Alternative technologies of composite high-loaded aircraft constructions: a qualitative method of making multicriterial decisions. Part I. Initial stages in the problem of decision-making

Authors

  • Dmytro Kiva National Academy of Sciences of Ukraine. JSC "Azerbaijan Airlines" (AZAL). Baku, Azerbaijan, , Azerbaijan
  • Volodymyr Zabashta JSC "Ukrainian Research Institute of Aviation Technology" (UkrNDIAT). Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.20535/2521-1943.2021.5.2.245000

Keywords:

technological system, wing box, stringer panels, composite, alternatives, prepreg, criterials, infusion, preference, vector estimate

Abstract

Comparison of efficiency based on the qualitative decision-making method of autoclave and non-autoclave technologies for the manufacture of carbon-fiber aircraft structures such as aircraft wing planes B787, A350, MC-21, Cseries. The differences and advantages in the serial production of prepreg-autoclave and VARTM technological process.  The comparison was carried out on sufficient presentational basis of criteria of two levels using combinatorial and decomposition research method. Each variant of the process is characterized by evaluations according to selection criteria. Their scores are vector assessment of the criteria based on expert judgment and opinion of the decision maker. Noted that each option has own boundaries of compatibility and practical application.

References

  1. D.S. Kіva and V.F. Zabasht, “Сomposite wing box of transport aircrafts (constructive and technological aspects)”, Technological systems, No. 3, pp. 7–28, 2018. DOI: http://dx.doi.org/10.29010/084.1
  2. Kesson kryla samoleta V787 iz polimernykh kompozitsionnykh materialov. Available: https://ru.wikipedia.org/wiki/Boeing_787_ Dreamliner/
  3. Kesson kryla samoleta A350 iz polimernykh kompozitsionnykh materialov. Available: https://ru.wikipedia.org/wiki/Airbus_A350_XWB
  4. R. Gusarov, Chernoe krylo dlya MS-21 // 20.03.2015 Aviation Explorer. Available: https://www/aex.ru/docs/3/2015
  5. G. Kryvov et al., “Experiencing the technology development for high lifetime joining of the commercial aircraft airframe compo-nents of metal and polymer composite materials”, SAE Technical Paper 2007-01-3815, 2007. doi: 10.4271/2007-01-3815
  6. G.A. Kryvov et al., “Tekhnologii bezavtoklavnogo formovaniya konstruktsii planera samoleta iz polimernykh kompozitsionnykh materialov”, Technological systems, No. 5, pp. 47–70, 2009.
  7. V.I. Grishin et al., “Proektirovanie konstruktsii kryla iz kompozitsionnykh materialov”, TVF, No.1, pp. 20–40, 2010.
  8. B.N. Soloshenko and Yu.I. Popov, “Kontseptual'noe proektirovanie konstruktsii kessona kryla iz kompozitsionnykh materialov srednemagistral'nogo samoleta”, Aviatsionnaya tekhnika., t. 20, No. 1, pp.16–30, 2013.
  9. S.A. Smotrova and I.D. Simonov-Emell'yanov, “Effektivnye tekhnologii formovaniya vysokonagruzhennykh aviatsionnykh konstruktsii iz polimernykh kompozitsionnykh materialov”, Konstruktsii iz kompozitsionnykh materialov, No. 3, pp.15–24, 2016.
  10. E.N. Kablov, “Aviatsionnye materialovedenie v KhKhI veke. Perspektivy i zadachi”, Vse materialy. Entsiklopedicheskii spravochnik, No. 1, p. 21, 2007.
  11. GOST 27004-85. Nadezhnost' v tezkhnike. Sistemy tekhnologicheskie. 23p.
  12. GOST 27202-83. Nadezhnost' v tekhnike. Tekhnologicheskie sistemy. Metod otsenki nadezhnosti po parametram kachestva izgotavlivaemoi produktsii. 50p.
  13. DSTU 3021-95 Viprobuvannya і kontrol' yakostі produktsії. Termіni ta viznachennya.
  14. V.V. Podinovskii, Vvedenie v teoriyu vazhnosti kriteriev v mnogokriterial'nykh zadachakh prinyatiya reshenii, M.: Fizmatlit, 2007.
  15. A.V.Lotov, P.I.Pospelova, Mnogokriterial'nіe zadachi prinyatiya resheniya, Moscow: MAKS Press. 2008.
  16. O.І. Kushlik-Divul's'ka, B.R. Kushlik, Osnovi teorії priinyattya rіshen', Kyiv, 2014. Available: https://ela.kpi.ua/handle/123456789/6917
  17. V.M. Koval'chuk, “Osoblivostі rozv’yazannya bagatokriterіal'nikh zadach priinyattya rіshen' u ne chіtkomu seredovishchі”, Nau-kovі zapiski. Serіya “Ekonomіka. No. 14, 2010, pp. 447–456.
  18. S.R. Ignatovich et al., Resurs i dolgovechnost' aviatsionnoi tekhniki, Kyiv: NAU, 2015.
  19. SPITP LNK 2017. Tekhnologicheskaya platforma “Legkie i nadezhnye konstruktsii”. Strategicheskaya programma ispol'zovani-ya na 2015–2020. Moscow: 2016.
  20. Aviatsionnye pravila. Chast' 25. Normy letnoi godnosti samoletov transportnoi kategorii, Moscow: 2014. 266 p.
  21. V.V. Pilipenko et al., “Koeffitcienty bezopasnosti i prochnost konstruktcii”, Technical Mechanics, No. 1, pp. 89–98, 2009.
  22. E.Mushik and P.Myuller, Metody prinyatiya tekhnicheskikh reshenii, Moscow: Mir. 1990.
  23. Yu.M. Pravikov, Osnovy teorii nadezhnosti tekhnologicheskikh protsessov v mashinostroenii, Ul'yanovsk UlGTU, 2015.
  24. V.B. Ionov, Upravlenie riskom protsessov ispol'zovaniya kompozitsionnykh materialov, FGUP “VIAM”, 2018, pp. 46–50.
  25. A.S. Shirshikov et al., Otsenka nadezhnosti tekhnicheskikh system, Penza. PGUAS. 2015.
  26. GOST R. 1901 -2002. Upravlenie nadezhnost'yu. Analiz riska tekhnicheskikh sistem.
  27. T.A. Litvinova, Proektirovanie stringerov iz kompozitsionnykh materialov. Available: https://docplayer.ru./48119308-proektiirovanie-stringerov
  28. Zadacha prinyatiya reshenii. Sistemnіi analiz. Available: http://systems-analysis.ru/decision_theory_model.html
  29. D.S.Kiva and V.F.Zabashta, “O fundamental'nom svoistve polimernykh kompozitsionnykh materialov v kontekste sozdaniya i proizvodstva effektivnykh konstruktsіi”, Technological systems, No. 3, pp.45–57, 2015.
  30. G.P. Klimenko, Ya.V. Vasil'chenko and M.V. Shapovalov, Yakіst' і nadіinіst' tekhnologіchnikh sisitem, Kramotorsk: DDMA. 2018.
  31. Nadezhnost' tekhnologicheskikh sistem i tekhnogennyi risk. Osnovy rascheta nadezhnosti tekhnicheskikh sistem po nadezhnosti parametrov [Online]. Available: http://www.obzh.ru/nad/4-5.html

Published

2021-11-09

How to Cite

[1]
D. Kiva and V. Zabashta, “Alternative technologies of composite high-loaded aircraft constructions: a qualitative method of making multicriterial decisions. Part I. Initial stages in the problem of decision-making”, Mech. Adv. Technol., vol. 5, no. 2, pp. 203–211, Nov. 2021.

Issue

Section

Aviation Systems and Technologies