Calculation and experimental procedure for determining the modulus of elasticity of porous coatings on a substrate during bending. Part 1. Theoretical foundations

Authors

DOI:

https://doi.org/10.20535/2521-1943.2022.6.2.261923

Keywords:

modulus of elasticity, porous coatings, elastic-geometric characteristics, bending rigidity, double-layer section, composite center of inertia

Abstract

The purpose of this work is to develop a design and experimental technique for determining the modulus of elasticity of one of the layers of a two-layer bar of rectangular cross section during bending, provided that the modulus of elasticity of the other layer is known. In this part of the work, using the transition formulas of relatively parallel axes, a mathematical expression has been obtained to determine the bending stiffness of a two-layer rectangular section, which does not include distances from the centers of weight of sections of layers to the pivot center of weight of the entire section, which, in turn, depend on the elastic modules of layers. The presence of such an expression made it possible to form an algebraic equation in which the modulus of elasticity of one of the layers can act as an unknown. As a result, the mathematical connection of the unknown modulus of elasticity with the known modulus of elasticity of the other layer, geometric dimensions of layers and bending stiffness of the entire section was established, which should be determined experimentally.

 

References

  1. H.V. Haiko “Stan ortopedo-travmatolohichnoi dopomohy v Ukraini ta priorytetni napriamky yii udoskonalennia”, in Proc. Zbirnyk naukovykh prats ХIII zizdu ortopediv-travmatolohiv Ukraine, Donetsk, pp. 5–8, 2001.
  2. A.I. Protsyk et al., “Novyi pidkhid do tekhnolohii likuvannia perelomiv shyiky stehnovoi kistky”, Visnyk ortopedii, travmatolohii ta protezuvannia, No. 2, pp. 55–58, 2005.
  3. M.V. Poluliakh et al., ”Pervynne endoprotezuvannia pry cherez- ta mizhvertelnykh perelomakh stehnovoi kistky u khvorykh pokhyloho ta starechoho viku”, Ukrainskyi zhurnal ekstremalnoi medytsyny imeni H. O. Mozhaieva, No. 2 (9), pp. 93–96, 2008.
  4. H. Shi et al., “Functional gradient metallic biomaterials: techniques, current scenery, and future prospects in the biomedi-cal field”, Frontiers Bioengineering and Biotechnologies, Vol. 8, 2021. doi.org/10.3389/fbioe.2020.616845
  5. H. Mehboob and S.-H. Chang, “Evaluation of the development of tissue phenotypes: Bone fracture healing using func-tionally graded material composite bone plates”, Composite Structures, No. 1 (117), pp. 105–113, 2014. doi.org/10.1016/j.compstruct.2014.06.019
  6. M. Long, H. J. Rack “Titanium alloys in total joint replacement - A materials science perspective”, Biomaterials, No. 18 (19), pp. 1621–1639, 1998. doi.org/10.1016/S0142-9612(97)00146-4
  7. V.S. Zolotorevskij, Mekhanicheskie ispytaniya i svojstva metallov, I.I. Novikova Ed., Moscow: Metallurgiya, 1974.
  8. V.A. Barvinok, “Opredelenie uprugih harakteristik plazmennyh pokrytij akusticheskim metodom”, Izvestiya vysshih uchebnyh zavedenij. Mashinostroenie, No. 6, pp. 99–103, 1980.
  9. I.V. Zashchuk, Elektronika i akusticheskie metody ispytanij stroitel'nyh materialov, Moscow: Vysshaya shkola, 1968.
  10. V.A. Barvinok, Upravlenie napryazhyonnym sostoyaniem i svojstva plazmennyh pokrytij, Moscow: Mashinostroenie, 1990.
  11. I.F. Arutyunova et al., “Methods of evaluating the service properties of protective coatings”, Welding International. No. 2 (16), pp. 155–157, 2002. DOI:10.1080/09507110209549510
  12. L. Nyu, V. A. Tarasov and A. F. Puzryakov, “A model of the formation of residual stresses in the component-coating system in plasma spraying processes”, Welding International, No. 3 (19), pp. 238–242, 2005. doi.org/10.1533/wint.2005.3432
  13. V.V. Kudinov, F.I. Kitaev and A.G. Tsidulko, “Strength characteristics of plasma-sprayed coatings from mixed nickel-aluminum powders”, Soviet Powder Metallurgy and Metal Ceramics, No. 8 (14), pp. 637–642, 1975. doi.org/10.1007/BF00794465
  14. E.A. Zelenina, S.V. Loskutov and A.V. Ershov, “Metod raschyota fiziko-mekhanicheskih harakteristik plazmennogo pokrytiya na podlozhke pri ispytanii obrazcov na izgib”, Novі materіali і tekhnologії v metalurgії ta mashinobuduvannі, No. 2, pp. 107–110, 2016.
  15. E.A. Zelenina et al., Napryazhenie i deformaciya plazmennogo pokrytiya pri izgibe podlozhki, No. 1, pp. 39–42, 2017.
  16. I.A. Birger and R.R. Mavlyutov, Soprotivlenie materialov, Moscow: Nauka, uchebnoe posobie, 1986.
  17. G.S. Pisarenko, O.L. Kvіtka and E S. Umans'kij, Opіr materіalіv, G.S. Pisarenka Ed., Kyiv: Vishcha shkola, 2004.

Published

2022-10-01

How to Cite

[1]
M. Dyman, A. . Moltasov, and S. Kalyuzhny, “Calculation and experimental procedure for determining the modulus of elasticity of porous coatings on a substrate during bending. Part 1. Theoretical foundations”, Mech. Adv. Technol., vol. 6, no. 2, pp. 139–142, Oct. 2022.

Issue

Section

Mechanics