Influence cooling to 213 K for strength rail steel

Authors

  • N. Opravkhata G.S. Pisarenko Institute for Problems of Strength National Academy of Sciences of Ukraine, Ukraine
  • L. Novogrudskii G.S. Pisarenko Institute for Problems of Strength National Academy of Sciences of Ukraine, Ukraine
  • O. Kachura КПІ ім. Ігоря Сікорського, м. Київ, Ukraine

DOI:

https://doi.org/10.20535/2521-1943.2017.80.109754

Keywords:

mechanical properties, strength, railroad, rail steel

Abstract

The paper presents, the data indicating the need to take into account in the calculation of the strength of the railway track of changing the characteristics of the static strength of rail steel perlite class after its long operating time in the railway track with cooling to 213 K. It is shown that neglecting changes in the static strength characteristics of rail steel can significantly affect the performance railways and the safety of freight and passenger transportation. It is established that during the long operation of the rails in transit, the mechanical properties of the rail steel undergo significant changes. When cooling to 213 K of rail material, the values of the static strength characteristics of steel are reduced below the minimum value established by regulatory documents. On the basis of the experimental data, the permissible stresses for the rails material were calculated after long-term operation in transit for different temperatures and it was shown that it is necessary to take into account changes in the operation of the strength characteristics of rail steel when calculating the strength of railway tracks. Significant changes in the values of the characteristics of static strength and permissible stresses of rail steel at low temperatures can lead to a loss of bearing capacity of the rails. The obtained results confirm the need for carrying out extensive experimental studies of the effect of operational factors on the mechanical characteristics of rail steel.

Author Biographies

N. Opravkhata, G.S. Pisarenko Institute for Problems of Strength National Academy of Sciences of Ukraine

кандидат технічних наук, старший науковий співробітник відділу міцності матеріалів і елементів конструкцій при кріогенних температурах

L. Novogrudskii, G.S. Pisarenko Institute for Problems of Strength National Academy of Sciences of Ukraine

доктор технічних наук, провідний науковий співробітник відділу міцності матеріалів і елементів конструкцій при кріогенних температурах

References

  1. Kharris, U.Dzh., Zakharov, S.M., Landgren, Dzh., Torne, Kh. and Ebersen, V. (2002), Obobshchenie peredovogo opyta tiazhelovesnogo dvizheniia: voprosy vzaimodeistviia kolesa i rel'sa [Summary of advanced experience in heavy transport: issues of wheel-rail interaction], in Zakharov, S.M. and Bogdanova, V.M. (ed), Intekst, Moscow, Russia.
  2. Ashkenazi, E.K. (1969), Anizotropiya mashinostroitel'nykh materialov [Anisotropy of engineering materials], Mashinostroenie, Leningrad, Russia.
  3. Strizhalo, V.A. (1978), Tsiklicheskaya prochnost' i polzuchest' metallov pri malotsiklovom nagruzhenii v usloviyakh nizkikh i vysokikh temperature [Cyclic strength and creep of metals under low-cycle loading at low and high temperatures], Naukova dumka, Kiev, Ukraine.
  4. Troshchenko, V.T. (1981), Deformirovanie i razrushenie metallov pri mnogotsiklovom nagruzhenii [Deformation and Fracture of Metals under Multicyclic Loading], Naukova dumka, Kiev, Ukraine.
  5. Danilenko, E.I. and Rybkin, V.V. (2004), Pravyla rozrakhunkiv zaliznychnoyi koliyi na mitsnist' i stiykist' [Rules for calculation of the railway track for durability and stability], Transport Ukrayiny, Kiev, Ukraine.
  6. Pravila proizvodstva raschetov verkhnego stroeniya zheleznodorozhnogo puti na prochnost', (1954), Transzheldorizdat, Moscow, Russia.
  7. Yakovleva, T.G., Karpushchenko, S.I., Klinov, N.N., Putrya, N.N. and Smirnov, M.P. (1999), Zheleznodorozhnyi put' [The railway], in Yakovlevoi, T.G., (ed.), Transport, Moscow, Russia.
  8. Pysarenko, H.S., Kvitka, O.L. and Umans'kyy, Ye.S. (2004), Opir materialiv [Strength of materials], in Pysarenka, H.S., (ed.), Vyshcha shkola, Kiev, Ukraine.
  9. Izotov, V.I., Pozdnyakov, V.A., Luk'yanenko, E.V. and dr. (2008), “Evolyutsiya dislokatsionnoi struktury i obrazovanie mikrotreshchin pri ustalosti perlitno-ferritnoi stali” [The evolution of the dislocation structure and the formation of microcracks in the fatigue of perlite-ferritic steel], Fizika metallov i metallovedenie, vol. 105, no. 5, pp. 549–559.
  10. Savrai, R.A., Makarov, A.V., Tabatchikova, T.I. and dr. (2009), “Osobennosti povedeniya perlita razlichnoi morfologii pri tsiklicheskom rastyazhenii” [Peculiarities of perlite behavior of different morphology under cyclic tension], Deformatsiya i razrushenie materialov, no. 5, pp. 15–20.
  11. Izotov, V.I., Get'manov, M.E., Burzhanov, A.A. and dr. (2009), “Vliyanie struktury perlitnoi stali na mekhanicheskie svoistva i osobennosti razrusheniya pri izgibnom nagruzhenii” [Influence of the structure of pearlite steel on mechanical properties and fracture characteristics under bending loading], Fizika metallov i metallovedenie, vol. 108, no. 6, pp. 638–648.
  12. Zhulev, G.G. and Akhmetova, A.R. (2010), “Temperatura zakrepleniya rel'sovykh pletei” [Fastening temperature of railways], Put' i putevoe khozyaistvo, no. 11, pp. 14–15.
  13. Lysyuk, V.S. and Bugaenko, V.M. (2006), Povrezhdeniya rel'sov i ikh diagnostika [Rail damage and diagnostics], ITsK Akademkniga, Moscow, Russia.
  14. Petrov, N.P. and Stoikovoi, N.Ya. (1915), Davlenie koles na rel'sy zheleznykh dorog, prochnost' rel's i ustoichivost' puti [The Pressure of Wheels on Rails. Strength of the Rails and Stability of the Track], Elektro-Tipografiya Petrograd, Russia.
  15. Kogan, A.Ya. (1997), Dinamika puti i ego vzaimodeystvia s podvizhnym sostavom [Dynamics of rail track and its interaction with the rolling stock], Transport, Moscow, Russia.
  16. Verigo, M.F. (1997), Vzaimodeistvie puti i podvizhnogo sostava v krivykh malogo radiusa i bor'ba s bokovym iznosom rel'sov i grebnei koles [Interaction of the track and rolling stock in the curves of small radius and the struggle with lateral wear of rails and crests of wheels], Transport, Moscow, Russia.
  17. BS EN 10002-1 (2001), Tensile testing of metallic materials. Method of test at ambient temperature.
  18. DSTU 4344:2004 (2005), Reyky zvychayni dlya zaliznyts' shyrokoyi koliyi, Zahal'ni tekhnichni umovy, Derzhspozhyvstandart Ukrayiny, Kiev, Ukraine.
  19. Novogrudskii, L.S., Stasyuk, S.Z. and Opravkhata, N.Ya. (2010), “On the assessment of the mechanical characteristics of rail steels under operating conditions”, Strength of Materials, vol. 42, no. 3, pp. 344–351, https://doi.org/10.1007/s11223-010-9223-3
  20. Strizhalo, V.A., Novogrudskii, L.S. and Opravkhata, N.Ya. (2010), “Influence of electric current on the mechanical characteristics of rail steel”, Strength of Materials, vol. 42, no. 4, pp. 471–477, https://doi.org/10.1007/s11223-010-9238-9
  21. Novogrudskii, L.S., Opravkhata, N.Ya. and Voron, M.M. (2012), “Issledovanie struktury rel'sovoi stali pri vozdeistvii IET” [Investigation of the structure of rail steel under the action of electric current], Nadezhnost' i dolgovechnost' mashin i sooruzhenii, vol. 36, pp. 171–176.

Published

2017-10-30

How to Cite

[1]
N. Opravkhata, L. Novogrudskii, and O. Kachura, “Influence cooling to 213 K for strength rail steel”, Mech. Adv. Technol., no. 2(80), pp. 92–97, Oct. 2017.

Issue

Section

Original study