ON SOME METHOD OF THE FATIGUE LIFETIME CALCULATION UNDER COMBINED COMPLETELY REVERSED CYCLIC BENDING AND TORSION

Authors

  • В. П. Голуб National Academy of Sciences of Ukraine S.P. Timoshenko Institute of Mechanics, Ukraine
  • В. И. Крижановский National Academy of Sciences of Ukraine S.P. Timoshenko Institute of Mechanics,
  • В. Н. Пелых National Academy of Sciences of Ukraine S.P. Timoshenko Institute of Mechanics,

DOI:

https://doi.org/10.20535/2305-9001.2012.66.38586

Keywords:

multicycle fatigue, solid prismatic specimens, thin-walled tubular specimens, isotropic metal materials, combined cyclic bending and torsion, completely reversed loading, fatigue lifetime

Abstract

The problem of fatigue lifetime calculation of material specimens under combined completely reversed cyclic bending and torsion loading is solved. Solid prismatic and thin walled tubular specimens made of isotropic metal materials have been the subject of this investigation. The method for solving of the problem considered is based on a nonlinear model of the boundary state under combined bending and torsion. The model establishes the relation between bending stress and torsion stress amplitudes is given by an exponential transcendental function. The resolving equations for the fatigue lifetime calculation have been formulated within the frame work of the boundary state model suggested. The material constants of the model were determined from pure cyclic bending and pure cyclic torsion test data as well as from identity combined bending and torsion test. The number of cycles to failure of specimens made of non-ferrous alloys, alloy steel and heat-resistant steel under combined bending and torsion as a function of bending stress amplitude, shear stress amplitude and maximum shear stress have been calculated. Calculation results have been approved experimentally

Author Biographies

В. П. Голуб, National Academy of Sciences of Ukraine S.P. Timoshenko Institute of Mechanics

д.т.н., проф.

В. И. Крижановский, National Academy of Sciences of Ukraine S.P. Timoshenko Institute of Mechanics

к.т.н.

References

1. HjejvudR.B. Proektirovaniesuchetom ustalosti. Perevod s anglijskogo. Moscow: Mashinostroenie, 1969, 504 p.

2. Serensen S.V., Kogaev V.P., Shnejderovich R.M. Nesuwaja sposobnost' i raschety detalej mashin na prochnost'. Spravochnoe posobie. Moscow: Mashinostroenie, 1975, 488 p.

3. Vorob'ev A.Z., Ol'kin B.I., Stebnev V.N., Rodchenko T.S. Soprotivlenie ustalosti jelementov konstrukcij. Moscow: Mashinostroenie, 1990, 240 p.

4. Birger I.A. Uslovie ustalostnoj prochnosti pri slozhnom naprjazhennom sostojanii. Sb. statej CIAM. Moscow: Oborongiz, 1952, no 7, pp. 31-39.

5. Gough H.J., and Pollard H.V. The strength of metals under combined alternating stresses. Proc. IME., 1935, Vol.131, pp. 3-54.

6. Golub V.P., Pogrebnjak A.D. Vysokotemperaturnoe razrushenie materialov pri ciklicheskom nagruzhenii. Kiev: Nauk. dumka, 1994, 228 p.

7. Golub V.P., Krizhanovskij V.I., Pogrebnjak A.D. International Applied Mechanics, 2004, Vol. 40, no 11. pp. 106-115.

8. Golub V.P., Krizhanovskij V.I., Pogrebnjak A.D. Mechanics of Composite Materials, 2004, Vol 40, no 1. pp. 65-82.

9. Golub V.P., Pelykh V.N., Pogrebnjak A.D. Journal of Mechanical Engineering of the National Technical University of Ukraine “Kyiv Politechnic Institute”, 2010, no 58, pp. 177-182.

10. Pelikh V.M. Research Bulletin of the National Technical University of Ukraine “Kyiv Politechnic Institute”, 2011, no 6. pp. 114-119.

11. Kachanov L.M. Osnovy mehaniki razrushenija. Moscow: Nauka, 1974, 312 p.

12. Kazenina A.D., Manevich S.L., Filimonov G.N. Prochnost' materialov i jelementov konstrukcij. [Durability of materials and elements of designs]. Leningrad: Izd-vo Leningradskogo korablestroitel'nogo instituta, 1985, pp. 40-46.

13. Panfilov J.A.Strength of Materials, 1981, no 1. pp. 49-53.

14. Shamanin J.A.Strength of Materials, 1984, no 12. pp. 26-35.

Published

2015-03-04

Issue

Section

Статті