Investigation of the impedance of liquid-dispersed environment in the conditions of ultrasonic cavitation treatment
DOI:
https://doi.org/10.20535/2521-1943.2021.5.3.250180Keywords:
cavitation, wave resistance, modes, model, rheological properties, acoustic parameters, processing efficiencyAbstract
The research of efficiency of use of cavitation energy in technological processes is carried out in the work. It is established that the efficiency is determined by a number of conditions, in particular the maximum use of energy from the source of oscillations and the minimum scattering in the structural elements, the stability of parameters and modes of operation of ultrasonic process equipment. Taking them into account, an algorithm for constructing a mathematical model for the studied environments is proposed. Consistent clarification of the physical nature and mechanism of the process of technological cavitation processing determines the parameters of the model. Taking into account this approach, the peculiarities of the propagation of ultrasonic waves between the emitter and the reflector are investigated. It is established that under the conditions of occurrence of ultrasonic cavitation in the technological environment there are significant changes in its acoustic properties. Taking into account these features is fundamentally important in establishing the modes and parameters of cavitation treatment. The initial value for the calculations of the system "cavitator - environment" is the load resistance of the technological environment.
References
- O. F. Lugovsky, A. V. Movchanyuk, I. M. Bernyk, A. V. Shulga and I. A. Grishko, Aparatne zabezpechennya ulʹtrazvukovykh kavitatsiynykh tekhnolohiy: monohrafiya. Kyiv: "Ihor Sikorsky Kyiv Polytechnic Institute", 2021, 216 p.
- I. Bernyk, O. Luhovskyi, W. Wójcik, I. Shedreyeva and G. Karnakova, “Theoretical investigations of the interaction of acoustic apparatus with technological environment working process”, Przeglad Elektrotechniczny, vol. 95, no. 4, pp. 30–35, 2019. DOI: https://doi.org/10.15199/48.2019.04.06.
- I. Gryshko and A. Lugovskoy, “Methods of microorganisms inactivation in the technological liquids”, Journal of Mechanical Engineering NTUU "Kyiv Polytechnic Institute", no. 3 (75), pp. 165-171, 2015.
- I. M. Bernyk, “Intensyfikatsiya tekhnolohichnykh protsesiv obrobky kharchovykh seredovyshch”, Vibratsiyi v tekhnitsi ta tekhnolohiyakh, no. 3 (71), pp. 109–115, 2013.
- T. M. Vitenko, Hidrodynamichna kavitatsiya u masoobminnykh, khimichnykh i biolohichnykh protsesakh. Ternopil: TNTU, 2009, 224 p.
- V. N. Khmelev, A. N. Slivin, R. V. Barsukov, S. N. Tsyganok and A. V. Shalunov, Primeneniye ul'trazvuka vysokoy intensivnosti v promyshlennosti. Biysk: AGTU, 2010, 203 p.
- I. Nazarenko, O. Dedov, I. Bernyk, I. Rogovskii, A. Bondarenko, A. Zapryvoda et al., “Determining the regions of stability in the motion regimes and parameters of vibratory machines for different technological purposes”, Eastern-European Journal of Enterprise Technologies, vol. 6, no. 7 (108), pp. 71–79, 2020. DOI: https://doi.org/10.15587/1729-4061.2020.217747.
- O. F. Lugovsky and I. M. Bernyk, "Vstanovlennya osnovnykh parametriv vplyvu tekhnolohichnoho seredovyshcha na robochyy protses ulʹtrazvukovoyi kavitatsiynoyi obrobky", Vibratsiyi v tekhnitsi ta tekhnolohiyakh, no. 3 (75), pp. 121–126, 2014.
- C. E. Brennen, Cavitation and bubble dynamics. New York, NY: Oxford University Press, 1995, 294 p. DOI: https://doi.org/10.1093/oso/9780195094091.001.0001.
- Pankaj and M. Ashokkumar (eds.), Theoretical and Experimental Sonochemistry Involving Inorganic Systems. Dordrecht: Springer Netherlands, 2011, 404 p. DOI: https://doi.org/10.1007/978-90-481-3887-6.
- R. J. Wood, J. Lee and M. J. Bussemaker, “A parametric review of sonochemistry: Control and augmentation of sonochemical activity in aqueous solutions”, Ultrasonics Sonochemistry, vol. 38, pp. 351–370, 2017. DOI: https://doi.org/10.1016/j.ultsonch.2017.03.030.
|
- K. S. Suslick and D. J. Flannigan, “Inside a Collapsing Bubble: Sonoluminescence and the Conditions During Cavitation”, Annual Review of Physical Chemistry, vol. 59, no. 1, pp. 659–683, 2008. DOI: https://doi.org/10.1146/annurev.physchem.59.032607.093739.
|
- S. K. Mishra, P. A. Deymier, K. Muralidharan, G. Frantziskonis, S. Pannala and S. Simunovic, “Modeling the coupling of reaction kinetics and hydrodynamics in a collapsing cavity”, Ultrasonics Sonochemistry, vol. 17, no. 1, pp. 258–265, 2010. DOI: https://doi.org/10.1016/j.ultsonch.2009.05.014.
|
- I. M. Fedotkin and I. S. Gulyy, Kavitatsiya, kavitatsionnaya tekhnika i tekhnologiya, ikh ispol'zovaniye v promyshlennosti. Kyiv: AO "GLAZ", 2000, 684 p.
- M. G. Sirotyuk and L. R. Gavrilov, Akusticheskaya kavitatsiya. Moscow: Nauka, 2008, 271 p.
- I. M. Margulis and M. A. Margulis, “Measurement of acoustic power in studying cavitation processes”, Acoustical Physics, vol. 51, no. 6, pp. 695–704, 2005. DOI: https://doi.org/10.1134/1.2130901.
|
- G. N. Kuznetsov and I. Ye. Shchekin, “Vliyaniye vyazkosti na dinamiku zakhlopyvayushcheysya polosti, dvizhushcheysya postupatel'no”, Akusticheskiy zhurnal, vol. 19, no. 5, pp. 727–735, 1973.
- I. Nazarenko, O. Luhovskyi, I. Bernyk and A. Svіdersky, “Research of the influence of low-frequency and high-frequency actions on processing of technological environments”, EUREKA: Physics and Engineering, vol. 1, рр. 73-86, 2018. DOI: https://doi.org/10.21303/2461-4262.2018.00566.
- I. G. Mikhaylov and S. B. Gurevich, “Pogloshcheniye ul'trazvukovykh voln v zhidkostyakh”, Uspekhi fizicheskikh nauk, vol. XXXV, no. 1, 1948.
- M. A. Promtov, "Perspektivy primeneniya kavitatsionnykh tekhnologiy dlya intensifikatsii khimiko-tekhnologicheskikh protsessov", Vestnik TGTU, vol. 14, no. 4, pp. 861-869, 2008.
- B. A. Agranat, Fizicheskiye osnovy tekhnologicheskikh protsessov, protekayushchikh v zhidkoy faze s vozdeystviyem ul'trazvuka. Moscow: Mashinostroyeniye, 1969, 237 p.
- V. N. Monakhov, S. L. Peshkovskiy, A. S. Popovich, B. I. Fomichev, I. P. Chinyakov and A. D. Yakovlev, "K voprosu o vtorom poroge ul'trazvukovoy kavitatsii v vode", Akusticheskiy zhurnal, vol. 21, no. 3, pp. 432-435, 1975.
- S. D. Shestakov, "Mnogopuzyrkovaya akusticheskaya kavitatsiya: matematicheskaya model' i fizicheskoye podobiye", Tekhnicheskaya akustika, no. 14, 2010.
- M. G. Sirotyuk, “Kavitatsionnaya prochnost' vody”, Trudy akusticheskogo instituta, no. 6, pp. 5–15, 1969.
- A. A. Doynikov and S. T. Zavtrak, “Uchet szhimayemosti zhidkosti v zadache o vzaimodeystvii gazovykh puzyr'kov v pole zvukovoy volny”, Akusticheskiy zhurnal, vol. 34, no. 2, pp. 246–250, 1988.
- V. A. Akulichev, V. N. Alekseev and K. A. Naugolnykh, “O dinamike parovykh puzyr'kov v zhidkovodorodnykh ul'trazvukovykh puzyr'kovykh kamerakh”, Akusticheskiy zhurnal, vol. 17, no. 3, pp. 354–356, 1971.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ірина Берник, Іван Назаренко, Олександр Луговський

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work