.78-89.