Perspectives of Application of Rapid Internal Combustion Engine in Drive of Mobile Technique: 1. The Efficiency of Energy Sources for a Heat-Engine

Authors

DOI:

https://doi.org/10.20535/2521-1943.2020.88.201396

Keywords:

rapid internal combustion engine, fuel, fuel mixture, heat creating capacity, mobile machinery, energy effectiveness, environmental friendliness

Abstract

Abstract. The internal combustion engine is a highly intellectual product of civilization. Having reached the highest level of its perfection it, however, caused considerable ecological problems. Thus, its alternative has been the subject of active researches. The aim of this article is to define the objectivity and plausibility of these claims concerning the internal combustion engines and the perspectives of its employment in the gear of mobile machinery. The attention is focused both on the characteristics of the engine itself and on the characteristics of exploited energy sources.

Ecological problems are usually related to the existence of carbon in the traditional fuel. But simultaneous operating of the notions of mass and capacity or higher and lower heat of fuel combustion as well as the notions of heat producing capacity of the fuel proved that there is no unconditional alternative to the common petrol.

It is strongly believed that the substantial effectiveness can be expected from advancing the technology of volumetric ignition by compression of ideal homogenized working mixture, the technology known as Homogeneous Charge Compression Ignition. This technology enables the extreme increase in effectiveness of the internal combustion process distinctive of the Otto-engine. Thus, the objectives of Otto-engine improvement are considered to be absolutely achievable, which opens vast perspectives of its exploitation in the gear of machinery with the high level of autonomy.

Author Biographies

P. Hashchuk, Lviv State University of Life Safety

Доктор технічних наук, професор, завідувач кафедри Кафедра експлуатації транспортних засобів та пожежно-рятувальної техніки

S. Nikipchuk, Lviv State University of Life Safety

старший викладач кафедри "Експлуатація та ремон автомобільної техніки" Національного університету "Львівська політехніка"

References

  1. Hashchuk, P. N. (2004). Energy and orderly movement. Lviv: Ukrainian technologies. http://hdl.handle.net/123456789/3790
  2. Barrere, M. (1977). Les futurs combustibles pour l'aviation. Aeronaut et astronaut, 5(66), 21—30.
  3. Flowers, D., Aceves, S., Smith, R., Torres, J., Girard, J., & Dibble, R. (2000). HCCI in a CRF Engine: Experiments and Detailed Kinetic Modeling. SAE Technical Paper Series, 2000-01-0328, 1—13. https://doi.org/10.4271/2000-01-0328
  4. Yao, M., Chen, Z., Zheng, Z., Zhang, B., & Xing, Y. (2005). Effect of EGR on HCCI Combustion Fuelled with Dimethyl Ether (DME) and Methanol Dual-Fuels. SAE Technical Paper Series, 2005-01-3730, 1—8. https://doi.org/10.4271/2005-01-3730
  5. Zheng, Z., Yao, M., Chen, Z., & Zhang, B. (2004). Experimental Study on HCCI Combustion of Dimethyl Ether (DME). Methanol Dual-Fuel. SAE Technical Paper Series, 2004-01-2993, 1—9. https://doi.org/10.4271/2004-01-2993
  6. Kong, S. C. (2007). A study of natural gas/DME combustion in HCCI engines using CFD with detailed chemical kinetics. Fuel, 86(10), 1483—1489. https://doi.org/10.1016/j.fuel.2006.11.015
  7. Chen, Z., Konno, M., Oguma, M., & Yanai, T. (2000). Experimental study of CI natural-gas/DME homogeneous charge engine. SAE Technical Paper Series, 2000-01-0329, 1—10. https://doi.org/10.4271/2000-01-0329
  8. Tiainen, J., Saarinen, A., Grönlund, T., & Larmi, M. (2003). Novel Two-Stroke Engine Concept, Feasibility Study. SAE Technical Paper Series, 2003-01-3211, 1—15. https://doi.org/10.4271/2003-01-3211
  9. Janhunen, T. T. (2012). HCCI-Combustion in the Z Engine. SAE Technical Paper Series, 2012-01-1573, 1—16. https://doi.org/10.4271/2012-01-1132
  10. Musu, E., Rossi, R., Gentili, R., & Reitz, R. D. (2010). Clean Diesel Combustion by means of the HCPC Concept. SAE paper, 2010-01-1256, SAE Int. J. Engines, 3(1), 964—981. http://dx.doi.org/10.4271/2010-01-1256
  11. Newman, L.G. (2004). Five stroke internal combustion engine.U.S. Patent 6,776,144. http://www.freepatentsonline.com/6776144.html
  12. Schmitz, G. (2003). Five-stroke internal combustion engine, U.S. Patent 6,553,977. https://patents.google.com/patent/US6553977B2/en
  13. Palanivendhan, M., Modi, H. & Bansal, G. (2016). Five Stroke Internal Combustion Engine, International Journal of Control Theory and Applications, 9(13), 5855—5862. https://www.researchgate.net/publication/308673879_Five_Stroke_Internal
  14. _Combustion_Engine
  15. Kéromnès, A., Delaporte, B., Schmitz, G., & Moyne, L. Le. (2014). Development and validation of a 5 stroke engine for range extenders application, Energy Conversion and Management, 82, 259—267.
  16. https://doi.org/10.1016/j.enconman.2014.03.025
  17. Noga, M., & Sendyka, B. (2014). Determination of the Theoretical and Total Efficiency of the Five-Stroke SI Engine. International Journal of Automotive Technology, 15(7), 1083—1089. http://dx.doi.org/10.1007/s12239-014-0112-9
  18. Noga, M., & Sendyka, B. (2013). New Design of the five-stroke engine, Journal of KONES Powertrain and Transport, 20(1) 239—246. http://dx.doi.org/10.5604/12314005.1136161
  19. Griffin, S. (1889). Method of operating gas engines.U.S. Patent 412,883. https://patents.google.com/patent/US412883
  20. Crower, B. (2007). Method and apparatus for operating an internal combustion engine, U.S. Patent 2007/0,022,977.
  21. https://patents.google.com/patent/US608845A/en
  22. Makheeja, D. (2015). A Review: Six Stroke Internal Combustion Engine, Journal of Mechanical and Civil Engineering (IOSR-JMCE), 12(4), 7—11.
  23. Kandari, S. & Gupta, I. (2013). Six Stroke Engine. International Journal of Engineering Research & Technology (IJERT), 2(10), 884—889. https://www.ijert.org/research/six-stroke-engine-IJERTV2IS100242.pdf
  24. Mohandas, G., & Desai-Patil, V. (2015). Review of Six Stroke Engine and Proposal for Alternative Fuels. SSRG International Journal of Mechanical Engineering (SSRG-IJME), 2(10), 19—24. DOI: 10.14445/23488360/IJME-V2I10P104
  25. Conklin J. C., & Szybist, J. P. (2010). A highly efficient six stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery. Energy, 35(4), 1658—1664. https://doi.org/10.1016/j.energy.2009.12.012" target="_blank">https://doi.org/10.1016/j.energy.2009.12.012
  26. Karmalkar, С. & Raut, V. (2014). Analyzing the implementation of six stroke engine in a Hybrid Car. International Journal of Mechanical Engineering and Applications, 2(1), 1—4. DOI: 10.11648/j.ijmea.20140201.11
  27. Bajulaz, R. (1985). Method for the transformation of thermal energy into mechanical energy by means of a combustion engine as well as this new engine.U.S. Patent 06,442,799.
  28. Bajulaz, R. (1989). Internal Combustion Engine.U.S. Patent 4,809,511. https://patents.google.com/patent/US4809511A/en
  29. Osborne, R., Stokes, J., Ceccarini, D., Jackson, N., Lake, T., Joyce, M., Visser, S., Miche, N., Begg, S., Heikal, M., Kalian N., Zhao, H. & Ma T. (2008). The 2/4SIGHT Project — Development of a Multi-Cylinder Two-Stroke/Four-Stroke Switching Gasoline Engine. Proceedings JSAE Annual Congress, 79-08, 11—16.
  30. Rebhan, M., & Stokes, J. (2009). Two-stroke/four-stroke multi-cylinder gasoline engine for downsizing applications. MTZ Worldwide, 70(4), 40—45. https://link.springer.com/article/10.1007/BF03226944
  31. Rueter, D. (2019). 2-Stroke Scavenging in Conventional and Minimally-Modified 4-Stroke Engines for Heavy Duty Applications at Low to Medium Speeds. Inventions, 4(44), 1—13. DOI: 10.3390/inventions4030044
  32. Hashchuk, P. N. (1992). Automotive Energy Efficiency. Lviv: Svit, 208. http://hdl.handle.net/123456789/3806

Published

2020-04-24

How to Cite

[1]
P. Hashchuk and S. Nikipchuk, “Perspectives of Application of Rapid Internal Combustion Engine in Drive of Mobile Technique: 1. The Efficiency of Energy Sources for a Heat-Engine”, Mech. Adv. Technol., no. 1(88), pp. 82–92, Apr. 2020.

Issue

Section

Mechanics