Alternative technologies of composite highly loaded of aircraft structures: a qualitative method of making multi-criteria decisions. Part II. Modeling in multi-criteria evaluation of alternatives

Authors

  • Volodymyr Zabashta JSC "Ukrainian Scientific and Research Institute of Aviation Technology" (UkrNDIAT), Kyiv, Ukraine

DOI:

https://doi.org/10.20535/2521-1943.2022.6.2.265371

Keywords:

Alternative technological processes (ATP), VSP, composites (PCM), prepreg, infusion, POPR, hierarchical structure, ADS, interpretation, parabola, attractor, torus

Abstract

The second part of the article is based on the starting points in the decision-making problem (DPR) indicated at the first stage of research [1, point 2.]. Here, the comparison of alternative autoclaved and non-autoclaved technologies for the production of carbon-plastic aircraft structures (AK) of the highly loaded type is continued wing caisson stringer panels (VSP) of B787, A350, MC-21, CSeries mainline aircraft. The main provisions of decision-making theory and a system-process approach with the involvement of practice results are taken as the methodological basis. From the beginning, the following are presented: a scheme for assessing the relative quality of technological process objects; a block-type conceptual model of the subject area of ​​decision-making and its basis; composition of selection criteria and indicators. Based on the above and with the involvement of autonomous dynamic systems (ADS) with discrete time, as well as the theory of the parabola (quadratic function), a formalized model of systemically grouped processes in the evaluation of alternatives is given. On this basis, the study of the essential differences of alternatives with the interpretation of topology ideas (homology groups) was continued to support the adoption of a reasoned final decision in the future, as the goal of modeling this separate side of the functioning of the technical system.

References

  1. D.S. Kіva and V.F. Zabashta, “Alternative technologies of composite high-loaded aircraft constructions: a qualitative method of making multicriterial decisions. Part I. Initial stages in the problem of decision-making”, Mechanics and Ad-vanced Technologies, Vol. 5, No. 2, pp.201–211, 2021. DOI: doi.org/10.20535/2521-1943.2021.5.2.245000
  2. E.A.Veshkin et al., Opyt primeneniya vakuum – infuzionnykh tekhnologii v proizvodstve konstruktsii iz PKM, FGUP “VIAM”, 2018, pp.16–28.
  3. O.N. Komissar, Kompetentsii gosudarstvennykh nauchnykh tsentrov v Rossii v sozdanii kompozitnikh kryl'ev samoletov, FGUP “VIAM”, 2018, pp.51–59.
  4. P.A. Gudkov, Metody stravnitel'nogo analiza, Penza:PGU, 2008.
  5. O.І. Kushlik – Divul's'ka and B.R. Kushlik, Osnovi teorії priinyattya rіshen', Kyiv: NTUU “KPІ”, 2014. https://ela.kpi.ua/handle/123456789/6917
  6. V.V. Podinovskii, Vvedenie v teoriyu vazhnosti kriteriev v mnogokriterial'nykh zadachakh prinyatiya reshenii, Moscow: Fizmatgiz, 2007.
  7. Kontseptual'naya model' [Online]. Available: https// ru.wikipedia.org/wiki
  8. P.M. Pavlenko, Osnovi matematichnogo modelyuvannya sistem і protsesіv, Kyiv: Knizhkove vidavnitstvo NAU, 2013.
  9. V.L. Chechulin, Metod prostranstva sostoyanii upravleniya kachestvom slozhnykh khimiko – tekhnologicheskikh protsessov, Perm: Perm. Gos. nats. issled. un-t, 2011.
  10. Ugleplastiki vs alyuminiya [Online]. Available: https://uacrussia.livejournal.com/67193.html
  11. V.V. Pilipenko, E.S. Pereverzin and V.M. Fedorov, “Koeffitsienty bezopasnosti i prochnost' konstruktsii”, Tekhnich-eskaya mekhanika, No. 1, pp. 89–98, 2019.
  12. S.A. Smotrova, S.M. Naumov and A.V.Smotrov, Tekhnologiya izgotovleniya silovykh agregatov aviatsionnykh kon-struktsii iz polimernykh kompozitsionnykh materialov, Moscow: Tekhnosfera, 2015.
  13. S.A. Smotrova and I.D. Simonov-Emel'yanov, “Effektivnye tekhnologii formovaniya vysokonagruzhennykh avi-atsionnykh konstruktsii iz polimernykh kompozitsionnykh materialov”, Konstruktsii iz kompozitsionnykh materialov, No. 3, pp. 15–24, 2016.
  14. G.N. Zamula and K.A. Kolesnik, “Vesovaya i toplivnaya efektivnost' primeneniya kompozitsionnykh materialov v avia-konstruktsiyakh”, Polet, No. 2, pp. 13–19, 2018.
  15. S.F. Ilyushenkov and P.N. Sereduga, “Vozmozhnosti snizheniya massy elementov inter'era v sovremennykh passazhir-skikh samoletov”, Polimer.mater.: izdeliya, oborudovaniya, tekhnologiya, pp. 32–38, 2019.
  16. G.N. Zamula and K.A. Kolesnik, “Vesovaya i toplivnaya efektivnost' primeneniya kompozitsionnykh materialov v avia-konstruktsiyakh”, Polet, No. 2, pp. 13–19, 2018.
  17. G.N. Zamula and K.A. Kolesnik, “Sposoby povysheniya vesovoi efektivnosti primeneniya kompozitnikh materialov”, Polet, No. 10, pp. 12–24, 2018.
  18. Prepregi iz kompozitsionnykh materialov. Ugleprepregi vysokonagruzhennykh elementov konstruktsii povyshennoi tem-peratury ekspluatatsii, Katalog VIAM. Internet – izdaniya.
  19. P.N. Timoshkov, M.N. Usachova and A.V. Khrul'kov, “Lipkost' i vozmozhnost' ispol'zovaniya prepregov dlya avtoma-tizirovannykh tekhnologii”, Trudy VIAM, No. 8 (68), pp. 38–46, 2018.
  20. Yu.A. Gusev, O.N. Tverdov and A.A.Gromyko, Ugleplastik na osnove svyazuyushchego s nizkoi temperaturoi otver-zhdeniya i uglerodnoi ravnoprochnoi tkani, Trudy VIAM, No. 6, pp. 52–60, 2017.
  21. L.V. Chursina et al., “Termoreaktivnoe svyazuyushchee i polimernye bindery dlya polimernykh kompozitsionnykh ma-terialov, poluchaemykh metodom vakuumnoi infuzii”, Plasticheskie massy, No. 1-2, pp.57–64, 2018.
  22. R.I. Kudryavtsev et al., “Ispol'zovanie svyazuyushchego marki Vs3-30, pererabatyvaemogo po infuzionnoi tekhnologii, dlya izgotovleniya nizko- i srednenagruzhennykh detalei konstruktivnogo naznacheniya”, Trudy VIAM, No. 1, pp. 31–39, 2019.
  23. DOI: doi.org/10.21608/absb.2019.86754
  24. Vliyanie poristosti v polimernykh kompozitsionnykh materialakh na osnove epoksidnoi matritsy i nepreryvnykh uglerod-nykh volokon na ego fiziko – mekhanicheskie svoistva. Dissertatsiya. Bibliofond inf. mat. 2017. Available: www.bibliofond.ru /vicw aspx/id = 903329
  25. M.I. Dushin, K.I. Donetskii and R.Yu.Karavaev, “Ustanovlenie prichin obrazovaniya poristosti pri izgotovlenii PKM”, Trudy VIAM, No. No. 6, pp. 68–78, 2016.
  26. M.O. Yakovlev, A.I. Gulyaev and O.A.Lashov, “Treshchinostoikost' sloistykh polimernykh kompozitsionnykh materi-alov”, Trudy VIAM, No. 4, pp. 106–114, 2016.
  27. B.I. Yarmolenko and Yu.P. Trunin, “Treshchino – i udarostoikost' ugleplastikov na sredneprochnykh zarubezhnykh na-polnitelyakh”, Prochnost' aviatsionnykh konstruktsii, TsAGI, pp. 263–272, 2011.
  28. V.G. Boltyanskii and V.A.Efrimovich, “Ocherk osnovnikh idei topologii (okonchanie)”, Matem. prosv., Vol. 6, pp. 107–138, 1961.
  29. Kelli Dzh.A. Obshchaya topologiya, Moscow: Nauka Fizmatlit, 1981.
  30. O.O. Prishlyak, Topologіya mnogovidіv, Kyiv: KGU, 2019.
  31. L.A. Skornyakov, Proektivnye ploskosti, UMN, Vol. 6, No. 6(46), pp. 112–154, 1951. DOI: doi.org/10.1001/archopht.1951.01700020117018
  32. A.T. Fomenko, Naglyadnaya geometriya i topologiya: matematicheskie obrazy v real'nom mire, Moscow: MGU, 1998.
  33. E.A. Grebennikov, Metod usredneniya v prakticheskikh zadachakh, Moscow: Nauka, 1986.
  34. T.S. Pigolkina, Avtonomnye sistemy. Fazovye traektorii. Elementy teorii ustoichivosti, Moscow: MFATI, 2013.
  35. Metodi modeliuvannia ta analogіi. [Online]. Available: http://www.zhu.edu.ua
  36. T.L. Saati, Magicheskoe chislo “sem” v prirode, Cloud 0f science, Vol. 4, No. 1, 2017.
  37. A.R. Kamaleeva, S.Iu. Gromova and O.B. Rusakova, Kinematika v grafikakh, Kazan: Otechestvo, 2017.
  38. G.Iu. Panina, Toricheskie mnogoobraziia. Vvedenie v algebraicheskuiu geometriiu, 2009.

Published

2022-10-01

How to Cite

[1]
V. Zabashta, “Alternative technologies of composite highly loaded of aircraft structures: a qualitative method of making multi-criteria decisions. Part II. Modeling in multi-criteria evaluation of alternatives”, Mech. Adv. Technol., vol. 6, no. 2, pp. 203–220, Oct. 2022.

Issue

Section

Aviation Systems and Technologies