Restoring bearing capacity of fiberglass overwrap of aviation cylinders for storing liquids, gases and fire – extinguishing compounds

Authors

  • Roman Kachmar State Enterprise "Lviv State Aircraft Repair Plant", Lviv, Ukraine https://orcid.org/0000-0002-5440-6853
  • Gheorghij Kryvov JSC "Ukrainian Research Institute of Aviation Technology", Kyiv, Ukraine
  • Dmytro Jermolin State Enterprise "Lviv State Aircraft Repair Plant", Lviv, Ukraine
  • Valerij Matvijenko JSC "Ukrainian Research Institute of Aviation Technology", Kyiv, Ukraine https://orcid.org/0000-0001-8643-3787
  • Boris Karpinos
  • Mykhailo Kainov Public joint-stock company “Ukrainian Research Institute of Aviation Technology” , Ukraine https://orcid.org/0000-0002-8717-6732

DOI:

https://doi.org/10.20535/2521-1943.2021.5.1.219224

Keywords:

aviation cylinder; bearing capacity; fiberglass overwrap; numerical research; stressed state; repair; fiberglass bandage; fiberglass fabric; patch; structural and technological parameters.

Abstract

The article proposes a methodology for numerical research of stressed condition (SC) of aviation cylinders for storing liquids, gases and fire-extinguishing compounds in order to determine structural and technological parameters (STP) for repairing of defects in their fiberglass overwraps (FO) due to long-term operation and mechanical damages.

Structural and technological parameters for repair of FO using fiberglass bandages and fiberglass fabric patches аre determined on the examples of numerical research of SC of cylindrical and spherical cylinders.

According to developed methodology, STP for repairing of FO of cylinders make possible to select modern materials and technological equipment.

References

  1. OST 1 03749-74. Ballony na Rrab=21 MPa (210 kgs/sm2). Tipy i osnovnyye parametry, tekhnicheskiye trebovaniya.
  2. OST 1 03607-72. Ballony na Rrab=15 MPa (150 kgs/sm2). Tipy i osnovnyye parametry, tekhnicheskiye trebovaniya.
  3. E. N. Kablov and V. O. Startsev, “Systematical analysis of the climatics influence on mechanical properties of polymer composite materials based on domestic and foreign sources (rewiew)”, Aviation materials and technologies, no. 2, pp. 47–58, 2018. DOI: https://doi.org/10.18577/2071-9140-2018-0-2-47-58.
  4. C. P. Andrasic and A. P. Parker, “Dimensionless stress intensity factors for cracked thick cylinders under polynomial crack face loadings”, Engineering Fracture Mechanics, vol. 19, no. 1, pp. 187–193, 1984. DOI: https://doi.org/10.20535/2521-1943.2020.0.219224.
  5. D. A. Beschetnikov and G. I. Lvov, “Kontaktnaya zadacha dlya tsilindricheskoy obolochki s bandazhom iz kompozitnogo materiala”, Visnyk Natsionalʹnoho tekhnichnoho universytetu "KhPI". Seriya: Dynamika i mitsnistʹ mashyn, no. 67 (973), рр. 19-25, 2012.
  6. R. Kachmar, G. Kryvov, D. Jermolin, V. Matvijenko, V. Baklan and A. Rudjko, “Updating of technological base of repair of components from polymer composite materials of airframe”, Mechanics and Advanced Technologies, no. 3(90), pp. 57-63, Dec. 2020.
  7. L. S. Shlapak, M. P. Linchevsky and V. O. Sarkisov, “Banding of pipelines as оne of the ways to reduce of hoop stressed conditions”, Scientific Bulletin of Ivano-Frankivsk National Technical University of Oil and Gas, no. 2(28), pp. 36-39, 2011.
  8. Yu. M. Matveev, A. N. Monoshkov et al., "Determination of the ultimate pressure for bandaged pipes", Construction of pipelines, no. 2, pp. 18-20, 1970.
  9. А. I. Smirnov, “Effectiveness of banding pipes and cylindrical shells”, Strength of Materials, vol. 15, no. 12, pp. 1742–1745, 1983. DOI: https://doi.org/10.1007/BF01523160.
  10. V. Yu. Zavarukhin and A. A. Ostsemin, “Computing the limiting state of banded pipes”, Strength of Materials, vol. 22, no. 1, рр. 95–102, 1990. DOI: https://doi.org/10.1007/BF00774987.
  11. А. М. Naida, “Technology of repair of pipelines by wraps from polymer composite materials”, Prospecting and Development of Oil and Gas Fields, no. 1(26), рр. 25-29, 2008.
  12. A. A. Lyapin, M. I. Chebakov, A. Dumitrescu and G. Zecheru, “Finite-element modeling of a damaged pipeline repaired using the wrap of a composite material”, Mechanics of Composite Materials, vol. 51, no. 3, рр. 333-340, 2015. DOI: https://doi.org/10.1007/s11029-015-9504-9.
    |
  13. D. V. Egorov, D. F. Balyakov and N. N. Shirokova, “Features of finite element modeling of products from composite materials in space technology”, in Proceedings of the X All-Russian scientific and technical conference of students, postgraduates and young scientists "Youth and Science", vol. 1, Krasnoyarsk, Russia, 2014, pp. 27-28.
  14. V. M. Kulish, B. S. Karpinos, P. P. Kovel and А. S. Bologin, "Modeling of helicopter rotor blade stress state with dangerous defects on it", Collection of scientific works of State research institute of aviation, no. 11, pp. 172-181, 2015.

Published

2021-06-23

How to Cite

[1]
R. Kachmar, G. Kryvov, D. Jermolin, V. Matvijenko, B. Karpinos, and M. Kainov, “Restoring bearing capacity of fiberglass overwrap of aviation cylinders for storing liquids, gases and fire – extinguishing compounds ”, Mech. Adv. Technol., vol. 5, no. 1, pp. 70–78, Jun. 2021.

Issue

Section

Aviation Systems and Technologies