Applications of randomly selected sets of exact Voight's solutions for vibration of thin plates

Authors

DOI:

https://doi.org/10.20535/2521-1943.2022.6.3.263541

Keywords:

rectangular plate, free vibrations, clamped-clamped plate, Galerkin method, Voigt solution

Abstract

The principally new method of selected exact solutions, SES, for plate vibration based on fundamental solutions of Voigt is suggested. In contrast to similar known methods, it employs the frequency dependent functions for both space coordinates. The sets of exact solutions which depends on some arbitrary chosen parameters are constructed. This allows to choose any number of exact solutions, while the required number of them depends on the boundary conditions which should satisfy in considered collocation points.

The efficiency of method is demonstrated for the most unfavorable case of all sides clamped rectangular plate. Nevertheless, the accuracy is quite satisfactory for first six natural frequencies even for relatively small number of collocation boundary points, and testify about big prospects as to application for complex structures, different geometries, various boundary conditions.

Additionally two variants of the Galerkin method are realized and compared. First one, employs the exponential functions, while the second one –the very popular beam functions. The calculation results show the superiority of first variant as in technical realization as in accuracy, and in further applications in structural mechanics.

Author Biographies

Igor Orynyak, Department of Applied Mathematics at National Technical University Kiev Polytechnic Institute

Professor of Department of Applied Mathematics

Julia Bai, Igor Sikorsky Kyiv Polytechnic Institute

Кафедра прикладної математики, старший викладач

Iryna Kostiushko, Department of Applied Mathematics at National Technical University Kiev Polytechnic Institute

Senior Reader of Department of Applied Mathematics

References

  1. X. Liu, S. Qiu, S. Xie, J.R. Banerjee, “Extension of the Wittrick-Williams Algorithm for Free Vibration Analysis of Hybrid Dynamic Stiffness Models Connecting Line and Point Nodes”, Mathematics, no. 10(1), 57, 2022. doi: 10.3390/math10010057
  2. M. Gander, F. Kwok, “Chladni figures and the Tacoma bridge: motivating PDE eigenvalue problems via vibrating plates”, SIAM Review, vol. 54, no. 3, pp. 573–596, 2012. doi: 10.1137/10081931X
  3. C.A.J. Fletcher, Computational Galerkin methods. New-York: Springer-Verlag, 1984. doi: 10.1007/978-3-642-85949-6
  4. J. Singer, “On the Equivalence of the Galerkin and Rayleigh-Ritz Methods”, The Journal of the Royal Aeronautical Society, vol. 66, no. 621, pp. 592, 1962. doi: 10.1017/S0368393100077403
  5. P. Moreno-García, J.V.A. dos Santos, H. Lopes, “A Review and Study on Ritz Method Admissible Functions with Emphasis on Buckling and Free Vibration of Isotropic and Anisotropic Beams and Plates”, Arch. Computat. Methods Eng., vol. 25, no. 3, pp. 785–815, 2018. doi: 10.1007/s11831-017-9214-7
  6. D. Young, “Vibration of rectangular plates by the Ritz method”, J. Appl. Mech., vol. 17, no. 4, pp. 448–453, 1950.
  7. doi: 10.1115/1.4010175
  8. J.R. Gartner, N. Olgac, “Improved numerical computation of uniform beam characteristic values and characteristic functions”, J. Sound. Vib., vol. 84, no. 4, pp. 481–489, 1982. doi: 10.1016/S0022-460X(82)80029-1
  9. R.B. Bhat, “Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method”, J. Sound. Vib., vol. 102, no. 4, pp. 493–499, 1985. doi: 10.1016/S0022-460X(85)80109-7
  10. C.S. Kim, P.G. Young, S.M. Dickinson, “On the flexural vibration of rectangular plates approached by using simple polynomi-als in the Rayleigh-Ritz method”, J. Sound. Vib., vol. 143, no. 3, pp. 379–394, 1990. doi: 10.1016/0022-460X(90)90730-N
  11. G.B. Chai, “Free vibration of rectangular isotropic plates with and without a concentrated mass”, Comput. Struct., vol. 48,
  12. no. 3, pp. 529–533, 1993. doi: 10.1016/0045-7949(93)90331-7
  13. D. Zhou, “Natural frequencies of rectangular plates using a set of static beam functions in Rayleigh-Ritz method”, J. Sound. Vib., vol. 189, no. 1, pp. 81–87, 1996. doi: 10.1006/jsvi.1996.0006
  14. A.W. Leissa, “The free vibration of rectangular plates”, J. Sound. Vib., vol. 31, no. 3, pp. 257–293, 1973. doi: 10.1016/S0022-460X(73)80371-2
  15. C. Wang, J.C.S. Lai, “Prediction of natural frequencies of finite length circular cylindrical shells”, Appl. Acoust., vol. 59, no. 4, pp. 385-400, 2000. doi: 10.1016/S0003-682X(99)00039-0
  16. R. P. Felgar, Formulas for integrals containing characteristic functions of a vibrating beam, Austin: University of Texas, 1950.
  17. I. Orynyak, Y. Bai, “Application of exponential functions in weighted residuals method in structural mechanics. Part II: static and vibration analysis of rectangular plate”, Mechanics and Advanced Technologies, no. 5(1), pp. 7–21, 2021.
  18. doi: 10.20535/2521-1943.2021.5.1.234580
  19. I. Orynyak, Y. Bai, A. Hryhorenko, “Application of exponential functions in weighted residuals method in structural mechanics. Part III: infinite cylindrical shell under concentrated forces”, Mechanics and Advanced Technologies, no. 5(2), pp. 165–176, 2021. doi: 10.20535/2521-1943.2021.5.2.218595
  20. I. Orynyak, Y. Bai, “Coupled approximate long and short solutions versus exact Navier and Galerkin ones for cylindrical shell under radial load”, Thin-Walled Structures, no. 170, 108536, 2022. doi: 10.1016/j.tws.2021.108536
  21. W. Voigt, “Bemerkung zu dem Problem der transversalen Schwingungen rechteckiger Platten”, Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen, pp. 225–230, 1893. Avalaible: http://eudml.org/doc/180398
  22. S.P. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, New York: McGraw-Hill, 1959.
  23. C.W. Bert, M. Malik, “Frequency equations and modes of free vibrations of rectangular plates with various edge conditions”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 208(5), pp. 307–319, 1994. doi: 10.1243/PIME_PROC_1994_208_133_02
  24. D.J. Gorman, S.D. Yu, “A review of the superposition method for computing free vibration eigenvalues of elastic structures”, Comput. Struct., vol. 104–105, pp. 27–37, 2012. doi: 10.1016/j.compstruc.2012.02.01
  25. X. Liu, J.R. Banerjee, “Free vibration analysis for plates with arbitrary boundary conditions using a novel spectral-dynamic stiff-ness method”, Comput. Struct., vol. 164, pp. 108–126, 2016. doi: 10.1016/j.compstruc.2015.11.005
  26. S. Yu, X. Yin, “A generalized superposition method for accurate free vibration analysis of rectangular plates and assemblies”, The Journal of the Acoustical Society of America, vol. 145, pp. 185–203, 2019. doi: 10.1121/1.5085778
  27. T. Kim, U. Lee, “Exact frequency-domain spectral element model for the transverse vibration of a rectangular Kirchhoff plate”, J. Sound Vib., vol. 492, 115812, 2021. doi: 10.1016/j.jsv.2020.115812
  28. M. El-Gamel, A. Mohsen, A. Abdrabou, “Sinc-Galerkin solution to the clamped plate eigenvalue problem”, SeMA Journal,
  29. vol. 74, pp. 165–180, 2017. doi: 10.1007/s40324-016-0086-9
  30. T. Sakata, K. Hosokawa, “Vibrations of clamped orthotropic rectangular plates”, J. Sound Vib., vol. 125, no. 3, pp. 429–439, 1988. doi: 10.1016/0022-460X(88)90252-0

Downloads

Published

2022-12-14

How to Cite

[1]
I. Orynyak, J. Bai, and I. Kostiushko, “Applications of randomly selected sets of exact Voight’s solutions for vibration of thin plates”, Mech. Adv. Technol., vol. 6, no. 3, pp. 237–245, Dec. 2022.

Issue

Section

Mechanics