Simulation of the effect of multi-particle temperature on Al6061 coating porosity based on Coupled Eulerian-Lagrangian (CEL) method
DOI:
https://doi.org/10.20535/2521-1943.2024.8.3(102).304079Keywords:
Cold spraying, CEL, deposition, temperature, multi-particle, porosity, substrateAbstract
Cold spray is a solid-state deposition technology widely used in additive manufacturing. The particles temperature is mostly used to adjust the porosity of the coating. This article uses Pyhon script to model the multi-particle model; then the multi-particle model is nested in the CEL deposition model to simulate the actual cold spray multi-particle deposition process; The CEL method has the characteristics of high accuracy and robustness and was selected as the simulation method for the multi-particle deposition model. The porosity of the coating is expressed by studying the value of the EVF void area in the Euler domain. Multiple groups of samples were taken on the coating surface to calculate the porosity of each group, and the average value was finally taken as the porosity of the entire coating. Numerical results show that increasing the particle temperature can effectively reduce the porosity of the coating. The average porosity of the coating under the particles temperature conditions are 600 K: 5.08 %; 650 K: 4.02 %; 700 K: 3.58 %; deposition completed the inside of the coating appears to be compacted. The substrate temperature will affect the combination of the coating and the substrate. It is recommended that the temperature difference between the particles and the substrate should not be too large. The CEL method simulates the process of cold spray multi-particle deposition, which is an effective method to observe and predict the porosity of the coating, which is also unachievable by the SPH and ALE methods.
References
- Tan, K. (2023). Analysis of spray particles entrance of Right-angle cold spray nozzle based on CFD. Mechanics and Advanced Technologies, 7(3). DOI: https://doi.org/10.20535/2521-1943.2023.7.3.292244
- Ogawa, K., Ito, K., Ichimura, K., Ichikawa, Y., Ohno, S., & Onda, N. (2008). Characterization of low-pressure cold-sprayed aluminum coatings. Journal of Thermal Spray Technology, 17, p 728-735. DOI: https://doi.org/10.1007/s11666-008-9254-5
- Takana, H., Ogawa, K., Shoji, T., & Nishiyama, H. (2008). Computational simulation of cold spray process assisted by electrostatic force. Powder Technology, 185(2), p 116-123. DOI: https://doi.org/10.1016/j.powtec.2007.10.005
- Guetta, S., Berger, M. H., Borit, F., Guipont, V., Jeandin, M., Boustié, M., ... & Ogawa, K. (2009). Influence of particle velocity on adhesion of cold-sprayed splats. Journal of thermal spray technology, 18, p 331-342. DOI: https://doi.org/10.1007/s11666-009-9327-0
- Ichikawa, Y., Sakaguchi, K., Ogawa, K., Shoji, T., Barradas, S., Jeandin, M., & Boustié, M. (2007). Deposition mechanisms of cold gas dynamic sprayed MCrAlY coatings. Thermal Spray 2007: Global Coating Solutions, 1212, p 14-16. DOI: https://doi.org/10.31399/asm.cp.itsc2007p0054
- Grujicic, M., Zhao, C. L., DeRosset, W. S., & Helfritch, D. (2004). Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Materials & design, 25(8), 681-688. DOI: https://doi.org/10.1016/j.matdes.2004.03.008
- H. Assadi, F. Ga¨rtner, T. Stoltenhoff, and H. Kreye. (2003). Bonding Mechanism in Cold Gas Spraying, Acta Mater. 51, p 4379-4394. DOI: https://doi.org/10.1016/S1359-6454(03)00274-X
- Bakan, E., Marcano, D., Zhou, D., Sohn, Y. J., Mauer, G., & Vaßen, R. (2017). Yb 2 Si 2 O 7 environmental barrier coatings deposited by various thermal spray techniques: a preliminary comparative study. Journal of thermal spray technology, 26, 1011-1024. DOI: https://doi.org/10.1007/s11666-017-0574-1
- Weiller, S., & Delloro, F. (2022). A numerical study of pore formation mechanisms in aluminium cold spray coatings. Additive Manufacturing, 60, 103193. DOI: https://doi.org/10.1016/j.addma.2022.103193
- Shikalov, V. S., Kosarev, V. F., Vidyuk, T. M., Klinkov, S. V., & Batraev, I. S. (2021, December). Mechanical and tribological properties of cold sprayed composite Al-B4C coatings. In AIP Conference Proceedings (Vol. 2448, No. 1). AIP Publishing. DOI: https://doi.org/10.1063/5.0073401
- Moridi, A., Hassani-Gangaraj, S. M., & Guagliano, M. (2013). A hybrid approach to determine critical and erosion velocities in the cold spray process. Applied Surface Science, 273, 617-624. DOI: https://doi.org/10.1016/j.apsusc.2013.02.089
- Tan, K., Markovych, S., Hu, W., Shorinov, O., & Wang, Y. (2021). Review of application and research based on cold spray coating materials. Aerospace Technic and Technology, (1), 47-59. DOI: https://doi.org/10.32620/aktt.2021.1.05
- Hu, W., Markovych, S., Tan, K., Shorinov, O., & Cao, T. (2020). SURFACE REPAIR OF AIRCRAFT TITANIUM ALLOY PARTS BY COLD SPRAYING TECHNOLOGY. Aerospace Technic and Technology, 0(3). 30-42. DOI: https://doi.org/10.32620/aktt.2020.3.04
- Tan, K., Markovych, S., Hu, W., Wang, Y., Shorinov, O., & Wang, Y. (2021, April). On the characteristics of cold spray technology and its application in aerospace industries. In IOP Conference Series: Earth and Environmental Science (Vol. 719, No. 3, p. 032023). IOP Publishing. DOI: 10.1088/1755-1315/719/3/032023
- Hu, W., Tan, K., Markovych, S., Cao, T. (2021). Research on structure and technological parameters of multi-channel cold spraying nozzle. Eastern-European Journal of Enterprise Technologies, 5 (1 (113)), 6–14. doi: https://doi.org/10.15587/1729-4061.2021.242707
- Hu, W., Tan, K., Markovych, S., & Cao, T. (2021, October). Structural optimization of the special cold spraying nozzle via response surface method. In Conference on Integrated Computer Technologies in Mechanical Engineering–Synergetic Engineering (pp. 110-122). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-94259-5_11.
- Kun T., Jie H. W., Markovych S., Wang Y. (2021). Dimet Laval nozzle expansion section analysis and optimization. Journal of Engineering Sciences, 8(2), 6-10. DOI: 10.21272/jes.2021.8(2).f2
- Xie, J., Nélias, D., Walter-Le Berre, H., Ogawa, K., & Ichikawa, Y. (2015). Simulation of the cold spray particle deposition process. Journal of Tribology, 137(4), 041101. DOI: https://doi.org/10.1115/1.4030257
- Rahmati, S., & Ghaei, A. (2014). The use of particle/substrate material models in simulation of cold-gas dynamic-spray process. Journal of thermal spray technology, 23, 530-540. DOI: https://doi.org/10.1007/s11666-013-0051-4
- P.-E. Leger, Rˆole de la microstructure sur les m´ecanismes de corrosion marine d’un d´epˆot `a base d’aluminium ´elabor´e par projection dynamique par gaz froid ( cold spray ), Ph.D. thesis, Mines Paristech. (2018).
- T. Schmidt, F. Ga¨rtner, H. Assadi, and H. Kreye. (2006). Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater. 54, p 729-742. DOI: 10.1016/j.actamat.2005.10.005
- Kim, K., Li, W., & Guo, X. (2015). Detection of oxygen at the interface and its effect on strain, stress, and temperature at the interface between cold sprayed aluminum and steel substrate. Applied Surface Science, 357, 1720-1726. DOI: 10.1016/j.apsusc.2015.10.022
- Lemiale, V., King, P. C., Rudman, M., Prakash, M., Cleary, P. W., Jahedi, M. Z., & Gulizia, S. (2014). Temperature and strain rate effects in cold spray investigated by smoothed particle hydrodynamics. Surface and Coatings Technology, 254, 121-130. DOI: 10.1016/j.surfcoat.2014.05.071
- Delloro, F., Jeandin, M., Jeulin, D., Proudhon, H., Faessel, M., Bianchi, L., ... & Helfen, L. (2017). A morphological approach to the modeling of the cold spray process. Journal of Thermal Spray Technology, 26, 1838-1850. DOI: https://doi.org/10.1007/s11666-017-0624-8
- Li, W. Y., & Gao, W. (2009). Some aspects on 3D numerical modeling of high velocity impact of particles in cold spraying by explicit finite element analysis. Applied Surface Science, 255(18), 7878-7892. DOI: https://doi.org/10.1016/j.apsusc.2009.04.135
- Rahmati, S., & Jodoin, B. (2020). Physically based finite element modeling method to predict metallic bonding in cold spray. Journal of Thermal Spray Technology, 29, 611-629. DOI: https://doi.org/10.1007/s11666-020-01000-1
- Gnanasekaran, B., Liu, G. R., Fu, Y., Wang, G., Niu, W., & Lin, T. (2019). A Smoothed Particle Hydrodynamics (SPH) procedure for simulating cold spray process-A study using particles. Surface and Coatings Technology, 377, 124812. DOI: 10.1016/j.surfcoat.2019.07.036.
- Manap, A., Ogawa, K., & Okabe, T. (2012). Numerical analysis of interfacial bonding of Al-Si particle and mild steel substrate by cold spray technique using the SPH method. Journal of Solid Mechanics and Materials Engineering, 6(3), 241-250. DOI: https://doi.org/10.1299/jmmp.6.241
- Li, W. Y., Yang, K., Yin, S., & Guo, X. P. (2016). Numerical analysis of cold spray particles impacting behavior by the Eulerian method: a review. Journal of Thermal Spray Technology, 25, 1441-1460. DOI: 10.1007/s11666-016-0443-3
- Leger, P. E., Sennour, M., Delloro, F., Borit, F., Debray, A., Gaslain, F., ... & Ducos, M. (2017). Multiscale experimental and numerical approach to the powder particle shape effect on Al-Al 2 O 3 coating build-up. Journal of Thermal Spray Technology, 26, 1445-1460. DOI: https://doi.org/10.1007/s11666-017-0618-6
- Li, W. Y., Zhang, C., Li, C. J., & Liao, H. (2009). Modeling aspects of high velocity impact of particles in cold spraying by explicit finite element analysis. Journal of Thermal Spray Technology, 18, 921-933. DOI: https://doi.org/10.1007/s11666-009-9325-2
- Yildirim, B., Muftu, S., & Gouldstone, A. (2011). Modeling of high velocity impact of spherical particles. Wear, 270(9-10), 703-713. DOI: https://doi.org/10.1016/j.wear.2011.02.003
- Bae, G., Xiong, Y., Kumar, S., Kang, K., & Lee, C. (2008). General aspects of interface bonding in kinetic sprayed coatings. Acta Materialia, 56(17), 4858-4868. DOI: https://doi.org/10.1016/j.actamat.2008.06.003
- Li, W. Y., Liao, H., Li, C. J., Bang, H. S., & Coddet, C. (2007). Numerical simulation of deformation behavior of Al particles impacting on Al substrate and effect of surface oxide films on interfacial bonding in cold spraying. Applied Surface Science, 253(11), 5084-5091. DOI: https://doi.org/10.1016/j.apsusc.2006.11.020
- Zhang Xiong, Lu Mingwan, Wang Jianjun. (1997). Research progress on arbitrary Lagrangian-Eulerian description method. Journal of Computational Mechanics. (1). 93-104.
- Wang Feng, Zhao Ming. (2016). Numerical analysis of the deposition process of cold spray particles on the surface of cast iron and Q235 steel. Materials Herald. 30(10). 135-138.
- Wang Hequan, Zhang Bo, Yuan Fuhe. (2018). Research on residual stress detection and simulation of plasma sprayed NiCrAl coating on titanium alloy surface. Thermal Processing Technology. 47(22). 147-151.
- Wen-Ya Li; Shuo Yin; Xiao-Fang Wang. (2010). Numerical investigations of the effect of oblique impact on particle deformation in cold spraying by the SPH method. 256(12). 3725–3734. DOI: 10.1016/j.apsusc.2010.01.014
- Shuo Yin; Xiao-fang Wang; Bao-peng Xu; Wen-ya Li. (2010). Examination on the Calculation Method for Modeling the Multi-Particle Impact Process in Cold Spraying. 19(5). 1032–1041. DOI: 10.1007/s11666-010-9489-9
- Dassault Systemes. ABAQUS Analysis User’s Manue. 6.11 ed. Simulia. Providence. Chap. 24 (2011).
- Bagherifard, S., Monti, S., Zuccoli, M. V., Riccio, M., Kondás, J., & Guagliano, M. (2018). Cold spray deposition for additive manufacturing of freeform structural components compared to selective laser melting. Materials Science and Engineering: A, 721, 339-350. DOI: https://doi.org/10.1016/j.msea.2018.02.094
- Hassani-Gangaraj, M., Veysset, D., Champagne, V. K., Nelson, K. A., & Schuh, C. A. (2018). Adiabatic shear instability is not necessary for adhesion in cold spray. Acta Materialia, 158, 430-439. DOI: https://doi.org/10.1016/j.actamat.2018.07.065
- Yildirim, B., Muftu, S., & Gouldstone, A. (2011). Modeling of high velocity impact of spherical particles. Wear, 270(9-10), 703-713. DOI: https://doi.org/10.1016/j.wear.2011.02.003
- MacDonald, D., Fernández, R., Delloro, F., & Jodoin, B. (2017). Cold spraying of armstrong process titanium powder for additive manufacturing. Journal of thermal spray technology, 26, 598-609. DOI: https://doi.org/10.1007/s11666-016-0489-2
- Zahiri, S. H., Fraser, D., Gulizia, S., & Jahedi, M. (2006). Effect of processing conditions on porosity formation in cold gas dynamic spraying of copper. Journal of thermal spray technology, 15, 422-430. DOI: https://doi.org/10.1361/105996306X124437
- Weiller, S., & Delloro, F. (2022). A numerical study of pore formation mechanisms in aluminium cold spray coatings. Additive Manufacturing, 60, 103193. DOI: https://doi.org/10.1016/j.addma.2022.103193
- Terrone, M., Lordejani, A. A., Kondas, J., & Bagherifard, S. (2021). A numerical approach to design and develop freestanding porous structures through cold spray multi-material deposition. Surface and Coatings Technology, 421, 127423. DOI: https://doi.org/10.1016/j.surfcoat.2021.127423
- Xie, J., Nélias, D., Walter-Le Berre, H., Ogawa, K., & Ichikawa, Y. (2015). Simulation of the cold spray particle deposition process. Journal of Tribology, 137(4), 041101. DOI: https://doi.org/10.1115/1.4030257
- Wang, Y., Adrien, J., & Normand, B. (2018). Porosity characterization of cold sprayed stainless steel coating using three-dimensional X-ray microtomography. Coatings, 8(9), 326. DOI: 10.3390/coatings8090326
- Song, X., Ng, K. L., Chea, J. M.-K., Sun, W., Tan, A. W.-Y., Zhai, W., … Liu, E. (2020). Coupled Eulerian-Lagrangian (CEL) simulation of multiple particle impact during Metal Cold Spray process for coating porosity prediction. Surface and Coatings Technology, 385, 125433. doi:10.1016/j.surfcoat.2020.125433
- Weiller, S., Delloro, F., Lomonaco, P., Jeandin, M., & Garion, C. (2019). A finite elements study on porosity creation mechanisms in cold sprayed coatings. Key Engineering Materials, 813, 358-363. DOI: https://doi.org/10.4028/www.scientific.net/kem.813.358
- Tan, K., Hu, W., Shorinov, O., & Wang, Y. (2024). Simulating multi-particle deposition based on CEL method: studing the effects of particle and substrate temperature on deposition. Aerospace Technic and Technology, (1), 64-75. DOI: https://doi.org/10.32620/aktt.2024.1.06
- Manafi Farid, H., McDonald, A., & Hogan, J. D. (2023). Impact Deposition Behavior of Al/B4C Cold-Sprayed Composite Coatings: Understanding the Role of Porosity on Particle Retention. Materials, 16(6), 2525. DOI: https://doi.org/10.3390/ma16062525
- Xie, W., Alizadeh-Dehkharghani, A., Chen, Q., Champagne, V. K., Wang, X., Nardi, A. T., ... & Lee, J. H. (2017). Dynamics and extreme plasticity of metallic microparticles in supersonic collisions. Scientific reports, 7(1), 5073. DOI: https://doi.org/10.1016/B978-0-08-103015-8.00011-6
- Dušek, F. (1970). Plastic deformation at high strain rates. Czech J Phys 20. 776–789. DOI: https://doi.org/10.1007/BF01726605
- JAHM Software Inc., Material Properties Database. MPDB (2003); V7.01 demo
- Lin, E., Chen, Q., Ozdemir, O. C., Champagne, V. K., & Müftü, S. (2019). Effects of Interface Bonding on the Residual Stresses in Cold-Sprayed Al-6061: A Numerical Investigation. Journal of Thermal Spray Technology. DOI: https://doi.org/10.31399/asm.cp.itsc2018p0278.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Кунь Тань
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work