Simulation of the effect of multi-particle temperature on Al6061 coating porosity based on Coupled Eulerian-Lagrangian (CEL) method

Authors

DOI:

https://doi.org/10.20535/2521-1943.2024.8.3(102).304079

Keywords:

Cold spraying, CEL, deposition, temperature, multi-particle, porosity, substrate

Abstract

Cold spray is a solid-state deposition technology widely used in additive manufacturing. The particles temperature is mostly used to adjust the porosity of the coating. This article uses Pyhon script to model the multi-particle model; then the multi-particle model is nested in the CEL deposition model to simulate the actual cold spray multi-particle deposition process; The CEL method has the characteristics of high accuracy and robustness and was selected as the simulation method for the multi-particle deposition model. The porosity of the coating is expressed by studying the value of the EVF void area in the Euler domain. Multiple groups of samples were taken on the coating surface to calculate the porosity of each group, and the average value was finally taken as the porosity of the entire coating. Numerical results show that increasing the particle temperature can effectively reduce the porosity of the coating. The average porosity of the coating under the particles temperature conditions are 600 K: 5.08 %; 650 K: 4.02 %; 700 K: 3.58 %; deposition completed the inside of the coating appears to be compacted. The substrate temperature will affect the combination of the coating and the substrate. It is recommended that the temperature difference between the particles and the substrate should not be too large. The CEL method simulates the process of cold spray multi-particle deposition, which is an effective method to observe and predict the porosity of the coating, which is also unachievable by the SPH and ALE methods.

References

  1. K. Tan, “Analysis of spray particles entrance of Right-angle cold spray nozzle based on CFD”, Mech. Adv. Technol., vol. 7, no. 3 (99), pp. 325–329, Dec. 2023. DOI: https://doi.org/10.20535/2521-1943.2023.7.3.292244.
  2. K. Ogawa, K. Ito, K. Ichimura, Y. Ichikawa, S. Ohno and N. Onda, “Characterization of low-pressure cold-sprayed aluminum coatings”, Journal of Thermal Spray Technology, vol. 17, no. 5-6, pp. 728–735, 2008. DOI: https://doi.org/10.1007/s11666-008-9254-5.
  3. H. Takana, K. Ogawa, T. Shoji and H. Nishiyama, “Computational simulation of cold spray process assisted by electrostatic force”, Powder Technology, vol. 185, no. 2, pp. 116–123, 2008. DOI: https://doi.org/10.1016/j.powtec.2007.10.005.
  4. S. Guetta, M. H. Berger, F. Borit, V. Guipont, M. Jeandin, M. Boustie, Y. Ichikawa, K. Sakaguchi and K. Ogawa, “Influence of particle velocity on adhesion of cold-sprayed splats”, Journal of thermal spray technology, vol. 18, no. 3, pp. 331–342, 2009. DOI: https://doi.org/10.1007/s11666-009-9327-0.
  5. Y. Ichikawa, K. Sakaguchi, K. Ogawa, T. Shoji, S. Barradas, M. Jeandin and M. Boustie, “Deposition mechanisms of cold gas dynamic sprayed MCrAlY coatings”, in Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 2007, pp. 54–59. DOI: https://doi.org/10.31399/asm.cp.itsc2007p0054.
  6. M. Grujicic, C. L. Zhao, W. S. DeRosset and D. Helfritch, “Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process”, Materials & design, vol. 25, no. 8, pp. 681–688, 2004. DOI: https://doi.org/10.1016/j.matdes.2004.03.008.
  7. H. Assadi, F. Gartner, T. Stoltenhoff and H. Kreye, “Bonding Mechanism in Cold Gas Spraying”, Acta Mater., vol. 51, no. 15, pp. 4379–4394, 2003. DOI: https://doi.org/10.1016/S1359-6454(03)00274-X.
  8. E. Bakan, D. Marcano, D. Zhou, Y. J. Sohn, G. Mauer and R. Vaßen, “Yb2Si2O7 environmental barrier coatings deposited by various thermal spray techniques: a preliminary comparative study”, Journal of thermal spray technology, vol. 26, no. 6, pp. 1011–1024, 2017. DOI: https://doi.org/10.1007/s11666-017-0574-1.
  9. S. Weiller and F. Delloro, “A numerical study of pore formation mechanisms in aluminium cold spray coatings”, Additive Manufacturing, vol. 60, part A, p. 103193, 2022. DOI: https://doi.org/10.1016/j.addma.2022.103193.
  10. V. S. Shikalov, V. F. Kosarev, T. M. Vidyuk, S. V. Klinkov and I. S. Batraev, “Mechanical and tribological properties of cold sprayed composite Al-B4C coatings”, in AIP Conference Proceedings, vol. 2448, no. 1, 2021, p. 020021. DOI: https://doi.org/10.1063/5.0073401.
  11. A. Moridi, S. M. Hassani-Gangaraj and M. Guagliano, “A hybrid approach to determine critical and erosion velocities in the cold spray process”, Applied Surface Science, vol. 273, pp. 617–624, 2013. DOI: https://doi.org/10.1016/j.apsusc.2013.02.089.
  12. K. Tan, S. Markovych, W. Hu, O. Shorinov and Y. Wang, “Review of application and research based on cold spray coating materials”, Aerospace Technic and Technology, vol. 169, no. 1, pp. 47–59, 2021. DOI: https://doi.org/10.32620/aktt.2021.1.05.
  13. W. Hu, S. Markovych, K. Tan, O. Shorinov and T. Cao, “Surface repair of aircraft titanium alloy parts by cold spraying technology”, Aerospace Technic and Technology, vol. 163, no. 3, pp. 30–42, 2020. DOI: https://doi.org/10.32620/aktt.2020.3.04.
  14. K. Tan, S. Markovych, W. Hu, Y. Wang, O. Shorinov and Y. Wang, “On the characteristics of cold spray technology and its application in aerospace industries”, in IOP Conference Series: Earth and Environmental Science, vol. 719, no. 3, p. 032023, 2021. DOI: https://doi.org/10.1088/1755-1315/719/3/032023.
  15. W. Hu, K. Tan, S. Markovych, and T. Cao, “Research on structure and technological parameters of multi-channel cold spraying nozzle”, EEJET, vol. 5, no. 1 (113), pp. 6–14, Oct. 2021. DOI: https://doi.org/10.15587/1729-4061.2021.242707.
  16. W. Hu, K. Tan, S. Markovych and T. Cao, “Structural optimization of the special cold spraying nozzle via response surface method”, in Integrated Computer Technologies in Mechanical Engineering - 2021: Synergetic Engineering. Cham: Springer International Publishing, 2022, pp. 110–122. DOI: https://doi.org/10.1007/978-3-030-94259-5_11.
  17. T. Kun, H. W. Jie, S. Markovych and Y. Wang, “Dimet laval nozzle expansion section analysis and optimization”, Journal of Engineering Sciences, vol. 8, no. 2, pp. 6–10, 2021. DOI: https://doi.org/10.21272/jes.2021.8(2).f2.
  18. J. Xie, D. Nélias, H. Walter-Le Berre, K. Ogawa and Y. Ichikawa, “Simulation of the cold spray particle deposition process”, Journal of Tribology, vol. 137, no. 4, p. 041101, 2015. DOI: https://doi.org/10.1115/1.4030257.
  19. S. Rahmati and A. Ghaei, ”The use of particle/substrate material models in simulation of cold-gas dynamic-spray process”, Journal of thermal spray technology, vol. 23, no. 3, pp. 530–540, 2014. DOI: https://doi.org/10.1007/s11666-013-0051-4.
  20. P.-E. Leger, "Rôle de la microstructure sur les mécanismes de corrosion marine d’un dépôt à base d’aluminium élaboré par projection dynamique par gaz froid (“cold spray”)", Ph.D. thesis, Université Paris sciences et lettres, 2018. Available: https://pastel.archives-ouvertes.fr/tel-03118364.
  21. T. Schmidt, F. Gärtner, H. Assadi and H. Kreye, “Development of a Generalized Parameter Window for Cold Spray Deposition”, Acta Mater., vol. 54, no. 3, pp. 729–742, 2006. DOI: https://doi.org/10.1016/j.actamat.2005.10.005.
  22. K. Kim, W. Li and X. Guo, “Detection of oxygen at the interface and its effect on strain, stress, and temperature at the interface between cold sprayed aluminum and steel substrate”, Applied Surface Science, vol. 357 Part B, pp. 1720–1726, 2015. DOI: https://doi.org/10.1016/j.apsusc.2015.10.022.
  23. V. Lemiale, P. C. King, M. Rudman, M. Prakash, P. W. Cleary, M. Z. Jahedi and S. Gulizia, “Temperature and strain rate effects in cold spray investigated by smoothed particle hydrodynamics”, Surface and Coatings Technology, vol. 254, pp. 121–130, 2014. DOI: https://doi.org/10.1016/j.surfcoat.2014.05.071.
  24. F. Delloro, M. Jeandin, D. Jeulin, H. Proudhon, M. Faessel, L. Bianchi, E. Meillot and L. Helfen, “A morphological approach to the modeling of the cold spray process”, Journal of Thermal Spray Technology, vol. 26, no. 8, pp. 1838–1850, 2017. DOI: https://doi.org/10.1007/s11666-017-0624-8.
  25. W.-Y. Li and W. Gao, “Some aspects on 3D numerical modeling of high velocity impact of particles in cold spraying by explicit finite element analysis”, Applied Surface Science, vol. 255, no. 18, pp. 7878–7892, 2009. DOI: https://doi.org/10.1016/j.apsusc.2009.04.135.
  26. S. Rahmati and B. Jodoin, “Physically based finite element modeling method to predict metallic bonding in cold spray”, Journal of Thermal Spray Technology, vol. 29, no. 4, pp. 611–629, 2020. DOI: https://doi.org/10.1007/s11666-020-01000-1.
  27. B. Gnanasekaran, G. R. Liu, Y. Fu, G. Wang, W. Niu and T. Lin, “A Smoothed Particle Hydrodynamics (SPH) procedure for simulating cold spray process - A study using particles”, Surface and Coatings Technology, vol. 377, p. 124812, 2019. DOI: https://doi.org/10.1016/j.surfcoat.2019.07.036.
  28. A. Manap, K. Ogawa and T. Okabe, “Numerical analysis of interfacial bonding of Al-Si particle and mild steel substrate by cold spray technique using the SPH method”, Journal of Solid Mechanics and Materials Engineering, vol. 6, no. 3, pp. 241–250, 2012. DOI: https://doi.org/10.1299/jmmp.6.241.
  29. W. Y. Li, K. Yang, S. Yin and X. P. Guo, “Numerical analysis of cold spray particles impacting behavior by the Eulerian method: a review”, Journal of Thermal Spray Technology, vol. 25, no. 8, pp. 1441–1460, 2016. DOI: https://doi.org/10.1007/s11666-016-0443-3.
  30. P. E. Leger, M. Sennour, F. Delloro, F. Borit, A. Debray, F. Gaslain, M. Jeandin and M. Ducos, “Multiscale experimental and numerical approach to the powder particle shape effect on Al-Al2O3 coating build-up”, Journal of Thermal Spray Technology, vol. 26, no. 7, pp. 1445–1460, 2017. DOI: https://doi.org/10.1007/s11666-017-0618-6.
  31. W.-Y. Li, C. Zhang, C.-J. Li and H. Liao, “Modeling aspects of high velocity impact of particles in cold spraying by explicit finite element analysis”, Journal of Thermal Spray Technology, vol. 18, no. 5-6, pp. 921–933, 2009. DOI: https://doi.org/10.1007/s11666-009-9325-2.
  32. B. Yildirim, S. Muftu and A. Gouldstone, “Modeling of high velocity impact of spherical particles”, Wear, vol. 270, no. 9–10, pp. 703–713, 2011. DOI: https://doi.org/10.1016/j.wear.2011.02.003.
  33. G. Bae, Y. Xiong, S. Kumar, K. Kang and C. Lee, “General aspects of interface bonding in kinetic sprayed coatings”, Acta Materialia, vol. 56, no. 17, pp. 4858–4868, 2008. DOI: https://doi.org/10.1016/j.actamat.2008.06.003.
  34. W.-Y. Li, H. Liao, C.-J. Li, H.-S. Bang and C. Coddet, “Numerical simulation of deformation behavior of Al particles impacting on Al substrate and effect of surface oxide films on interfacial bonding in cold spraying”, Applied Surface Science, vol. 253, no. 11, pp. 5084–5091, 2007. DOI: https://doi.org/10.1016/j.apsusc.2006.11.020.
  35. Z. Xiong, L. Mingwan and W. Jianjun, “Research progress on arbitrary Lagrangian-Eulerian description method”, Journal of Computational Mechanics, vol. 1, pp. 93–104, 1997.
  36. W. Feng and Z. Ming, “Numerical analysis of the deposition process of cold spray particles on the surface of cast iron and Q235 steel”, Materials Herald, vol. 30, no. 10, pp. 135–138, 2016.
  37. W. Hequan, Z. Bo and Y. Fuhe, “Research on residual stress detection and simulation of plasma sprayed NiCrAl coating on titanium alloy surface”, Thermal Processing Technology, vol. 47, no. 22, pp. 147–151, 2018.
  38. W.-Y. Li, S. Yin and X.-F. Wang, "Numerical investigations of the effect of oblique impact on particle deformation in cold spraying by the SPH method", Applied Surface Science, vol. 256, no. 12, pp. 3725–3734, 2010. DOI: https://doi.org/10.1016/j.apsusc.2010.01.014.
  39. Shuo Yin, Xiao-fang Wang, Bao-peng Xu and Wen-ya Li, “Examination on the Calculation Method for Modeling the Multi-Particle Impact Process in Cold Spraying”, Journal of Thermal Spray Technology, vol. 19, no. 5, pp. 1032–1041, 2010. DOI: https://doi.org/10.1007/s11666-010-9489-9.
  40. Abaqus 6.11 Analysis User’s Manual. Vol. 5: Prescribed Conditions, Constraints & Interactions. Product of Dassault Systèmes Simulia Corp, 2011.
  41. S. Bagherifard, S. Monti, M. V. Zuccoli, M. Riccio, J. Kondás and M. Guagliano, “Cold spray deposition for additive manufacturing of freeform structural components compared to selective laser melting”, Materials Science and Engineering: A, vol. 721, pp. 339–350, 2018. DOI: https://doi.org/10.1016/j.msea.2018.02.094.
  42. M. Hassani-Gangaraj, D. Veysset, V. K. Champagne, K. A. Nelson and C. A. Schuh, “Adiabatic shear instability is not necessary for adhesion in cold spray”, Acta Materialia, vol. 158, pp. 430–439, 2018. DOI: https://doi.org/10.1016/j.actamat.2018.07.065.
  43. D. MacDonald, R. Fernández, F. Delloro and B. Jodoin, “Cold spraying of armstrong process titanium powder for additive manufacturing”, Journal of thermal spray technology, vol. 26, no. 4, pp. 598–609, 2017. DOI: https://doi.org/10.1007/s11666-016-0489-2.
  44. S. H. Zahiri, D. Fraser, S. Gulizia and M. Jahedi, “Effect of processing conditions on porosity formation in cold gas dynamic spraying of copper”, Journal of thermal spray technology, vol. 15, no. 3, pp. 422–430, 2006. DOI: https://doi.org/10.1361/105996306X124437.
  45. M. Terrone, A. A. Lordejani, J. Kondas and S. Bagherifard, “A numerical approach to design and develop freestanding porous structures through cold spray multi-material deposition”, Surface and Coatings Technology, vol. 421, p. 127423, 2021. DOI: https://doi.org/10.1016/j.surfcoat.2021.127423.
  46. Y. Wang, J. Adrien and B. Normand, “Porosity characterization of cold sprayed stainless steel coating using three-dimensional X-ray microtomography”, Coatings, vol. 8, no. 9, p. 326, 2018. DOI: https://doi.org/10.3390/coatings8090326.
  47. X. Song, K. L. Ng, J. M.-K. Chea, W. Sun, A. W.-Y. Tan, W. Zhai, F. Li, I. Marinescu and E. Liu, “Coupled Eulerian-Lagrangian (CEL) simulation of multiple particle impact during Metal Cold Spray process for coating porosity prediction”, Surface and Coatings Technology, vol. 385, p. 125433, 2020. DOI: https://doi.org/10.1016/j.surfcoat.2020.125433.
  48. S. Weiller, F. Delloro, P. Lomonaco, M. Jeandin and C. Garion, “A finite elements study on porosity creation mechanisms in cold sprayed coatings”, Key Engineering Materials, vol. 813, pp. 358–363, 2019. DOI: https://doi.org/10.4028/www.scientific.net/kem.813.358.
  49. K. Tan, W. Hu, O. Shorinov and Y. Wang, “Simulating multi-particle deposition based on CEL method: studing the effects of particle and substrate temperature on deposition”, Aerospace Technic and Technology, no. 1, pp. 64–75, 2024. DOI: https://doi.org/10.32620/aktt.2024.1.06.
  50. H. Manafi Farid, A. McDonald and J. D. Hogan, “Impact Deposition Behavior of Al/B4C Cold-Sprayed Composite Coatings: Understanding the Role of Porosity on Particle Retention”, Materials, vol. 16, no. 6, p. 2525, 2023. DOI: https://doi.org/10.3390/ma16062525.
  51. W. Xie, A. Alizadeh-Dehkharghani, Q. Chen, V. K. Champagne, X. Wang, A. T. Nardi, S. Kooi, S. Müftü and J.-H. Lee, “Dynamics and extreme plasticity of metallic microparticles in supersonic collisions”, Scientific reports, vol. 7, no. 1, p. 5073, 2017. DOI: https://doi.org/10.1038/s41598-017-05104-7.
  52. F. Dušek, “Plastic deformation at high strain rates”, Czech J Phys., vol. 20, no. 7, pp. 776–789, 1970. DOI: https://doi.org/10.1007/BF01726605.
  53. JAHM Software Inc., Material Properties Database, MPDB (2003); V7.01 demo.
  54. E. Lin, Q. Chen, O. C. Ozdemir, S. Müftü and V. K. Champagne, “Effects of Interface Bonding on the Residual Stresses in Cold Sprayed Al-6061: A Numerical Investigation”, in Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 2018, pp. 278–285. DOI: https://doi.org/10.31399/asm.cp.itsc2018p0278.

Downloads

Published

2024-09-30

How to Cite

[1]
K. Tan, “Simulation of the effect of multi-particle temperature on Al6061 coating porosity based on Coupled Eulerian-Lagrangian (CEL) method”, Mech. Adv. Technol., vol. 8, no. 3(102), pp. 280–288, Sep. 2024.

Issue

Section

Up-to-date machines and the technologies of mechanical engineering