Modeling the shock interaction of a mud particle with a filter element at ultrasonic cavitation filtering

Authors

DOI:

https://doi.org/10.20535/2521-1943.2020.88.201335

Keywords:

filtering, ultrasonic cavitation processing, ultrasonic field, ultrasonic cavitation, shock, simulation, defomation, stress

Abstract

The simulation of impact interaction of the contaminant particle with the solid surface of the filter element, which is placed in the cavitation medium by ultrasonic filtration of contaminated liquids, is carried out in the work. An expression of the law of energy conservation is presented, which takes into account the dominant factors acting in the process of interaction of the pollutant with the surface of the filter element. The constituent sources of energy sources that act on the pollutant in contact with the stationary surface of the filter are justified and described. The results of the comparative analysis of mathematical modeling data in ANSYS® Academic Research Mechanical, Release 2019R3 shock interaction of dirt particles with a diameter of 10 μm and 100 μm with two types of filter elements made of AISI321 steel and TEFLON 7 are presented.

References

  1. Beljanin P.N., Chernenko Zh.S. Aviacionnye fil'try i ochistiteli gidravlicheskih sistem[Aviation filters and purifiers of hydraulic systems]. Moskow, Mashinostroenie, 1964. 293p.
  2. Abramov E.I., Kolesnichenko K.A., Maslov V.T. Jelementy gidroprivoda[Elements of the hydraulic drive]. Kyiv, Tehnika, 1977
  3. Japan Patent №61129012, МПК B01D 24/26, pub. 17.06.86 г.
  4. Certificate of Authorship№504542, МПК B01D 25/38, pub. 28.02.76 г.
  5. Finkel'shtejn Z.L. Primenenie i ochistka rabochih zhidkostej dlja gornyh mashin[Use and cleaning of hydraulic fluids for mining mashines]. Moskow, Nedra, 1986, 232p.
  6. Novickij B.G. Primenenie akusticheskih kolebanij v Himiko-tehnologicheskih processah (Processy i apparaty himicheskoj i neftjanoj tehnologii)[ The use of acoustic vibrations in chemical-engineering processes (Processes and devices of chemical and petroleum technology)]. Moskow, Himija, 1983, 192 p.
  7. Agranat B.A., Bashkirov V.I., Kitajgorodskij Ju.I., Havskij N.N. Ul'trazvukovaja tehnologija[Ultrasonic technology] Moskow, Metallurgija, 1974, 503p.
  8. Lugovs'kij O.F., Chornij V.І. Journal of Mechanical Engineering the National Technical University of Ukraine "Kyiv Polytechnic Institute" 1999. no. 35, pp. 111-119.
  9. Patent № UA 55323; 17.03.03. Bull. № 3; Chornij V.І., Lugovs'kij O.F., Movchanjuk A.V. Sposіb obrobki і ochistki rіdini ta pristrіj dlja jogo vikoristannja[Method of processing and cleaning fluid and a device for its use].
  10. Lugovskyi A.F., Chuhraev N.V., Ul'trazvukovaja kavitacija v sovremennyh tehnologijah[Ultrasonic cavitation in modern technologies] Kiev, Vidavnicho–polіgrafіchnij centr «Kiїvs'kij unіversitet», 2007. 244 p.
  11. Landau L.D., Lifshic E.M. Teoryia upruhosty, Moscow: Nauka, 19867 246 p.
  12. Hlushak, B. L., Kuropatenko, V. F., Novykov, S. A. (1992), Yssledovanye prochnosty materyalov pry dynamycheskykh nahruzkakh [The study of the strength of materials under dynamic loads] “Nauka”, Novosibirsk, Russia.
  13. Morozov, N., Petrov, Yu. V. (1997) Problem dynamyky razrushenyia tverdkh tel [Problems of the dynamics of the destruction of solids], St. Petersburg University, St. Petersburg, Russia.
  14. Kylchevskyi, N. A. (1969), Teoryia soudarenyi tverdkh tel [Theory of collisions of solids], Naukova Dumka, Kyiv, Ukraine.
  15. ANSYS® Academic Research Mechanical, Release 2019R3. Available: https://www.ansys.com/en-in/academic/free-student-products. Last accessed 11 May 2020.
  16. Johnson, G. R., Cook, W. H. (1985), Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics.
  17. Hunt, E. M., Malcolm, S., Pantoya, M. L., (2009), Impact ignition of nano and micron composite energetic materials. International Journal of Impact Engineering. 2009.
  18. Luhovskyi O.F., Zilinskyi A.I., Hryshko I.A. (2015), “Math model of filtration in an ultrasonic field of increased intensity”, Journal of Mechanical Engineering NTUU "Kyiv Polytechnic Institute", vol. 74, pp. 11-17. DOI: https://doi.org/10.20535/2305-9001.2015.74.50413

Published

2020-04-18

How to Cite

[1]
A. Zilinskyi, Luhovskyi А., M. Kryshchuk, I. Gryshko, and A. Shulha, “Modeling the shock interaction of a mud particle with a filter element at ultrasonic cavitation filtering”, Mech. Adv. Technol., no. 1(88), pp. 58–65, Apr. 2020.

Issue

Section

Mechanics