Calculation of Design Parameters of Fire-Fighting Water Curtains




fire-fighting water curtain, thermal radiation, calculation method.


Purpose. The work is aimed at the practical application of previously obtained results of mathematical modeling of fire water curtains. Such water curtains are the jets of sprayed water intended to protect people and material values from the thermal radiation of fires.


Approach. Calculated formulas found as a result of mathematical modeling allow calculating the parameters of fire thermal radiation shielding by means of a water curtain and their dependence on the design parameters of technological equipment. In particular, these formulae are used to calculate the transmission coefficients of water curtains for thermal radiation of the near-infrared region of the spectrum (wavelength 1-10 microns). According to the formulas obtained, the coefficient of transmission of the water curtain depends on the distribution of droplets in size, specific water content, thickness of the curtain, and spectral characteristics of thermal radiation.

Findings. The complete set of calculated formulas obtained in the work allows determining the integral transmission coefficient of the water curtain or, conversely, for the predetermined transmission coefficient allows to calculate the design parameters of the protective system designed to create a water curtain. Accordingly, two calculation methods with corresponding algorithms of calculations are presented, each of which is followed by a typical concrete example of numerical calculations. The calculation formulas are simple enough, so the calculations can be done on the engineering calculator or using the computer mathematics packages. After performing a sufficient number of approbations and practical applications, the presented techniques can be used to create a standard design method for fire water curtains.

Author Biography

Anatolii Vynogradov, The Bohdan Khmelnytskyy National University of Cherkasy

Physics Department, associate professor


  1. King, A.R. (1966), “The efficiency of rural firefighters”, Commonwealth Scientific And Industrial Research Organization, Chemical Research Laboratories, Technical Paper, no. 4, 12 p.
  2. McCarter, R.J. and Broido, A. (1965), “Radiative and Convective Energy from Wood Crib Fires”, Pyrodynamics, vol. 2, no. 1, pp. 65–85.
  3. Shokri, M. and Beyler, C.L. (1989), “Radiation from large pool fires”, J. Fire Protection Engineering, vol. 1, pp. 141–150.
  4. Ufuah, E. and Bailey, C.G. (2011), “Flame Radiation Characteristics of Open Hydrocarbon Pool Fires”, Proceedings of the World Congress on Engineering, vol. III, pp. 1952–1958.
  5. Zharov, A., Zarhin, A. and Mitrofanova, M. (2006), “Drencher curtains: theory and practice” BDI, vol. 68, no. 5, pp. 24–28.
  6. Sobeshhans'kyj, D.I., Anohin, G.O. and Sklyzkova, L.A. (2010), “Water curtains in systems of ensuring fire-prevention protection of objects of different function”, Naukovyj visnyk UkrNDIPB, vol. 22, no. 2, pp. 148–153.
  7. Fire-fighting water curtain” [Protivopozharnaja vodjanaja zavesa], available at:
  8. Gant, S.E. (2006), “CFD Modeling of Water Spray Barriers”, Health and Safety Laboratory, UK, Report HSL/2006/79, 35 p.
  9. Meroney, R.N. (2012), “CFD modeling of water spray interaction with dense gas plumes”, Atmospheric Environment, vol. 54, pp. 706–713.
  10. Cong, B.H., Liao, G.X. and Chow, W.K. (2005), “Review of modeling fire suppression by water sprays by computational fluid dynamics”, International Journal on Engineering Performance-Based Fire Codes, vol. 7, no. 2, pp. 35–56.
  11. Meshman, L.M. et al. (2002), “Projection of water and foamy automatic installations of a firefighting” [Proektirovanie vodjanyh i pennyh avtomaticheskih ustanovok pozharotushenija], ed. by N.P. Kopylov, Moskow: VNIIPO, 413 p.
  12. “The procedure for designing deluge curtains using sprinklers of the brand "ZVN" produced by ZAO «Special Automation»” [Porjadok proektirovanija drenchernyh zaves s ispol'zovaniem orositelej marki «ZVN» proizvodstva ZAO «PO «Specavtomatika»], Informacionnyj portal Orbita-Sojuz / Pozharotushenie / Drenchernye zavesy, available at:
  13. Vinogradov, A.G. (2014), “Calculation method of water curtain shielding properties” [Metodika rascheta jekranirujushhih svojstv vodjanyh zaves], Pozharovzryvobezopasnost', vol. 23, no. 1, pp. 45–57.
  14. Vinogradov, A.G. (2017), “Development of the scientific foundations of systems for protecting workers from powerful thermal radiation with water curtains” [Razvitie nauchnyh osnov sistem zashhity rabotnikov ot moshhnyh teplovyh izluchenij vodjanymi zavesami], Doctoral dissertation, Cherkasy.
  15. Vinogradov, A.G., Yakhno, O.M. and Dunjushkin V.A. (2015), “Interrelation of fire water curtains parameters with their heat radiation shielding effectiveness” [Vzaimosvjaz' parametrov protivopozharnyh vodjanyh zaves s jeffektivnost'ju jekranirovanija teplovogo izluchenija], Naukovyj visnyk UkrNDIPB, no. 1(31), pp. 36–45.
  16. Vynogradov, A.G. (2005), “Scattering of thermal radiation by spherical drops of water” [Rozsijannja teplovogo vyprominjuvannja sferychnymy krapljamy vody], Vestnik Nacional'nogo tehnicheskogo universiteta «Kievskij politehnicheskij institute», Serija mashinostroenie, no. 47, pp. 51–54.
  17. Vinogradov, A.G. (2012), “Absorption of thermal radiation by water curtains” [Pogloshhenie teplovogo izluchenija vodjanymi zavesami], Pozharovzryvobezopasnost', vol. 21, no. 7, pp. 77–86.
  18. Vynogradov, A.G. (2008), “Calculation of vector velocity field of water curtain droplets” [Rozrahunok vektornogo polja shvydkostej krapel' vodjanoi' zavisy], Visnyk Kremenchuc'kogo derzhavnogo politehnichnogo universytetu, no. 2(49), part 2, pp. 42–44.
  19. Vinogradov, A.G. (2012), “Absorption of radiant heat flux in a sprayed water stream” [Pogloshhenie luchistogo teplovogo potoka v raspylennoj vodjanoj strue], Visnyk Nacional'nogo tehnichnogo universytetu Ukrai'ny «Kyi'vs'kyj politehnichnyj instytut», serija Mashynobuduvannja, no. 65, pp. 145–152.
  20. Vinogradov, A.G. and Yakhno, O.M. (2015), “Calculation of the parameters of spray fire water jets” [Raschet parametrov protivopozharnyh struj raspylennoj vody], Prykladna gidromehanika, vol. 17, no. 4, pp. 3–13.
  21. Vinogradov, A.G. (2013), “Calculation of thermal radiation transmission spectra for a polydisperse water curtain” [Raschet spektrov propuskanija teplovogo izluchenija dlja polidispersnoj vodjanoj zavesy], Promyslova gidravlika i pnevmatyka, no. 2(40), pp. 11–20.
  22. Vinogradov, A.G., Ogurcov, C.Ju., Dunjushkin, V.A., Benedjuk, V.S. and Linchevskij, E.A. (2014), “An experimental study of the shielding of thermal radiation by atomized water” [Jeksperimental'noe issledovanie jekranirovanija teplovogo izluchenija raspylennoj vodoj], Naukovyj visnyk UkrNDIPB, no. 2(30), pp. 99–108.
  23. Dombrovsky, L.A. (2004), “Absorption of thermal radiation in large semi-transparent particles at arbitrary illumination of the polydisperse system”, International Journal of Heat and Mass Transfer, vol. 47, pp. 5511–5522.
  24. Dombrovsky, L.A. (2016), “A simplified model for the shielding of fire thermal radiation by water mists”, International Journal of Heat and Mass Transfer, vol. 96, pp. 199–209." target="_blank">
  25. Ravigururajan, T.S. and Beltran M.R. (1989), “A Model for Attenuation of Fire Radiation Through Water Droplets”, Fire Safety J., vol. 15, pp. 171–181." target="_blank">
  26. Coppalle, A., Nedelka, D. and Bauer ,B. (1993), “Fire protection: water curtains”, Fire Safety J., vol. 20, pp. 241–255." target="_blank">
  27. Dembele, S., Wen, J.X. and Sacadura, J.F. (2001), “Experimental study of water sprays for the attenuation of fire thermal radiation”, ASME J. Heat Transfer, vol. 123, no. 3, pp. 534–543.
  28. Buchlin, J., (2005), “Thermal shielding by water spray curtain”, J. Loss Prev. Process Industries, vol. 18, no. 4–6, pp. 423– 432.
  29. Collin, A., Boulet, P., Lacroix, D. and Jeandel G. (2005) “On radiative transfer in water spray curtains using the discrete ordinates method”, J. Quant. Spectrosc. Radiat. Transfer, vol. 92, pp. 85 – 110." target="_blank">
  30. Boulet, P., Collin, A. and Parent, G. (2006), “Heat transfer through a water spray curtain under the effect of a strong radiative source”, Fire Safety J., vol. 41, no. 1, pp. 15–30.
  31. Hostikka, S. and McGrattan, K. (2006), “Numerical modeling of radiative heat transfer in water sprays”, Fire Safety Journal, vol. 41, pp. 76–86.
  32. Parent, G., Boulet, P., Gauthier, S., Blaise, J. and Collin, A. (2006), “Experimental investigation of radiation transmission through a water spray”, J. Quant. Spectrosc. Radiat. Transfer, vol. 97, no. 1, pp. 126–141.
  33. Collin, A., Lechene, S., Boulet, P. and Parent, G. (2010), “Water mist and radiation interactions: application to a water curtain used as a radiative shield”, Numerical Heat Transfer, Part A: Applications, vol. 57, pp. 537–553.
  34. Parent, G., Morlon, R., Acem, Z., Fromy, P., Blanchard, E. and Boulet P. (2016), “Radiative shielding effect due to different water sprays used in a real scale application”, International Journal of Thermal Sciences, vol. 105, pp. 174–181.
  35. Vinogradov, A.G. and Yakhno, O.M. (2016), “Equivalent diameter of droplets of sprayed water jets and its dependence on technical parameters”, Journal of Mechanical Engineering NTUU Kyiv Polytechnic Institute”, vol. 76, no. 1, pp. 39–45.
  36. The state standard of Ukraine “DSTU EN 12259-1:2008, Stacionarni systemy pozhezhogasinnja. Elementy sprynklernyh i vodorozpyljuval'nyh system. Chastyna 1. Sprynklery (EN 12259-1: 1999, IDT)” [DSTU EN 12259-1:2008, Stationary fire extinguishing systems. Elements of sprinkler and water spray systems. Part 1. Sprinklers (EN 12259-1:1999, IDT)], Kiev, Ukraine.
  37. Vinogradov, A.G. (2013), “Uchet spektral'nogo sostava teplovogo izluchenija pri raschete kojefficienta propuskanija kapli vody” [Accounting of thermal radiation spectral distribution at calculation of water droplet transmittance], Pozharovzryvobezopasnost', vol. 22, no. 9, pp. 64 – 73.



How to Cite

A. Vynogradov, “Calculation of Design Parameters of Fire-Fighting Water Curtains”, Mech. Adv. Technol., no. 3(87), pp. 61–74, Dec. 2019.



Up-to-date machines and the technologies of mechanical engineering