Research and determination of the acoustic parameters of the movement of a cavitation bubble in a liquid medium according to discrete and continuous models
DOI:
https://doi.org/10.20535/2521-1943.2022.6.2.269921Keywords:
cavitation bubble, liquid medium, discrete and continuous model, bubble radius, acoustic parameters, amplitude and frequency of oscillations, intensity, natural frequency of oscillationsAbstract
In the work, the study and determination of the acoustic parameters of the movement of a cavitation bubble in a liquid medium according to discrete and continuous models was carried out. The research is based on the hypothesis that the determination of the effective parameters of the work process of acoustic processing is implemented by applying a transitional physical model from a discrete to a continuous type of processing of the technological environment. The obtained analytical dependences allow to calculate the amplitude of oscillations and the frequency of natural oscillations. With the help of the specified formulas, it is possible to determine the zones of amplification or attenuation of the amplitude of oscillations for different frequencies of oscillations. The proposed formula for determining the frequency of natural oscillations, which takes into account changes in the properties of the medium from homogeneous at the initial stage to the appearance of cavitation bubbles at the specified frequency of natural oscillations. Numerical values of intensity, pressure, amplitude of oscillations, velocity, acceleration, viscosity and maximum bubble radius are given. The obtained numerical values can be used in practical calculations of acoustic processing parameters of different nature and properties of technological environments.
References
- A.F. Lugovskoy and N.V. Chukhrayev, Ultrazvukovaya kavitatsiya v sovremennykh tekhnologiyakh, Kyiv: Kyivskiy unіversitet, 2007, 245 р.
- A.A. Dolinskij and G.K. Ivanickij, Teplomassoobmen i gidrodinamika v parozhidkostnyh dispersnyh sredah. Teplofizicheskie osnovy diskretno-impulsnogo vvoda jenergii, Kyiv: Naukova dumka, 2008, 381 р.
- N. Bretz, et al., “Numerical simulation of ultrasonic waves in cavitating fluids with special consideration of ultrasonic cleaning”, IEEE Ultrasonics Symposium, рр. 703–706, 2005.
- E.A. Brujan and P.R. Williams, “Bubble dynamics and cavitation in non-newtonian liquids”, Reology reviews. The British Socie-ty of Rheology, рр. 147–172, 2005.
- A. Juan, “Gallego-Juarez High-power ultrasonic processing: recent developments and prospective advances”, Physics Procedia, No. 3, рр. 35–47, 2010. DOI: doi.org/10.1016/j.phpro.2010.01.006
- T. A. Du, Ch. Huang and Y. Wang, “Numerical Model for Evolution of Internal Structure of Cloud Cavitation”, ISROMAC-2016 (International Symposium on Transport Phenomena and Dynamics of Rotating Machinery), April, рр. 10–15, 2016.
- R. Toegel, S. Stefan Luther and D. Lohse, “Viscosity Destabilizes Sonoluminescing Bubbles”, Phys. Rev. Lett, Vol. 96, рр. 114–301, 2006. DOI: doi.org/10.1103/PhysRevLett.96.114301
- A. Moshaii and R.Sadighi-Bonabi, “Role of liquid compressional viscosity in the dynamics of a sonoluminescing bubble”, Phys. Rev. E, Vol.70, рр. 160–304, 2004. DOI: doi.org/10.1103/PhysRevE.70.016304
- D.J. Flannigan and K.S. Suslick, “Molecular and atomic emission during single bubble cavitation in concentrated sulfuric acid Acoustics”, Research Letters Online, Vol. 6, No. 3, рр. 157–161, 2005. DOI: doi.org/10.1121/1.1897810
- I.M. Fedotkin and I.S. Gulyy, Kavitatsiya. kavitatsionnaya tekhnika i tekhnologiya. ikh ispolzovaniye v promyshlennosti, Kyiv: AO "GLAZ", 2000, 684 p.
- R.F. Kunz et al., “A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction”, Com-puters and Fluids, No. 29(8), рр. 849–875, 2000. DOI: doi.org/10.1016/S0045-7930(99)00039-0
- A.K. Singhal et al., “Mathematical Basis and Validation of the Full Cavitation Model”, Journal of Fluids Engineering, No. 124 (3), рр. 617–624, 2002. DOI: https://doi.org/10.1115/1.1486223
- V.H. Arakeri, “Sonoluminescence and bubble fusion”, Current science, Vol. 85, No. 7, рр. 911–916, 2003.
- C.E. Brennen, Cavitation and bubble dynamics, New York: Oxford University Press, 1995, 294 p.
- I. Bernyk, I. Nazarenko, O. Luhovskyi, “Effect of rheological properties of materials on their treatment with ultrasonic cavita-tion”, Materials and technology, No. 4 (52), рр. 465–468, 2018. DOI: doi.org/10.17222/mit.2017.021
- I.M. Bernyk, O.F. Luhovskyi, “Enerhetyka kavitatsiinoi oblasti”, in Proc. XX Mizhnarodnoi naukovo-tekhnichnoi konferentsii “Hidroaeromekhanika v inzhenernii praktytsi”. Kyiv NTUU “KPI”, 25–29 May, 2015.
- I.M. Bernyk “Vstanovlennia ratsionalnoho rivnia enerhii ta optymalnykh parametriv ultrazvukovoi kavitatsiinoi obrobky tekhnolohichnykh seredovyshch”, in Proc. XVII Mizhnarodnoi naukovo-tekhnichnoi konferentsii “Vibratsii v tekhnitsi ta tekhnolohiiakh” NU “Lvivska politekhnika”, pp. 47–48, 2018.
- I.I. Nazarenko, Prykladni zadachi teorii vibratsiinykh system, Kyiv: Vydavnychyi Dim “Slovo”, 2010, 440 p.
- R.W. Time and A.Н. Rabenjafimanantsoa, “Cavitation Bubble Regimes in Polymers and Viscous Fluids”, Annual transactions of the Nordic rheology society, Vol. 19, pp. 9–12, 2011.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ірина Берник, Іван Назаренко, Олександр Луговський
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work