Calculation and experimental procedure for determining the modulus of elasticity of porous coatings on a substrate during bending. Part 2. Experimental research

Authors

DOI:

https://doi.org/10.20535/2521-1943.2022.6.3.262805

Keywords:

modulus of elasticity, coating, microplasma spraying, bending stiffness, porosity, biomedical materials

Abstract

As it was mentioned in the first part of this work, to determine the modulus of elasticity of one of the layers of a double-layer beam during bending, it is necessary to know the modulus of elasticity of the other layer and the bending stiffness of the entire section. Therefore, the purpose of the presented part of the work is to experimentally establish the specified characteristics of coated samples of rectangular cross-section and substrate without coating during three-point bending. The results of experimental studies of elastic-geometric characteristics during bending of samples with coatings of VT1-00 and KTC-110 alloys, applied to a substrate of VT6 alloy by microplasma sputtering, with different degrees of porosity, are presented. Analytical calculations of the modulus of elasticity of the specified coatings were carried out, the results of which make it possible to establish the general regularities of its change depending on their degree of porosity.

References

  1. P. A. Vityaz', V. M. Kaptsevich and V. K. Sheleg, Poristyye poroshkovyye materialy i izdeliya iz nikh. Minsk: Vysheyshaya shkola, 1987, 164 p.
  2. V. S. Loskutov and L. I. Dekhtyar', “Mechanical properties of plasma sprayed coatings of zirconium boride, copper, and composites of them”, Soviet Powder Metallurgy and Metal Ceramics, vol. 24, no. 7, pp. 570–572, 1985. DOI: https://doi.org/10.1007/BF00795194.
  3. Y. Torres, J. J. Pavón, I. Nieto and J. A. Rodríguez, “Conventional powder metallurgy process and characterization of porous titanium for biomedical applications”, Metallurgical and Materials Transactions B, vol. 42, no. 4, pp. 891-900, 2011. DOI: https://doi.org/10.1007/s11663-011-9521-6.
  4. S. M. Kats, “Elastic modulus of materials with a cellular-porous structure”, Strength of Materials, vol. 4, no. 3, pp. 291–296, 1972. DOI: https://doi.org/10.1007/BF01528406.
  5. F. P. Knudsen, “Dependence of Mechanical Strength of Brittle Polycrystalline Specimens on Porosity and Grain Size”, Journal of the American Ceramic Society, vol. 42, no. 8, pp. 376–387, 1959. DOI: https://doi.org/10.1111/j.1151-2916.1959.tb13596.x.
  6. R. M. Spriggs, “Expression for Effect of Porosity on Elastic Modulus of Polycrystalline Refractory Materials, Particularly Aluminum Oxide”, Journal of the American Ceramic Society, vol. 44, no. 12, pp. 628–629, 1961. DOI: https://doi.org/10.1111/j.1151-2916.1961.tb11671.x.
  7. K. K. Phani and S. K. Niyogi, “Young's modulus of porous brittle solids”, Journal of Materials Science, vol. 22, no. 1, pp. 257–263, 1987. DOI: https://doi.org/10.1007/BF01160581.
  8. W. Pabst and E. Gregorová, “New relation for the porosity dependence of the effective tensile modulus of brittle materials”, Journal of Materials Science, vol. 39, no. 10, pp. 3501–3503, 2004. DOI: https://doi.org/10.1023/B:JMSC.0000026961.12735.2a.
  9. D. P. H. Hasselman and R. M. Fulrath, “Effect of Small Fraction of Spherical Porosity on Elastic Moduli of Glass”, Journal of the American Ceramic Society, vol. 47, no. 1, pp. 52–53, 1964. DOI: https://doi.org/10.1111/j.1151-2916.1964.tb14644.x.
  10. R. W. Rice, “Effects of inhomogeneous porosity on elastic properties of ceramics”, Journal of the American Ceramic Society, vol. 58, no. 9-10, pp. 458–459, 1975. DOI: https://doi.org/10.1111/j.1151-2916.1975.tb19026.x.
  11. L. A. Lopata, "Zavisimost' modulya uprugosti poroshkovykh pokrytiy ot ikh poristosti pri elektrokontaktnom pripekanii", Zbirnyk naukovykh pratsʹ Kirovohradsʹkoho natsionalʹnoho tekhnichnoho universytetu. Tekhnika v silʹsʹkohospodarsʹkomu vyrobnytstvi, haluzeve mashynobuduvannya, avtomatyzatsiya, no. 24(2), pp. 91-96, 2011.
  12. Yu. S. Borisov, A. N. Kyslytsa and S. G. Vojnarovych, “Peculiarities of the process of microplasma wire spraying”, The Paton Welding Journal, no. 4, pp. 21–25, 2006.
  13. S. Voinarovych, O. Kyslytsia, Ie. Kuzmych-Ianchuk, O. Masiuchok, S. Kaliuzhnyi, D. Teodossiev, et al, “Innovative coatings for implants and parts for osteosynthesis”, Series on Biomechanics, vol. 31, no. 4, pp. 27–33, 2017. Available: http://jsb.imbm.bas.bg/page/en/details.php?article_id=254.
  14. J. Quinn, R. McFadden, C.-W. Chan and L. Carson, “Titanium for Orthopedic Applications: An Overview of Surface Modification to Improve Biocompatibility and Prevent Bacterial Biofilm Formation”, iScience, vol. 23, no. 11, p. 101745, 2020. DOI: https://doi.org/10.1016/j.isci.2020.101745.
  15. I. Matuła, G. Dercz and J. Barczyk, “Titanium/Zirconium functionally graded materials with porosity gradients for potential biomedical applications”, Materials Science and Technology, vol. 36, no. 9, pp. 972–977, 2020. DOI: https://doi.org/10.1080/02670836.2019.1593603.
  16. L. I. Tushinskiy, A. V. Plokhov, V. I. Sindeyev and A. A. Stolbov, Konstruktivnaya prochnost' kompozitsii "osnovnoy metall-pokrytiye". Novosibirsk: Nauka, 1996, 296 p.
  17. Ya. A. Birger and R. R. Mavlyutov, Soprotivleniye materialov. Moskva: Nauka, 1986, 560 p.
  18. H. S. Pysarenko, O. L. Kvіtka and E. S. Umansʹkyy, Opіr materіalіv. Kyiv: Vyshcha shkola, 2004, 655 p.
  19. I.-H. Oh, N. Nomura, N. Masahashi and S. Hanada, “Mechanical properties of porous titanium compacts prepared by powder sintering”, Scripta Materialia, vol. 49, no. 12, pp. 1197–1202, 2003. DOI: https://doi.org/10.1016/j.scriptamat.2003.08.018.

Published

2022-12-14

How to Cite

[1]
M. Dyman, A. . Moltasov, and S. Kaliuzhnyi, “Calculation and experimental procedure for determining the modulus of elasticity of porous coatings on a substrate during bending. Part 2. Experimental research”, Mech. Adv. Technol., vol. 6, no. 3, pp. 262–268, Dec. 2022.

Issue

Section

Mechanics