# Chatter suppression technologies for metal cutting

## Authors

• Y. V. Petrakov Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine

## Keywords:

chatter, cutting process, mathematical model, stability of the cutting process

## Abstract

Background. The cutting process is carried out in a closed elastic technological machining system and is always accompanied by vibrations. Vibrations arising during cutting, depending on the amplitude, can very slightly affect the machining result, and can lead to a catastrophic loss of stability of the whole process. In any case, all researchers agree that vibration is the factor that ultimately determines the productivity of the cutting process and the quality of the machined surface.

Objective. The aim of this study is to develop new technologies for selecting parameters for controlling the cutting speed to suppress chatter by passive methods, as well as to control the drive of the forming motion to suppress chatter by active methods.

Methods. The goal is achieved by creating new technologies aimed at the study of dynamic processes occurring in the cutting. It is noted that the mathematical model of the cutting process should be built taking into account the loop closed of the elastic technological machining system and the function of the delayed argument, which represents machining “on the trail”. When studying the cutting process, four main groups of factors that influence its mathematical representation are taken into account, and three approaches are used to determine the stability diagram: frequency analysis, root analysis of the characteristic equation of motion of the system and the numerical method. The numerical method using the amplitude-frequency characteristics according to the corresponding stability criterion is considered to be the most effective.

Results. The results of theoretical studies are used in practice in the form of technologies for passive and active chatter reduction during cutting. A technology has been developed to suppress vibrations during face milling when controlling the spindle speed according to a harmonic law. An application program for simulating a process for determining the parameters of the control law is presented. For active control, a new technology is proposed, based on the use of a CNC machine drive with an additional closed system, introducing a harmonious signal into the channel of the shaping movement, the amplitude and phase of which are automatically adjusted using the coordinate-wise descent algorithm according to the criterion of the minimum amplitude of the motor current.

Conclusions. The technology of chatter suppression during face milling by controlling the spindle speed according to the harmonic law is limited by the speed of the spindle drive and its inertial characteristics. The active chatter control system uses a standard servo drive of the CNC machine, which has an additional closed loop for automatically searching for the amplitude and phase of the compensating control signal

2019-11-24

## How to Cite

[1]
Y. V. Petrakov, “Chatter suppression technologies for metal cutting”, Mech. Adv. Technol., no. 2(86), pp. 51–60, Nov. 2019.

## Section

Up-to-date machines and the technologies of mechanical engineering