Stabilization of high-current glow discharge by the active (ballast) resistor while the precision welding


  • G. Bolotov Чернігівський національний технологічний університет, м. Чернігів,, Ukraine
  • R. Ryzhov КПІ ім. Ігоря Сікорського, м. Київ, Ukraine
  • M. Bolotov Чернігівський національний технологічний університет, м. Чернігів, Україна, Ukraine



glow discharge, stable existence, precision welding, plasma, ballast resistor, diffusion bonding


Purpose.Thepurposeofthis work is to determine the value of the external active (ballast) resistance switched on  the gas-discharge gap that provides stabilization of the burning process of a high-current glow discharge in regimes that are used in precision welding processes: discharge currents 1 ... 30 A, gas pressures  of 1.33 ... 13.3 kPa.

Approach.Using the methods of the theory of gas discharge physics, electrodynamics and electromagnetism, the main causes of the appearance of external perturbations and instabilities that lead to the emergence of a stable arc discharge on the local sections of the surfaces of the weldedpartsweredetermined.

Findings.The result of the work is the developed method of analytical determination of the optimal value of the external stabilizing resistance, which ensures a discrepancy between the calculated data and the similar ones obtained during the experiments at the level of 15 ... 20%.

Practically value.The results of the research are of interest for the enterprises of machine-building and instrument-making, power and electrical engineering industries in the manufacture of diffusion-welded assemblies of dissimilar materials in a gas-discharge plasma of a glow discharge of medium pressures


  1. Bolotov, G.P., Bolotov, M.G., Prybytko, I.O. and Kharchenko, G.K. (2016), “Diagnosis of plasma glow discharge energy parameters in the processes of treatment small diameter long tubes”, in II International Young Scientists Forum on Applied Physics and Engineering (YSF), Kharkiv, IEEE, pp.116 – 119.
  2. Bolotov, G.P., Bolotov, M.G. and Rudenko, M.M. (2016), “Modification of Materials Surface Layers by Low-Energy Ion Irradiation in Glow Discharge”, IEEE 36th International Conference “Electronics and Nanotechnology ELNANO’2016”, April 2016, pp. 135-140.
  3. Ulyanov, K.N. (1972), “The theory of normal glow discharge medium pressure”, Thermophysics of high temperature. vol. 10, no. 5, Moscow, Russian.
  4. Ecker, G., Kroll, W. and Zoller, O. (1964), Thennal instability of the plasma column, Phys. Fluids, Vol. 7, No. 212, 200l-2006.
  5. Bolotov, G.P. and Bolotov, M.G. (2017), “Determination of external stabilizing resistor value in the glow discharge power supply while welding”, IEEE 37th International Conference “Electronics and Nanotechnology ELNANO’2017”, pp. 365-369, April 2017.
  6. Raizer, Y.P. (1987), Gas Discharge Physics, Science, Moscow, in Russian.
  7. Bolotov, M.G. (2016), Analysis of the main instabilities of medium pressure glow discharge in the conditions of materials treatment, Journal ChNUT, “Technical sciences and technologies”, vol. 12, no. 2, pp. 103-116.
  8. Gysin, F.M. and Son, E.E., (1989), Electrophysical processes in discharges of solid and liquid electrodes, Sverdlovsk, Russian.
  9. Kazantsev, E.I. (1964), Industrial ovens, Metalurgy, Moscow, Russian.
  10. Kiselev, Y.V. and Cherepanov, V.L. (1967), Spark gaps, Soviet radio, Moscow, Russian.
  11. Biondi, M.A. (1982), Electron-ion Recombination in Gas Lasers, In: Applied Atomic Collision Physics, Gas Lasers (E. W. McDaniel and W.L. Nighan, ed.), Vol. 3, pp 216-234,
  12. Eletskii, A.V. (1975), Transport phenomena in weakly ionized plasma, Atomizdat, Moscow, Russian.
  13. Frommhold, L. (1960), Zeit Phys. Vol. 160, pp. 554-567.



How to Cite

G. Bolotov, R. Ryzhov, and M. Bolotov, “Stabilization of high-current glow discharge by the active (ballast) resistor while the precision welding”, Mech. Adv. Technol., no. 2(83), pp. 94–99, Oct. 2018.



Original study