Monitoring of the plastic state by changing of a deformation sign

Authors

DOI:

https://doi.org/10.20535/2521-1943.2023.7.2.274471

Keywords:

plastic state, proportional load, non-monotonicity of deformation, material fibers

Abstract

When a body element is proportionally loaded, its differently oriented material fibers can stretch, compress or not change their length. The direction of material fibers that do not change their length is neutral. Neutral direction divides compressed and stretched directions of the fibers. Within the limits of elasticity, the neutral direction does not change its orientation, and beyond the limit of elasticity, it rotates relative to the material fibers. Some material fibers, the slope of which is close to neutral, can change their deformation sign, and this change indicates that the element of the body has reached the plastic state.The proposed technique of the plastic state monitoring is demonstrated on a uniaxial stress state. The non-monotonicity of the close to the neutral direction material fiber deformation that oriented is confirmed by calculations and in an experiment on the tension of cylindrical specimen.The proposed technique allows fix plastic state of the material at proportional loading without value deformations or stresses measuring but by changing the sign of the deformation of the material fibers, the slope of which is close to the neutral direction.

 

References

  1. A. A. Lebedev, B. I. Kovalchuk, F. F. Giginyak and V. P. Lamashevskiy, Mekhanicheskiye svoystva konstruktsionnykh materialov pri slozhnom napryazhennom sostoyanii: Spravochnik. Kyiv: Naukova dumka, 1983, 367 p.
  2. G. S. Pisarenko, A. P. Yakovlev and V. V. Matveyev, Spravochnik po soprotivleniyu materialov. Kyiv: Naukova dumka, 1988, 736 p.
  3. N. N. Tormakhov, “Yield limit dependence of titanic alloy VТ14 from the stress state parameters”, Mechanics and Advanced Technologies, vol. 84, no. 3(84), pp. 91–97, 2018. DOI: https://doi.org/10.20535/2521-1943.2018.84.127194.
  4. N. N. Tormakhov, “Heometrychna interpretatsiya parametriv rezhymu napruzhenoho stanu”, Zbirnyk naukovykh prats Dniprodzerzhynskoho derzhavnoho tekhnichnoho universytetu, no. 1 (26), pp. 54-61, 2015.
  5. O. V. Tymoshenko, V. V. Koval and R. V. Kravchuk, “Vplyv vydu napruzhenoho stanu na krytychni znachennya poshkodzhennya konstruktsiynykh materialiv pry pruzhno-plastychniy deformatsiyi", Visnyk NTUU "KPI", seriya Mashynobuduvannya, no. 63, pp. 103–106, 2011.
  6. G. Rousselier, “Lode-dependent second porosity in porous plasticity for shear-dominated loadings”, Int. J. of Plasticity, vol. 159, p. 103446, Dec. 2022. DOI: https://doi.org/10.1016/j.ijplas.2022.103446.
  7. M. Ganjiani and M. Homayounfard, “Development of a ductile failure model sensitive to stress triaxiality and Lode angle”, Int. J. of Solids and Structures, vol. 225, p. 111066, 2021. DOI: https://doi.org/10.1016/j.ijsolstr.2021.111066.
  8. C. B. Finfrock, M. M. Thrun and D. Bhattacharya, T. J. Ballard, A. J. Clarke and K. D. Clarke, “Strain rate dependent ductility and strain hardening in Q&P steels”, Metall Mater Trans A., vol. 52, no. 3, pp. 928–942, 2021. DOI: https://doi.org/10.1007/s11661-020-06127-y.
  9. V. V. Skripnyak, “Mechanical behavior of CP-Ti at high strain rates and under stress triaxiality”, Eng. Fracture Mechanics, vol. 274, p. 108810, Oct. 2022. DOI: https://doi.org/10.1016/j.engfracmech.2022.108810.
  10. J. Sun, T. Nitschke-Pagel and K. Dilger, “Influence of temperature- and phase-dependent yield strength on residual stresses in ultra-high strength steel S960 weldments”, Journal of Materials Research and Technology, vol. 15, pp. 1854–1872, 2021. DOI: https://doi.org/10.1016/j.jmrt.2021.09.050.
  11. L. Sharma and R. Chhibber, “Effect of heat treatment on mechanical properties and corrosion behaviour of API X70 linepipe steel in different environments”, Trans Indian Inst Met. vol. 72, no. 1, pp. 93–110, 2019. DOI: https://doi.org/10.1007/s12666-018-1465-y.
  12. Yu. N. Shevchenko, M. Ye. Babeshko and R. G. Terekhov, Termovyazkouprugoplasticheskiye protsessy slozhnogo deformirovaniya elementov konstruktsiy. Kyiv: Naukova dumka, 1992.
  13. V. Ya. Bash, Issledovaniye napryazheniy i deformatsiy termoelektricheskim metodom. Kyiv: Naukova dumka, 1984, 100 p.
  14. A. M. Zhukov, "O koeffitsiyente Puassona v plasticheskoy oblasti", Izvestiya AN SSSR, no. 12, pp. 86–91, 1954.
  15. L. Yu. Sedov, “O ponyatiyakh prostogo nagruzheniya i vozmozhnykh putyakh deformirovaniya”, Prikladnaya mekhanika, vol. 23, no. 2, pp. 400–402, 1959.
  16. M. Dyman, A. Moltasov and S. Kalyuzhny, “Calculation and experimental procedure for determining the modulus of elasticity of porous coatings on a substrate during bending. Part 1. Theoretical foundations”, Mech. Adv. Technol., vol. 6, no. 2, pp. 139–142, 2022. DOI: https://doi.org/10.20535/2521-1943.2022.6.2.261923.
  17. Yu. N. Shevchenko and N. N. Tormakhov, “Constitutive equation of thermoplastycity including the therd invariant”, Int. Appl. Mech., vol. 46, no. 6, pp. 613–624, 2010. DOI: https://doi.org/10.1007/s10778-010-0349-6.
  18. N. Fidrovska, E. Slepuzhnikov and I. Varchenko, “Preparation of tensoresistors and measuring equipment for experimental research”, Norwegian Journal of development of the International Science, no. 45, pp. 69–72, 2020. Available: http://repositsc.nuczu.edu.ua/handle/123456789/11233.
  19. A. M. Turichin, Elektricheskiye izmereniya neelektricheskikh velichin. Moskva: Energiya, 1966, 690 p.

Published

2023-09-19

How to Cite

[1]
M. Tormakhov, “Monitoring of the plastic state by changing of a deformation sign”, Mech. Adv. Technol., vol. 7, no. 2 (98), pp. 200–204, Sep. 2023.

Issue

Section

Mechanics