Checking the mathematic model of the rolling technological process at Ferriera Valsider SpA Steckel Mill


  • V. Kukhar Pryazovskyi State Technical University, Mariupol, Ukraine
  • O. Kurpe PJSC "Ilyich Iron and Steel Works", Mariupol, Ukraine
  • A. Prysiazhnyi Pryazovskyi State Technical University, Mariupol, Ukraine



simulation, rolling force, temperature conditions, mill springe, Steckel mill


Goal: Mathematic model checking of the technological process of hot-rolled coils rolling at Ferriera Valsider SpA Steckel Mill. Method of doing research: The checking of the developed model was carried out to allow its applying for the rolling process design. The influence of the mill springe was taken into account. It was determined the influence over the actual temperature measuring of the previous transfer bar processing by means of water descaling that results in significant inaccuracies when further comparing to the calculation results. Value: The average inaccuracy when modelling the rolling temperature conditions at mill 3170 is from 8,27% to 9,11%, at mill 1780 is from 0,003% to -0,92%. The average inaccuracy when modelling the rolling force at mill 3170 is from 0,5% to 5,7%, at mill 1780 is from -4,89 to 6,59%.


  1. Starchenko, D.I. (1994), “Dinamika prodol'noi prokatki”, ISIO, Kiev.
  2. Kurpe, A.G. (2006), “Simulation of the technological process for plates rolling at rolling mill 3600 of Azovstal Iron and Steel Works”, extended abstract of dissertation PhD in Technical Sciences, 05.16.05, Federal State Unitary Enterprise (FSUE) I.P. Bardin Central Research Institute for Ferrous Metallurgy, Мoscow.
  3. Konovalov, Yu.V. (2008), “Spravochnik prokatchika. Proizvodstvo goryachekatanykh listov i polos”, vol. 2, no. 1, «Teplotekhnik», Moskva.
  4. Duk, Man Lee. (2004), “Applications to improve rolling force prediction ability in a plate mill”, Automation in Mining. Mineral and Metal Processing, Nancy, France. Vol. 37, no.15, pp. 65-70,
  5. HU, Xian-lei., ZHAO, Zhong., WANG, Jun., WANG, Zhao-dong., LIU, Xiang-hua., WANG, Guo-dong. (2006), “Optimization of Holding Temperature and Holding Thickness for Controlled Rolling on Plate Mill”, Journal of iron and steel research, International, Vol. 13, no. 3, pp. 21-25.
  6. John, G. Lenard. (2007), “Primer on Flat Rolling. Mathematical and Physical Modelling of the Flat Rolling Process”, Elsevier Ltd, Chapter 3, pp. 36-98,
  7. Mantyla, P., Korhonen, R., Jonsson, N-G. (1992), “Improved Thickness and Shape Accuracy with Advanced Pass Scheduling in Plate Rolling”, Journal of Materials Processing Technology, Elsevier, Vol. 34, pp. 255-263,
  8. QI. Xiang-dong., WANG, Tao., XIAO, Hong. (2012), “Optimization of Pass Schedule in Hot Strip Rolling”, Journal of Iron and Steel Research International, Vol. 19, no. 8, pp. 25-28,
  9. Yue, S. (2002), “The Mathematical Modelling of Hot Rolling of Steel”, Metal Forming Science and Practice 9, in J.G. Lenard (ed.), Published by Elsevier Science Ltd, no. 11, pp. 213-226,
  10. Yuen, W.Y.D., Dixon, A., Nguyen, D.N. (1996), “The modelling of the mechanics of deformation in fiat rolling”, Journal of Materials Processing Technology, vol. 60, pp. 87-94,
  11. ZHANG, Jin-ling., CUI, Zhen-shan. (2011), “Prediction of Velocity and Deformation Fields During Multipass Plate Hot Rolling by Novel Mixed Analytical-Numerical Method”, Journal of Iron and Steel Research, International, vol. 18, no. 7, pp. 20-27.
  12. Radionova, L.V., Chernyshev, A.D., Lisovskiy, R.A. (2017), “Interactive Educational System –Virtual Simulator “Sheet Rolling””, International Conference on Industrial Engineering, ICIE, South Ural State University, The Russian Federation, pp. 512-518.
  13. Galantuccia, L.M., Tricaricob, L. (1999), “Thermo-mechanical simulation of a rolling process with an FEM approach”, Journal of Materials Processing Technology 92-93, pp. 494-501,
  14. Hanoglu, U., Šarler, B. (2018), “Multi-pass hot-rolling simulation using a meshless method”, Computers and Structures 194, pp. 1-14.
  15. Matruprasad, Rout., Surjya, K.. Pal., Shiv, B. (2016), “Finite element simulation of a cross rolling process”, Singh Journal of Manufacturing Processes 24, pp. 283–292.
  16. WANG, Min-ting., ZANG, Xin-liang., LI, Xue-tong., DU, Feng-shan. (2007), “Finite Element Simulation of Hot Strip Continuous Rolling Process Coupling Microstructural Evolution”, Journal of Iron and Steel Research international, vol. 14, no. 3, pp. 30-36.
  17. Zinchenko, Ju.A., Pismar'ov, K.Je., Kurpe, O.G., Zmazneva, Je.V., Publichne akcionerne tovarystvo "Mariupol's'kyj metalurgijnyj kombinat IM. ILLIChA. (2017), Sposib vyznachennja parametriv prokatky ruloniv na stani Stekkelja, Ukrai'na, Pat. 117875.
  18. Konovalov, Yu.V., Ostapenko, A.L., Ponomarev, V.I. (1986), “Raschet parametrov listovoi prokatki”, Metallurgiya, Moskva, Russia.
  19. Kurpe, A.H. (2006), Modelirovanie tehnologicheskogo processa prokatki tolstyh listov na stane 3600 OAO «MK «Azovstal'»: avtoref. dis. Kand. Tehn. Nauk: 05.16.05. Moskva, Russia.



How to Cite

V. Kukhar, O. Kurpe, and A. Prysiazhnyi, “Checking the mathematic model of the rolling technological process at Ferriera Valsider SpA Steckel Mill”, Mech. Adv. Technol., vol. 84, no. 3(84), pp. 98–105, Dec. 2018.



Original study