Simulation of the effect of multi-particle temperature on Al6061 coating porosity based on Coupled Eulerian-Lagrangian (CEL) method

Authors

DOI:

https://doi.org/10.20535/2521-1943.2024.8.3(102).304079

Keywords:

Cold spraying, CEL, deposition, temperature, multi-particle, porosity, substrate

Abstract

Cold spray is a solid-state deposition technology widely used in additive manufacturing. The particles temperature is mostly used to adjust the porosity of the coating. This article uses Pyhon script to model the multi-particle model; then the multi-particle model is nested in the CEL deposition model to simulate the actual cold spray multi-particle deposition process; The CEL method has the characteristics of high accuracy and robustness and was selected as the simulation method for the multi-particle deposition model. The porosity of the coating is expressed by studying the value of the EVF void area in the Euler domain. Multiple groups of samples were taken on the coating surface to calculate the porosity of each group, and the average value was finally taken as the porosity of the entire coating. Numerical results show that increasing the particle temperature can effectively reduce the porosity of the coating. The average porosity of the coating under the particles temperature conditions are 600 K: 5.08 %; 650 K: 4.02 %; 700 K: 3.58 %; deposition completed the inside of the coating appears to be compacted. The substrate temperature will affect the combination of the coating and the substrate. It is recommended that the temperature difference between the particles and the substrate should not be too large. The CEL method simulates the process of cold spray multi-particle deposition, which is an effective method to observe and predict the porosity of the coating, which is also unachievable by the SPH and ALE methods.

References

  1. Tan, K. (2023). Analysis of spray particles entrance of Right-angle cold spray nozzle based on CFD. Mechanics and Advanced Technologies, 7(3). DOI: https://doi.org/10.20535/2521-1943.2023.7.3.292244
  2. Ogawa, K., Ito, K., Ichimura, K., Ichikawa, Y., Ohno, S., & Onda, N. (2008). Characterization of low-pressure cold-sprayed aluminum coatings. Journal of Thermal Spray Technology, 17, p 728-735. DOI: https://doi.org/10.1007/s11666-008-9254-5
  3. Takana, H., Ogawa, K., Shoji, T., & Nishiyama, H. (2008). Computational simulation of cold spray process assisted by electrostatic force. Powder Technology, 185(2), p 116-123. DOI: https://doi.org/10.1016/j.powtec.2007.10.005
  4. Guetta, S., Berger, M. H., Borit, F., Guipont, V., Jeandin, M., Boustié, M., ... & Ogawa, K. (2009). Influence of particle velocity on adhesion of cold-sprayed splats. Journal of thermal spray technology, 18, p 331-342. DOI: https://doi.org/10.1007/s11666-009-9327-0
  5. Ichikawa, Y., Sakaguchi, K., Ogawa, K., Shoji, T., Barradas, S., Jeandin, M., & Boustié, M. (2007). Deposition mechanisms of cold gas dynamic sprayed MCrAlY coatings. Thermal Spray 2007: Global Coating Solutions, 1212, p 14-16. DOI: https://doi.org/10.31399/asm.cp.itsc2007p0054
  6. Grujicic, M., Zhao, C. L., DeRosset, W. S., & Helfritch, D. (2004). Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Materials & design, 25(8), 681-688. DOI: https://doi.org/10.1016/j.matdes.2004.03.008
  7. H. Assadi, F. Ga¨rtner, T. Stoltenhoff, and H. Kreye. (2003). Bonding Mechanism in Cold Gas Spraying, Acta Mater. 51, p 4379-4394. DOI: https://doi.org/10.1016/S1359-6454(03)00274-X
  8. Bakan, E., Marcano, D., Zhou, D., Sohn, Y. J., Mauer, G., & Vaßen, R. (2017). Yb 2 Si 2 O 7 environmental barrier coatings deposited by various thermal spray techniques: a preliminary comparative study. Journal of thermal spray technology, 26, 1011-1024. DOI: https://doi.org/10.1007/s11666-017-0574-1
  9. Weiller, S., & Delloro, F. (2022). A numerical study of pore formation mechanisms in aluminium cold spray coatings. Additive Manufacturing, 60, 103193. DOI: https://doi.org/10.1016/j.addma.2022.103193
  10. Shikalov, V. S., Kosarev, V. F., Vidyuk, T. M., Klinkov, S. V., & Batraev, I. S. (2021, December). Mechanical and tribological properties of cold sprayed composite Al-B4C coatings. In AIP Conference Proceedings (Vol. 2448, No. 1). AIP Publishing. DOI: https://doi.org/10.1063/5.0073401
  11. Moridi, A., Hassani-Gangaraj, S. M., & Guagliano, M. (2013). A hybrid approach to determine critical and erosion velocities in the cold spray process. Applied Surface Science, 273, 617-624. DOI: https://doi.org/10.1016/j.apsusc.2013.02.089
  12. Tan, K., Markovych, S., Hu, W., Shorinov, O., & Wang, Y. (2021). Review of application and research based on cold spray coating materials. Aerospace Technic and Technology, (1), 47-59. DOI: https://doi.org/10.32620/aktt.2021.1.05
  13. Hu, W., Markovych, S., Tan, K., Shorinov, O., & Cao, T. (2020). SURFACE REPAIR OF AIRCRAFT TITANIUM ALLOY PARTS BY COLD SPRAYING TECHNOLOGY. Aerospace Technic and Technology, 0(3). 30-42. DOI: https://doi.org/10.32620/aktt.2020.3.04
  14. Tan, K., Markovych, S., Hu, W., Wang, Y., Shorinov, O., & Wang, Y. (2021, April). On the characteristics of cold spray technology and its application in aerospace industries. In IOP Conference Series: Earth and Environmental Science (Vol. 719, No. 3, p. 032023). IOP Publishing. DOI: 10.1088/1755-1315/719/3/032023
  15. Hu, W., Tan, K., Markovych, S., Cao, T. (2021). Research on structure and technological parameters of multi-channel cold spraying nozzle. Eastern-European Journal of Enterprise Technologies, 5 (1 (113)), 6–14. doi: https://doi.org/10.15587/1729-4061.2021.242707
  16. Hu, W., Tan, K., Markovych, S., & Cao, T. (2021, October). Structural optimization of the special cold spraying nozzle via response surface method. In Conference on Integrated Computer Technologies in Mechanical Engineering–Synergetic Engineering (pp. 110-122). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-94259-5_11.
  17. Kun T., Jie H. W., Markovych S., Wang Y. (2021). Dimet Laval nozzle expansion section analysis and optimization. Journal of Engineering Sciences, 8(2), 6-10. DOI: 10.21272/jes.2021.8(2).f2
  18. Xie, J., Nélias, D., Walter-Le Berre, H., Ogawa, K., & Ichikawa, Y. (2015). Simulation of the cold spray particle deposition process. Journal of Tribology, 137(4), 041101. DOI: https://doi.org/10.1115/1.4030257
  19. Rahmati, S., & Ghaei, A. (2014). The use of particle/substrate material models in simulation of cold-gas dynamic-spray process. Journal of thermal spray technology, 23, 530-540. DOI: https://doi.org/10.1007/s11666-013-0051-4
  20. P.-E. Leger, Rˆole de la microstructure sur les m´ecanismes de corrosion marine d’un d´epˆot `a base d’aluminium ´elabor´e par projection dynamique par gaz froid ( cold spray ), Ph.D. thesis, Mines Paristech. (2018).
  21. T. Schmidt, F. Ga¨rtner, H. Assadi, and H. Kreye. (2006). Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater. 54, p 729-742. DOI: 10.1016/j.actamat.2005.10.005
  22. Kim, K., Li, W., & Guo, X. (2015). Detection of oxygen at the interface and its effect on strain, stress, and temperature at the interface between cold sprayed aluminum and steel substrate. Applied Surface Science, 357, 1720-1726. DOI: 10.1016/j.apsusc.2015.10.022
  23. Lemiale, V., King, P. C., Rudman, M., Prakash, M., Cleary, P. W., Jahedi, M. Z., & Gulizia, S. (2014). Temperature and strain rate effects in cold spray investigated by smoothed particle hydrodynamics. Surface and Coatings Technology, 254, 121-130. DOI: 10.1016/j.surfcoat.2014.05.071
  24. Delloro, F., Jeandin, M., Jeulin, D., Proudhon, H., Faessel, M., Bianchi, L., ... & Helfen, L. (2017). A morphological approach to the modeling of the cold spray process. Journal of Thermal Spray Technology, 26, 1838-1850. DOI: https://doi.org/10.1007/s11666-017-0624-8
  25. Li, W. Y., & Gao, W. (2009). Some aspects on 3D numerical modeling of high velocity impact of particles in cold spraying by explicit finite element analysis. Applied Surface Science, 255(18), 7878-7892. DOI: https://doi.org/10.1016/j.apsusc.2009.04.135
  26. Rahmati, S., & Jodoin, B. (2020). Physically based finite element modeling method to predict metallic bonding in cold spray. Journal of Thermal Spray Technology, 29, 611-629. DOI: https://doi.org/10.1007/s11666-020-01000-1
  27. Gnanasekaran, B., Liu, G. R., Fu, Y., Wang, G., Niu, W., & Lin, T. (2019). A Smoothed Particle Hydrodynamics (SPH) procedure for simulating cold spray process-A study using particles. Surface and Coatings Technology, 377, 124812. DOI: 10.1016/j.surfcoat.2019.07.036.
  28. Manap, A., Ogawa, K., & Okabe, T. (2012). Numerical analysis of interfacial bonding of Al-Si particle and mild steel substrate by cold spray technique using the SPH method. Journal of Solid Mechanics and Materials Engineering, 6(3), 241-250. DOI: https://doi.org/10.1299/jmmp.6.241
  29. Li, W. Y., Yang, K., Yin, S., & Guo, X. P. (2016). Numerical analysis of cold spray particles impacting behavior by the Eulerian method: a review. Journal of Thermal Spray Technology, 25, 1441-1460. DOI: 10.1007/s11666-016-0443-3
  30. Leger, P. E., Sennour, M., Delloro, F., Borit, F., Debray, A., Gaslain, F., ... & Ducos, M. (2017). Multiscale experimental and numerical approach to the powder particle shape effect on Al-Al 2 O 3 coating build-up. Journal of Thermal Spray Technology, 26, 1445-1460. DOI: https://doi.org/10.1007/s11666-017-0618-6
  31. Li, W. Y., Zhang, C., Li, C. J., & Liao, H. (2009). Modeling aspects of high velocity impact of particles in cold spraying by explicit finite element analysis. Journal of Thermal Spray Technology, 18, 921-933. DOI: https://doi.org/10.1007/s11666-009-9325-2
  32. Yildirim, B., Muftu, S., & Gouldstone, A. (2011). Modeling of high velocity impact of spherical particles. Wear, 270(9-10), 703-713. DOI: https://doi.org/10.1016/j.wear.2011.02.003
  33. Bae, G., Xiong, Y., Kumar, S., Kang, K., & Lee, C. (2008). General aspects of interface bonding in kinetic sprayed coatings. Acta Materialia, 56(17), 4858-4868. DOI: https://doi.org/10.1016/j.actamat.2008.06.003
  34. Li, W. Y., Liao, H., Li, C. J., Bang, H. S., & Coddet, C. (2007). Numerical simulation of deformation behavior of Al particles impacting on Al substrate and effect of surface oxide films on interfacial bonding in cold spraying. Applied Surface Science, 253(11), 5084-5091. DOI: https://doi.org/10.1016/j.apsusc.2006.11.020
  35. Zhang Xiong, Lu Mingwan, Wang Jianjun. (1997). Research progress on arbitrary Lagrangian-Eulerian description method. Journal of Computational Mechanics. (1). 93-104.
  36. Wang Feng, Zhao Ming. (2016). Numerical analysis of the deposition process of cold spray particles on the surface of cast iron and Q235 steel. Materials Herald. 30(10). 135-138.
  37. Wang Hequan, Zhang Bo, Yuan Fuhe. (2018). Research on residual stress detection and simulation of plasma sprayed NiCrAl coating on titanium alloy surface. Thermal Processing Technology. 47(22). 147-151.
  38. Wen-Ya Li; Shuo Yin; Xiao-Fang Wang. (2010). Numerical investigations of the effect of oblique impact on particle deformation in cold spraying by the SPH method. 256(12). 3725–3734. DOI: 10.1016/j.apsusc.2010.01.014
  39. Shuo Yin; Xiao-fang Wang; Bao-peng Xu; Wen-ya Li. (2010). Examination on the Calculation Method for Modeling the Multi-Particle Impact Process in Cold Spraying. 19(5). 1032–1041. DOI: 10.1007/s11666-010-9489-9
  40. Dassault Systemes. ABAQUS Analysis User’s Manue. 6.11 ed. Simulia. Providence. Chap. 24 (2011).
  41. Bagherifard, S., Monti, S., Zuccoli, M. V., Riccio, M., Kondás, J., & Guagliano, M. (2018). Cold spray deposition for additive manufacturing of freeform structural components compared to selective laser melting. Materials Science and Engineering: A, 721, 339-350. DOI: https://doi.org/10.1016/j.msea.2018.02.094
  42. Hassani-Gangaraj, M., Veysset, D., Champagne, V. K., Nelson, K. A., & Schuh, C. A. (2018). Adiabatic shear instability is not necessary for adhesion in cold spray. Acta Materialia, 158, 430-439. DOI: https://doi.org/10.1016/j.actamat.2018.07.065
  43. Yildirim, B., Muftu, S., & Gouldstone, A. (2011). Modeling of high velocity impact of spherical particles. Wear, 270(9-10), 703-713. DOI: https://doi.org/10.1016/j.wear.2011.02.003
  44. MacDonald, D., Fernández, R., Delloro, F., & Jodoin, B. (2017). Cold spraying of armstrong process titanium powder for additive manufacturing. Journal of thermal spray technology, 26, 598-609. DOI: https://doi.org/10.1007/s11666-016-0489-2
  45. Zahiri, S. H., Fraser, D., Gulizia, S., & Jahedi, M. (2006). Effect of processing conditions on porosity formation in cold gas dynamic spraying of copper. Journal of thermal spray technology, 15, 422-430. DOI: https://doi.org/10.1361/105996306X124437
  46. Weiller, S., & Delloro, F. (2022). A numerical study of pore formation mechanisms in aluminium cold spray coatings. Additive Manufacturing, 60, 103193. DOI: https://doi.org/10.1016/j.addma.2022.103193
  47. Terrone, M., Lordejani, A. A., Kondas, J., & Bagherifard, S. (2021). A numerical approach to design and develop freestanding porous structures through cold spray multi-material deposition. Surface and Coatings Technology, 421, 127423. DOI: https://doi.org/10.1016/j.surfcoat.2021.127423
  48. Xie, J., Nélias, D., Walter-Le Berre, H., Ogawa, K., & Ichikawa, Y. (2015). Simulation of the cold spray particle deposition process. Journal of Tribology, 137(4), 041101. DOI: https://doi.org/10.1115/1.4030257
  49. Wang, Y., Adrien, J., & Normand, B. (2018). Porosity characterization of cold sprayed stainless steel coating using three-dimensional X-ray microtomography. Coatings, 8(9), 326. DOI: 10.3390/coatings8090326
  50. Song, X., Ng, K. L., Chea, J. M.-K., Sun, W., Tan, A. W.-Y., Zhai, W., … Liu, E. (2020). Coupled Eulerian-Lagrangian (CEL) simulation of multiple particle impact during Metal Cold Spray process for coating porosity prediction. Surface and Coatings Technology, 385, 125433. doi:10.1016/j.surfcoat.2020.125433
  51. Weiller, S., Delloro, F., Lomonaco, P., Jeandin, M., & Garion, C. (2019). A finite elements study on porosity creation mechanisms in cold sprayed coatings. Key Engineering Materials, 813, 358-363. DOI: https://doi.org/10.4028/www.scientific.net/kem.813.358
  52. Tan, K., Hu, W., Shorinov, O., & Wang, Y. (2024). Simulating multi-particle deposition based on CEL method: studing the effects of particle and substrate temperature on deposition. Aerospace Technic and Technology, (1), 64-75. DOI: https://doi.org/10.32620/aktt.2024.1.06
  53. Manafi Farid, H., McDonald, A., & Hogan, J. D. (2023). Impact Deposition Behavior of Al/B4C Cold-Sprayed Composite Coatings: Understanding the Role of Porosity on Particle Retention. Materials, 16(6), 2525. DOI: https://doi.org/10.3390/ma16062525
  54. Xie, W., Alizadeh-Dehkharghani, A., Chen, Q., Champagne, V. K., Wang, X., Nardi, A. T., ... & Lee, J. H. (2017). Dynamics and extreme plasticity of metallic microparticles in supersonic collisions. Scientific reports, 7(1), 5073. DOI: https://doi.org/10.1016/B978-0-08-103015-8.00011-6
  55. Dušek, F. (1970). Plastic deformation at high strain rates. Czech J Phys 20. 776–789. DOI: https://doi.org/10.1007/BF01726605
  56. JAHM Software Inc., Material Properties Database. MPDB (2003); V7.01 demo
  57. Lin, E., Chen, Q., Ozdemir, O. C., Champagne, V. K., & Müftü, S. (2019). Effects of Interface Bonding on the Residual Stresses in Cold-Sprayed Al-6061: A Numerical Investigation. Journal of Thermal Spray Technology. DOI: https://doi.org/10.31399/asm.cp.itsc2018p0278.

Published

2024-09-30

How to Cite

[1]
K. Tan, “Simulation of the effect of multi-particle temperature on Al6061 coating porosity based on Coupled Eulerian-Lagrangian (CEL) method”, Mech. Adv. Technol., vol. 8, no. 3(102), Sep. 2024.

Issue

Section

Up-to-date machines and the technologies of mechanical engineering