Modeling of cutting forces while boring heat – resistant alloy Inconel 718

Authors

DOI:

https://doi.org/10.20535/2521-1943.2021.5.1.221677

Keywords:

Machining simulation; boring; FEM, frequencies; cutting forces.

Abstract

In this work, authors had made computer FEM (finite element method) simulation of machining holes in part made of heat-resistant alloy Inconel 718. For this simulation nonlinear solver LSDyna had been used. Material type for physical modeling of workpiece have been selected to JohnsonCook formulation. Tool configuration is rigid and have dynamic stiffness in three dimensions in the fastening points. Graphs of cutting forces and moments of cutting for three different depths of cut had been obtained. In the beginning of the cutting, in addition to the smooth increase of cutting forces, highfrequency oscillations with amplitudes of 13 N also take parts. The resulting cutting force has pronounced harmonic oscillations at low frequencies. The maximum burst of amplitude occurs in the period from 0.9 to 1.3 seconds from the start of cutting. It is recommended to carry out a smooth increase of cutting forces at this time through cutting modes. Highfrequency oscillations, which were insignificant in the context of each component of the cutting forces, due to the summation and oscillations of the holder play a crucial role in the oscillations of the boring moment.

References

  1. F. Atabey, I. Lazoglu and Y. Altintas, “Mechanics of boring processes - Part I”, International Journal of Machine Tools and Manufacture, vol. 43, no. 5, pp. 463–476, 2003. DOI: https://doi.org/10.1016/S0890-6955(02)00276-6.
  2. D. V. Krivoruchko and V. A. Zaloga, Modelirovaniye protsessov rezaniya metodom konechnykh elementov: metodologicheskiye osnovy. Sumy: Universitetskaya kniga, 2012, 496 p.
  3. J. P. Davim (ed.), Machining of hard materials. London: Springer London, 2011, 211 p. DOI: https://doi.org/10.1007/978-1-84996-450-0.
  4. B. Moetakef-Imani and N. Z. Yussefian, "Dynamic simulation of boring process", International Journal of Machine Tools and Manufacture, vol. 49, no. 14, pp. 1096–1103, 2009. DOI: https://doi.org/10.1016/j.ijmachtools.2009.07.008.
  5. Yu. P. Solntsev and E. I. Pryakhin, Materialovedeniye. SPb: Khimizdat, 2007, 784 p.
  6. Yu. Yu. Zhiguts, Splavy, syntezovani metalotermiyeyu i SVS-protsesamy. Uzhgorod: Grazhda, 2008, 276 p.
  7. H. Li and E. Du, “Simulation of rock fragmentation induced by a tunnel boring machine disk cutter”, Advances in Mechanical Engineering, vol. 8, no. 6, 2016. DOI: https://doi.org/10.1177/1687814016651557.
  8. C. T. Tyler, J. R. Troutman and T. L. Schmitz, “A coupled dynamics, multiple degree of freedom process damping model, Part 1: Turning”, Precision Engineering, vol. 46, pp. 65–72, 2016. DOI: https://doi.org/10.1016/j.precisioneng.2016.03.017.
  9. LS-DYNA® Keyword User's Manual, Volume I. Dynasupport.com, 2020. Available: https://www.dynasupport.com/manuals/ls-dyna-manuals/ls-dyna_manual_volume_i_r12.pdf.
  10. LS-DYNA® Keyword User's Manual, Volume II Material Models. Dynasupport.com, 2020. Available: https://www.dynasupport.com/manuals/ls-dyna-manuals/ls-dyna_manual_volume_ii_r12.pdf.
  11. Y. Zhang, J. C. Outeiro and T. Mabrouki, “On the Selection of Johnson-cook Constitutive Model Parameters for Ti-6Al-4 V Using Three Types of Numerical Models of Orthogonal Cutting”, Procedia CIRP, vol. 31, pp. 112–117, 2015. DOI: https://doi.org/10.1016/j.procir.2015.03.052.
  12. D. Parle, R. K. Singh and S. S. Joshi, “Modeling of Specific Cutting Energy in Micro-Cutting using SPH Simulation”, in 9th International Workshop on Microfactories, IWMF 2014, Honolulu, USA, 2014, pp. 121-126.
  13. S. V. Shlyk, V. L. Khorolsky and М. I. Naumova, “Simulation of the chamfering process in dies”, Eastern-European Journal of Enterprise Technologies, vol. 2, no. 7(74), pp. 42-47, 2015. DOI: https://doi.org/10.15587/1729-4061.2015.39999.
  14. M. Madaj and M. Píška, “On the SPH Orthogonal Cutting Simulation of A2024-T351 Alloy”, Procedia CIRP, vol. 8, pp. 152–157, 2013. DOI: https://doi.org/10.1016/j.procir.2013.06.081.
  15. Z. Wang, Q. Zeng, Z. Lu, L. Wan and X. Zhang, “Numerical Simulation of Rock Cutting with a Diamond Sawblade Based on LS-DYNA”, Mathematical Problems in Engineering, vol. 2019, no. 1, 2019. DOI: https://doi.org/10.1155/2019/6462909.
  16. G. M. Vyhovsky, "Tekhnolohichne zabezpechennya vysokoshvydkisnoyi obrobky detaley", Visnyk Zhytomyrsʹkoho derzhavnoho tekhnolohichnoho universytetu. Seriya: Tekhnichni nauky, no. 4 (75), pp. 3-7, 2015.
  17. V. Korenkov, I. Chorny and M. Sikailo, "Vyznachennya dynamichnykh kharakterystyk tekhnolohichnoyi obrobnoyi systemy", in Materiali XVI Mezhdunarodna nauchna praktichna konferentsiya "Nastoyashti izsledvaniya i razvitie – 2020", Sofia, Bulgaria, 2020, pp. 19-22.
  18. N. K. Chandiramani and T. Pothala, “Dynamics of 2-dof regenerative chatter during turning”, Journal of Sound and Vibration, vol. 290, no. 1–2, pp. 448–464, 2006. DOI: https://doi.org/10.1016/j.jsv.2005.04.012.
    |
  19. E. Budak and L. T. Tunc, “Identification and modeling of process damping in turning and milling using a new approach”, CIRP Annals, vol. 59, no. 1, pp. 403–408, 2010. DOI: https://doi.org/10.1016/j.cirp.2010.03.078.
    |
  20. M. H. Miguélez, L. Rubio, J. A. Loya and J. Fernández-Sáez, “Improvement of chatter stability in boring operations with passive vibration absorbers”, International Journal of Mechanical Sciences, vol. 52, no. 10, pp. 1376–1384, 2010. DOI: https://doi.org/10.1016/j.ijmecsci.2010.07.003.
    |
  21. G. Zhang and C. Guo, “Modeling of Cutting Force Distribution on Tool Edge in Turning Process”, Procedia Manufacturing, vol. 1, pp. 454–465, 2015. DOI: https://doi.org/10.1016/j.promfg.2015.09.001.
    |

Published

2021-06-23

How to Cite

[1]
M. Shykhalieiev and V. Medvedev, “Modeling of cutting forces while boring heat – resistant alloy Inconel 718 ”, Mech. Adv. Technol., vol. 5, no. 1, pp. 57–63, Jun. 2021.

Issue

Section

Mechanics