Alternative technologies of composite highly loaded of aircraft structures: a qualitative method of making multi-criteria decisions. Part II. Modeling in multi-criteria evaluation of alternatives

Authors

  • Volodymyr Zabashta JSC "Ukrainian Scientific and Research Institute of Aviation Technology" (UkrNDIAT), Kyiv, Ukraine

DOI:

https://doi.org/10.20535/2521-1943.2022.6.2.265371

Keywords:

Alternative technological processes (ATP), VSP, composites (PCM), prepreg, infusion, POPR, hierarchical structure, ADS, interpretation, parabola, attractor, torus

Abstract

The second part of the article is based on the starting points in the decision-making problem (DPR) indicated at the first stage of research [1, point 2.]. Here, the comparison of alternative autoclaved and non-autoclaved technologies for the production of carbon-plastic aircraft structures (AK) of the highly loaded type is continued wing caisson stringer panels (VSP) of B787, A350, MC-21, CSeries mainline aircraft. The main provisions of decision-making theory and a system-process approach with the involvement of practice results are taken as the methodological basis. From the beginning, the following are presented: a scheme for assessing the relative quality of technological process objects; a block-type conceptual model of the subject area of ​​decision-making and its basis; composition of selection criteria and indicators. Based on the above and with the involvement of autonomous dynamic systems (ADS) with discrete time, as well as the theory of the parabola (quadratic function), a formalized model of systemically grouped processes in the evaluation of alternatives is given. On this basis, the study of the essential differences of alternatives with the interpretation of topology ideas (homology groups) was continued to support the adoption of a reasoned final decision in the future, as the goal of modeling this separate side of the functioning of the technical system.

References

  1. D. Kіva and V. Zabashta, “Alternative technologies of composite high-loaded aircraft constructions: a qualitative method of making multicriterial decisions. Part I. Initial stages in the problem of decision-making”, Mechanics and Advanced Technologies, vol. 5, no. 2, pp. 203–211, 2021. DOI: https://doi.org/10.20535/2521-1943.2021.5.2.245000.
  2. Ye. A. Veshkin, V. I. Postnov, M. V. Postnova and A. A. Barannikov, "Opyt primeneniya vakuum-infuzionnykh tekhnologiy v proizvodstve konstruktsiy iz PKM", Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, vol. 20, no. 4(3), pp. 344-350, 2018.
  3. O. N. Komissar, "Kompetentsii gosudarstvennykh nauchnykh tsentrov Rossii v sozdanii kompozitnykh kryl'yev samoletov", in Tezisy dokladov VI Vserossiyskoy nauchno-tekhnicheskoy konferentsii, 2018, pp. 51–59.
  4. P. A. Gudkov, Metody sravnitel'nogo analiza. Penza: PGU, 2008, 81 p.
  5. O. I. Kushlyk-Dyvulska and B. R. Kushlyk, Osnovy teoriyi pryynyattya rishenʹ. Kyiv: NTUU “KPІ”, 2014, 94 p. Available: https://ela.kpi.ua/handle/123456789/6917.
  6. V. V. Podinovskiy, Vvedeniye v teoriyu vazhnosti kriteriyev v mnogokriterial'nykh zadachakh prinyatiya resheniy. Moscow: Fizmatlit, 2007, 64 p.
  7. Kontseptual'naya model'. Available: https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D1%86%D0%B5%D0%BF%D1%82%D1%83%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BC%D0%BE%D0%B4%D0%B5%D0%BB%D1%8C.
  8. P. M. Pavlenko, Osnovy matematychnoho modelyuvannya system i protsesiv. Kyiv: Knyzhkove vydavnytstvo NAU, 2013, 201 p.
  9. V. L. Chechulin, Metod prostranstva sostoyaniy upravleniya kachestvom slozhnykh khimiko-tekhnologicheskikh protsessov. Perm': PGNIU, 2011, 114 p.
  10. Ugleplastik vs alyuminiy: blagodarya novym materialam MS-21 priobretayet unikal'nyye kharaketristiki. Available: https://uacrussia.livejournal.com/67193.html.
  11. V. V. Pilipenko, Ye. S. Pereverzev and V. M. Fedorov, "Koeffitsiyenty bezopasnosti i prochnost' konstruktsiy", Tekhnicheskaya mekhanika, no. 1, pp. 89-98, 2009.
  12. S. A. Smotrova, S. M. Naumov and A. V. Smotrov, Tekhnologii izgotovleniya silovykh agregatov aviatsionnykh konstruktsiy iz polimernykh kompozitsionnykh materialov. Moscow: Tekhnosfera, 2015, 216 p.
  13. S. A. Smotrova and I. D. Simonov-Yemel'yanov, "Effektivnyye tekhnologii formovaniya vysokonagruzhennykh aviatsionnykh konstruktsiy iz polimernykh kompozitsionnykh materialov", Konstruktsii iz kompozitsionnykh materialov, no. 3, pp. 15-24, 2016.
  14. G. N. Zamula and K. A. Kolesnik, "Vesovaya i toplivnaya effektivnost' primeneniya kompozitsionnykh materialov v aviakonstruktsiyakh", Polet, no. 2, pp. 12-19, 2018.
  15. S. F. Ilyushenkov and P. N. Sereduga, “Vozmozhnosti snizheniya massy elementov inter'yera v sovremennykh passazhirskikh samoletakh”, Polimernyye materialy: izdeliya, oborudovaniye, tekhnologii, pp. 32–38, 2019.
  16. G. N. Zamula and K. A. Kolesnik, "Sposoby povysheniya vesovoy effektivnosti primeneniya kompozitsionnykh konstruktsiy", Polet, no. 10, pp. 14-24, 2018.
  17. Prepregi iz kompozitsionnykh materialov. Ugleprepregi vysokonagruzhennykh elementov konstruktsiy povyshennoy temperatury ekspluatatsii. Katalog VIAM.
  18. P. N. Timoshkov, M. N. Usacheva and A. V. Khrul'kov, "Stickiness and possibility of using prepregs for automated technologies (rewiew)", Proceedings of VIAM, no. 8, pp. 38-46, 2018. DOI: https://doi.org/10.18577/2307-6046-2018-0-8-38-46.
  19. Yu. A. Gusev, O. N. Tverdov and A. A. Gromyko, "Ugleplastik na osnove svyazuyushchego s nizkoy temperaturoy otverzhdeniya i uglerodnoy ravnoprochnoy tkani", Trudy VIAM, no. 6, pp. 52–60, 2017.
  20. L. V. Chursina et al., “Termoreaktivnoye svyazuyushcheye i polimernyye bindery dlya polimernykh kompozitsionnykh materialov, poluchayemykh metodom vakuumnoy infuzii”, Plasticheskiye massy, no. 1-2, pp. 57–64, 2018.
  21. A. N. Kudryavtseva, A. I. Tkachuk, K. N. Grigor'yeva and Ya. M. Gurevich, "Ispol'zovaniye svyazuyushchego marki VSE-30, pererabatyvayemogo po infuzionnoy tekhnologii, dlya izgotovleniya nizko- i srednenagruzhennykh detaley konstruktsionnogo naznacheniya", Trudy VIAM, no. 1 (73), pp. 31-39, 2019.
  22. Vliyaniye poristosti v polimernykh kompozitsionnykh materialakh na osnove epoksidnoy matritsy i nepreryvnykh uglerodnykh volokon na yego fiziko-mekhanicheskiye svoystva: dissertatsiya, 2017. Available: https://www.bibliofond.ru/view.aspx?id=903329.
  23. M. I. Dushin, K. I. Donetski and R. Y. Karavaev, "Identification of the reasons of porosity formation when manufacturing composites", Proceedings of VIAM, no. 6, pp. 68-78, 2016. DOI: https://doi.org/10.18577/2307-6046-2016-0-6-8-8.
  24. N. O. Yakovlev, A. I. Gulyayev and O. A. Lashov, "Treshchinostoykost' sloyevykh polimernykh kompozitsionnykh materialov (obzor)", Trudy VIAM, no. 4 (40), pp. 106-114, 2016.
  25. B. I. Yarmolenko and Yu. P. Trunin, “Treshchino- i udarostoikost' ugleplastikov na sredneprochnykh zarubezhnykh napolnitelyakh”, in Materialy nauchno-tekhnicheskoy konferentsii "Prochnost' aviatsionnykh konstruktsiy", 2011, pp. 263–272.
  26. V. G. Boltyanskiy and V. A. Yefrimovich, “Ocherk osnovnykh idey topologii (okonchaniye)”, Matematicheskoye prosveshcheniye, no. 6, pp. 107–138, 1961.
  27. Dzhon L. Kelli, Obshchaya topologiya. Moscow: Nauka, 1981, 432 p.
  28. O. O. Pryshlyak, Topolohiya mnohovydiv. Kyiv: KNU, 2013, 83 p. Available: https://www.mechmat.univ.kiev.ua/wp-content/uploads/2018/03/topolog_pryshljak.pdf.
  29. L. A. Skornyakov, "Proyektivnyye ploskosti", Uspekhi matematicheskikh nauk, vol. 6, no. 6(46), pp. 112-154, 1951.
  30. A. T. Fomenko, Naglyadnaya geometriya i topologiya. Matematicheskiye obrazy v real'nom mire. Moscow: MGU, 1998, 416 p.
  31. Ye. A. Grebennikov, Metod usredneniya v prikladnykh zadachakh. Moscow: Nauka, 1986, 256 p.
  32. T. S. Pigolkina, Avtonomnyye sistemy. Fazovyye trayektorii. Elementy teorii ustoychivosti. Moscow: MFTI, 2013, 40 p.
  33. Metody modelyuvannya ta analohiyi. Available: http://www.zhu.edu.ua/mk_school/pluginfile.php/16981/mod_resource/content/1/%D0%BC%D0%B5%D1%82%D0%BE%D0%B4%D0%B8%20%D0%BC%D0%BE%D0%B4%D0%B5%D0%BB%D1%8E%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F.pdf.
  34. T. L. Saati, "Magicheskoye chislo “sem” v prirode", Cloud of Science, vol. 4, no. 1, pp. 5-33, 2017.
  35. A. R. Kamaleyeva, S. Yu. Gruzkova and O. B. Russkova, Kinematika v grafikakh. Kazan': Otechestvo, 2017, 52 p.
  36. G. Yu. Panina, Toricheskiye mnogoobraziya. Vvedeniye v algebraicheskuyu geometriyu, 2009.

Published

2022-10-01

How to Cite

[1]
V. Zabashta, “Alternative technologies of composite highly loaded of aircraft structures: a qualitative method of making multi-criteria decisions. Part II. Modeling in multi-criteria evaluation of alternatives”, Mech. Adv. Technol., vol. 6, no. 2, pp. 203–220, Oct. 2022.

Issue

Section

Aviation Systems and Technologies