Alternative technologies of composite high-loaded aircraft constructions: a qualitative method of making multicriterial decisions. Part I. Initial stages in the problem of decision-making

Authors

  • Dmytro Kiva National Academy of Sciences of Ukraine. JSC "Azerbaijan Airlines" (AZAL). Baku, Azerbaijan, , Azerbaijan
  • Volodymyr Zabashta JSC "Ukrainian Research Institute of Aviation Technology" (UkrNDIAT). Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.20535/2521-1943.2021.5.2.245000

Keywords:

technological system, wing box, stringer panels, composite, alternatives, prepreg, criterials, infusion, preference, vector estimate

Abstract

Comparison of efficiency based on the qualitative decision-making method of autoclave and non-autoclave technologies for the manufacture of carbon-fiber aircraft structures such as aircraft wing planes B787, A350, MC-21, Cseries. The differences and advantages in the serial production of prepreg-autoclave and VARTM technological process.  The comparison was carried out on sufficient presentational basis of criteria of two levels using combinatorial and decomposition research method. Each variant of the process is characterized by evaluations according to selection criteria. Their scores are vector assessment of the criteria based on expert judgment and opinion of the decision maker. Noted that each option has own boundaries of compatibility and practical application.

References

  1. D. S. Kіva and V. F. Zabashta, “Сomposite wing box of transport aircrafts (constructive and technological aspects)”, Technological systems, no. 84/3, pp. 7-28, 2018. DOI: http://dx.doi.org/10.29010/084.1.
  2. Kesson kryla samoleta V787 iz polimernykh kompozitsionnykh materialov. Available: https://ru.wikipedia.org/wiki/Boeing_787_ Dreamliner.
  3. Kesson kryla samoleta A350 iz polimernykh kompozitsionnykh materialov. Available: https://ru.wikipedia.org/wiki/Airbus_A350_XWB.
  4. R. Gusarov, Chernoye krylo dlya MS-21. Aviation Explorer, 2015. Available: https://www.aex.ru/docs/3/2015.
  5. G. Kryvov, V. Matvienko and V. Reznikov, "Experiencing the Technology Development for High Lifetime Joining of the Commercial Aircraft Airframe Components of Metal and Polymer Composite Materials", in SAE Technical Paper, 2007. DOI: https://doi.org/10.4271/2007-01-3815.
  6. G. A. Krivov, Yu. M. Tarasov, A. G. Gromashev and V. F. Zabashta, “Tekhnologii bezavtoklavnogo formovaniya silovykh konstruktsiy planera samoleta iz polimernykh kompozitsionnykh materialov”, Technological systems, no. 49/5, pp. 47-70, 2009.
  7. V. I. Grishin et al., “Proyektirovaniye konstruktsiy kryla iz kompozitsionnykh materialov”, Tekhnika vozdushnogo flota, no. 1, pp. 20-40, 2010.
  8. V. N. Soloshenko and Yu. I. Popov, "Kontseptual'noye proyektirovaniye konstruktsii kessona kryla iz kompozitsionnykh materialov srednemagistral'nogo samoleta", Aviatsionnaya tekhnika, vol. 20, no. 1, pp. 16-30, 2013.
  9. S. A. Smotrova and I. D. Simonov-Emelyanov, "Effektivnyye tekhnologii formovaniya vysokonagruzhennykh aviatsionnykh konstruktsiy iz polimernykh kompozitsionnykh materialov", Konstruktsii iz kompozitsionnykh materialov, no. 3, pp. 15-24, 2016.
  10. E. N. Kablov, “Aviatsionnoye materialovedeniye v XXI veke. Perspektivy i zadachi”, Vse materialy. Entsiklopedicheskiy spravochnik, no. 1, p. 21, 2007.
  11. GOST 27.004-85. Nadezhnost' v tekhnike. Sistemy tekhnologicheskiye. Terminy i opredeleniya.
  12. GOST 27.202-83. Nadezhnost' v tekhnike. Tekhnologicheskiye sistemy. Metody otsenki nadezhnosti po parametram kachestva izgotovlyayemoy produktsii.
  13. DSTU 3021-95. Vyprobuvannya i kontrolʹ yakosti produktsiyi. Terminy ta vyznachennya.
  14. V. V. Podinovskiy, Vvedeniye v teoriyu vazhnosti kriteriyev v mnogokriterial'nykh zadachakh prinyatiya resheniy. Moscow: Fizmatlit, 2007, 64 p.
  15. A. V. Lotov and I. I. Pospelova, Mnogokriterial'nyye zadachi prinyatiya resheniy. Moscow: Maks Press, 2008, 197 p.
  16. O. I. Kushlyk-Dyvulska and B. R. Kushlyk, Osnovy teoriyi pryynyattya rishenʹ. Kyiv: NTUU "KPI", 2014, 94 p. Available: https://ela.kpi.ua/handle/123456789/6917.
  17. V. M. Kovalchuk, “Osoblyvosti rozvʺyazannya bahatokryterialʹnykh zadach pryynyattya rishenʹ u nechitkomu seredovyshchi”, Naukovi zapysky. Seriya "Ekonomika", no. 14, pp. 447-456, 2010.
  18. S. R. Ignatovich, M. V. Karuskevich, T. P. Maslak and S. S. Yutskevich, Resurs i dolgovechnost' aviatsionnoy tekhniki. Kyiv: NAU, 2015, 164 p.
  19. Tekhnologicheskaya platforma "Legkiye i nadezhnyye konstruktsii". Strategicheskaya programma ispol'zovaniya na 2015–2020.
  20. Aviatsionnyye pravila. Chast' 25. Normy letnoy godnosti samoletov transportnoy kategorii, 2014.
  21. V. V. Pilipenko, Ye. S. Pereverzev and V. M. Fedorov, "Koeffitsiyenty bezopasnosti i prochnost' konstruktsiy", Tekhnicheskaya mekhanika, no. 1, pp. 89-98, 2009.
  22. E. Mushik and P. Myuller, Metody prinyatiya tekhnicheskikh resheniy. Moscow: Mir, 1990, 208 p.
  23. Yu. M. Pravikov and G. R. Muslina, Osnovy teorii nadezhnosti tekhnologicheskikh protsessov v mashinostroyenii. Ulyanovsk: UlGTU, 2015, 122 p.
  24. V. V. Ionov, Upravleniye riskom protsessov ispol'zovaniya kompozitsionnykh materialov v ekspluatatsii vozdushnykh sudov, 2018, pp. 46-50.
  25. A. S. Shirshikov, V. V. Lyandenbursky and A. M. Belokovylsky, Otsenka nadezhnosti tekhnicheskikh sistem. Penza: PGUAS, 2015, 240 p.
  26. GOST R 51901-2002. Upravleniye nadezhnost'yu. Analiz riska tekhnologicheskikh sistem.
  27. T. A. Litvinova, "Proyektirovaniye stringerov iz kompozitsionnykh materialov", Voprosy proyektirovaniya i proizvodstva konstruktsiy letatel'nykh apparatov, no. 4, pp. 23-29, 2010.
  28. Zadacha prinyatiya resheniya. Sistemnyy analiz. Available: http://systems-analysis.ru/decision_theory_model.html.
  29. D. S. Kiva and V. F. Zabashta, "About the fundamental properties of polymeric composite materials in the context of creation production of efficient designs", Technological systems, no. 3, pp. 45–57, 2015.
  30. G. P. Klymenko, Ya. V. Vasylchenko and M. V. Shapovalov, Yakistʹ ta nadiynistʹ tekhnolohichnykh system. Kramatorsk: DDMA, 2018, 199 p.
  31. Nadezhnost' tekhnologicheskikh sistem i tekhnogennyy risk. Osnovy rascheta nadezhnosti tekhnicheskikh sistem po nadezhnosti parametrov. Available: http://www.obzh.ru/nad/4-5.html.

Published

2021-11-09

How to Cite

[1]
D. Kiva and V. Zabashta, “Alternative technologies of composite high-loaded aircraft constructions: a qualitative method of making multicriterial decisions. Part I. Initial stages in the problem of decision-making”, Mech. Adv. Technol., vol. 5, no. 2, pp. 203–211, Nov. 2021.

Issue

Section

Aviation Systems and Technologies