Cutting forces in gear machining by disk milling cutters

Authors

  • S. Pasternak Haas Schleifmaschinen GmbH, Trossingen, Germany, Germany
  • Y. Danylchenko National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine https://orcid.org/0000-0002-5375-950X

DOI:

https://doi.org/10.20535/2521-1943.2018.82.118609

Keywords:

cutting force, disc-shaped milling tool, gear cutting

Abstract

Purpose. Experimental study of cutting force components when gear cutting with disc-shaped milling tools by using different machining strategies as well as determination of advantages and disadvantages of these strategies based on obtained experimental results.

Design/methodology/approach. This paper is dedicated to the experimental study of cutting force components and their variation when gear cutting with disc-shaped milling tools by using different machining strategies as well as to the subsequent discussion of obtained experimental results.

Findings. It was found that the known strategies for material removal, tool movement (its running-in or running-out) and tool engagement when gear cutting with disc-shaped milling tools have different force characteristics. This can lead to the different roughness and surface quality of the tooth flanks as well as to different tool wear rates and manufacturing costs. Thus, the consideration of the radial, axial and tangential forces is very important for a correct selection of an optimal machining strategy and optimal cutting parameters for each manufacturing task.

Originality/value. The experimental results show that the known strategies for gear cutting with disc-shaped milling tools have different force characteristics. This can influence machining quality and tool wear rate as well as lead to increase in manufacturing costs. It means that, in order to select a perfectly suitable machining method with the optimal process parameters for each individual manufacturing task and thereby to increase the efficiency of the gear manufacturing, the profound knowledge about achievable quality parameters and tool life are required.

Author Biography

Y. Danylchenko, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Кафедра прикладной механики, зав. кафедрой

References

  1. Linke, H. (1996), Stirnradverzahnung: Berechnung, Werkstoffe, Fertigung, München, Wien: Carl Hanser Verlag.
  2. Litvin, F.L., Fuentes, A. (2004), Gear Geometry and Applied Theory, 2nd, Cambridge University Press, Cambridge, New York, Port Melbourne, Madrid, Cape Town.
  3. Roth, K. (1998.), “Zahnradtechnik – Evolventen-Sonderverzahnungen zur Getriebeverbesserung, Evoloid, Komplement, Keilschräg, Konische, Konus, Kronenrad, Torus, Wälzkolbenverzahnungen, Zahnrad-Erzeugungsverfahren“, Springler Verlag, Berlin, Heidelberg, New York.
  4. Koganov, I.A. (1970), Progressive machining of tooth profiles and form surfaces, Prioksky Publishing House, Tula, Russia.
  5. Heisel, U., Pasternak, S., Storchak, M. and Stehle, T. (2009), Jede Verzahnung mit einem Werkzeug herstellbar. In: die Maschine no. 5, pp. 44-45.
  6. Pasternak, S. (2016), Untersuchung und Optimierung der spandenden Fertigung von Verzahnungen mit profilunabhängigen Scheibenwerkzeugen, Dissertation Universität Stuttgart.
  7. Blagut, E.M., Danilchenko, Yu.M. and dr., Verzahnverfahren, Veröffentlicht am 17.07.2006, Patent der Ukraine UA15843U, IPC В23F 5/00.
  8. Nesterov, V.Ya., Demichev, V.A. and Gurvich, E.L. Verzahnverfahren für die Kegelradbearbeitung auf den NC-Werkzeugmaschinen, Veröffentlicht am 23.03.1992, Patent der UdSSR SU1720815, IPC В23F 9/00.
  9. Wermeister, G. and Scherbarth, S. (2011), “Neuer Weg zu präzisen Verzahnungen”, WB Werkstatt und Betrieb, no 12, pp. 54-55.
  10. Zipse, H. and Siegler, R. (2010), Mit dem Mut zur Lücke, mav Kompetenz in der spanenden Fertigung 6, 26.
  11. Pasternak, S., Danylchenko, Yu. and Heisel, U. (2015), “Machining strategies for gear cutting with disk-shaped milling tools”, Journal of Mechanical Engineering NTUU “Kyiv Polytechnic Institute”, vol. 74, no. 2, pp. 61-66.
  12. Danylchenko, Yu.M., Krivosheya, A.V. and Pasternak, S.I. (2005), “Formgebungskinematik von Stirnrädern beliebiger Verzahnungsprofile mit Scheibenfräsern”, Vestnik Nacional'nogo tehnicheskogo universiteta “Kievskij politehnicheskij institute”, Serija mashinostroenie, vol. 46, pp. 104-108.
  13. Danylchenko, Yu.M., Krivosheya, A.V. and Pasternak, S.I. (2006), “Mathematische Simulation der Bahnen von Scheibenwerkzeugen bei der Bearbeitung von Zahnrädern beliebiger Verzahnungsprofile“, Vestnik Nacional'nogo tehnicheskogo universiteta “Kievskij politehnicheskij institute”, Serija mashinostroenie, vol. 49, pp. 112-118.
  14. Danylchenko, Yu.M., Pasternak, S.I. and Krivosheya, A.V. (2008), “Produktivität der Konturbearbeitung von Verzahnungen mit Scheibenwerkzeugen”, Vestnik Nacional'nogo tehnicheskogo universiteta “Kievskij politehnicheskij institute”, Serija mashinostroenie, vol. 53, pp. 215-225.
  15. Heisel, U., Danylchenko, Yu., Pasternak, S., Storchak, M., Schaal, M. (2010), “Modellieren des Verzahnens mit Scheibenwerkzeugen”, In: ZWF – Zeitschrift für wirtschaftlichen Fabrikbetrieb, vol. 105, no. 7-8, pp. 649-654.
  16. Pasternak, S.I., Danylchenko, Yu.M., Storchak, M.G. and Krivosheya, A.V. (2010), “Experimentelle Untersuchung der Konturbearbeitung von Stirnrädern mit Scheibenwerkzeugen”, Internationaler wissenschaftlich-technischer Sammelband der „KhPI“ ‑ Probleme von Maschinenantrieben, vol. 26, pp. 94-101.

Downloads

Published

2018-05-01

How to Cite

[1]
S. Pasternak and Y. Danylchenko, “Cutting forces in gear machining by disk milling cutters”, Mech. Adv. Technol., no. 1(82), pp. 5–11, May 2018.

Issue

Section

Original study