NUMERICAL MODELLING OF BOLTED JOINTS FROM COMPOSITE. THE MESSAGE 1. CREATION OF THE MIXED 3D-MODELS
DOI:
https://doi.org/10.20535/2305-9001.2016.77.76975Keywords:
numerical 3D-modelling, composite, a bolt joint, mixed 3D-model composite, FEMAbstract
In modern finite element class PLM programs have the opportunity to create mixed finite element model by "gluing". It allows to create, in particular, for calculations on PC rather small 3D-models of polymeric composite materials (PCM) in bolt joints in which composite in zones of bolt-holes is body-sectional modelled, and behind them – approximately, according to the theory of "the effective module". Previously it demonstrated the possibility of using a mixed 3D-models of PCM in bolt joints through simulations to determine the minimum size of the zones of more precise PCM simulation while providing the same accuracy of the calculations. The work is dedicated to the identification of trends in the characteristics of the stress-strained state in areas of bolt-holes when the composite materials structure is changed, to reduce the absolute values of compression stresses in PCM. Created 24 of 3D-models of one shear two-row bolt joints with PCM (contact problem), which ranged PCM structure (6 options), as well as the backlash of bolts with holes (4 values). Unchanged were the value of bolt tightening force and tensile force specimen. According to the results of calculations to determine the distribution of minimum stress and contact pressure (tables, graphs). It is concluded that the structure of a PCM plate significantly affects the characteristics of the stress-strained state of the PCM in the areas of holes; that we can find a structure that will ensure the lowest values of the absolute values of compression stress and a greater strength.References
Gordon Kelly (2006), Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints. Composite Structures, No. 72, pp. 119-129.
Gordon Kelly and Stefan Hallström (2004), Bearing strength of carbon fibre/epoxy laminates: effects of bolt-hole clearance. Composites. Part B: Engineering, No. 35, pp. 331-343.
Johan Ekh, Joakim Schön and Gunnar Melin (2005), Secondary bending in multi fastener, composite-to-aluminium single shear lap joints. Composites. Part B: Engineering, No. 36, pp. 195-208.
Mezhslojnye jeffekty v kompozitnyh materialah. Pod red. N. Pejgano (1993), [Interlaminar Response of Composite Materials. Ed. by N.J. Pagano], Mir, Moscow, Russia.
Bolotin, V.V. and Novichkov, Ju. N. (1980), Mehanika mnogoslojnyh konstrukcij [Mechanic of multilayered structures], Mashinostroenie, Moscow, Russia.
Tarnopol'skij, Ju.M. and Kincis, T.Ja. (1981), Metody staticheskih ispytanij armirovannyh plastikov. Izd. 3-e. [Static Test Methods for Composites. 3nd ed.], Himija, Moscow, Russia.
Rudakov, K.N. and Shukaev, S.N. (2013), Modelling of bolted connections from PCM in the program FEMAP/NX NASTRAN [Modelling of Bolted Joint from PCM in the Program FEMAP/NX NASTRAN], Visn. Nats. tekhn. un-ta Ukrayiny "Kyiv. politekhn. in-t". Seriya mashynobuduvannya, No. 67, pp. 199-206.
Krivov, G.A., Matvienko, V.A., Rud'ko, A.N., Rudakov, K.N., Shukaev, S.N. and Negoda, S.P. (2013), Modelirovanie boltovyh soedinenij, soderzhashhih detali iz PKM, v srede FEMAP/NASTRAN [Modeling of bolt joints contains composites parts using program complex FEMAP/NASTRAN]. Technological Systems. UkrNIIAT, No. 1(62), pp. 90-104.
Rudakov, K.N. and Shandura, A.S. (2015), Chy`sel`ne obg`runtuvannya zastosuvannya zmishany`x 3D-modelej PKM pry` rozraxunkax boltovy`x z'yednan` [Numeral Ground of Application of mixed 3D-Modeley Composites at Computations of Bolted Joints], Visn. Nats. tekhn. un-ta Ukrayiny "Kyiv. politekhn. in-t". Seriya mashynobuduvannya, No. 2(74), pp. 67–76.
Handbook of composites. Ed. by G. Lubin. (1982), Van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, Melbourne.
Kucher, N.K., Zarazovskij, M.N. and Danil'chuk, E.L. (2012), Deformirovanie i prochnost' sloistyh ugleplastikov pri staticheskom termomehanicheskom nagruzhenii [Deformation and strength of laminated carbon-fiber-reinforced plastics under a static thermomechanical loading], Mehanika kompozitnyh materialov, Vol. 48, No. 6, pp. 963-980.
Lehnicki, S.G. (1977), Teorija uprugosti anizotropnogo tela. Izd. 2-e. [Theory of elasticity of an anisotropic body. 2nd ed.], Nauka, Moscow, Russia.
GOST 25602-80. Raschety i ispytanija na prochnost'. Metody mehanicheskih ispytanij kompozicionnyh materialov s polimernoj matricej (kompozitov). Metod ispytanija na szhatie pri normal'noj, povyshennoj i ponizhennoj temperaturah [Standard 25602-80. Calculations and strength tests. Methods of mechanical trials of composite materials with a polymeric matrix (aggregates). The Test method on compression at the normal, raised and downgraded temperatures], Iz-vo standartov, Moscow, Russia.
ASTM D 5379/D 5379M-98, Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method.