On the parameters of scattered destruction of structural materials

Authors

DOI:

https://doi.org/10.20535/2521-1943.2024.8.2(101).304901

Keywords:

іsotropic damage, damage tensor, damage parameter, dual scalar variables, degradation of elastic modules, hypothesis of equivalent specific energies and strains

Abstract

The results of applying various mechanical characteristics of structural materials as scalar parameters of damageability are described. The concepts of the first and second kinds of Young's modulus, bulk modulus, and Poisson's ratio are used. Hypotheses of the equivalence of strains and specific energies of strain for the undamaged and damaged states of initially isotropic metallic materials are accepted. The patterns of accumulation of dispersed damage for 12Х18Н10Т steel and D16Т aluminum alloy under conditions of active elastic-plastic strain are obtained. It is established that the use of two phenomenological parameters in damageability based on the hypothesis of equivalence of specific energies of strain provides a significant refinement in determining the stress-strain state of highly loaded elements of structures of various purposes.

References

  1. Lemaitre J., Desmorat R. Engineering Damage Mechanics / J. Lemaitre, R. Desmorat, Springer. – Paris, 2005. 380 p.
  2. Bobyr, N.I., Koval’, V.V. Damage Contribution to the Assessment of the Stress-Strain State of Structure Elements // Strength of mater. – 2017. – 49. – Р. 361–368, https://doi.org/10.1007/s11223-017-9876-2
  3. Badreddine, H., Saanouni, K., & Nguyen, T.D. (2015). Damage anisotropy and its effect on the plastic anisotropy evolution under finite strains. International Journal of Solids and Structures, 63, 11–31. https://doi.org/10.1016/j.ijsolstr.2015.02.009
  4. Lu, Dechun, et al. "Double scalar variables plastic-damage model for concrete." Journal of Engineering Mechanics 148.2 (2022): 04021143.
  5. Xing, L., et al. "A micromechanics-based damage constitutive model considering microstructure for aluminum alloys." International Journal of Plasticity 157 (2022): 103390.
  6. Chausov, M.G., Maruschak, P.O., Hutsaylyuk, V., Śnieżek, L., & Pylypenko, A.P. (2018). Effect of complex combined loading mode on the fracture toughness of titanium alloys. Vacuum, 147, 51–57. https://doi.org/10.1016/j.vacuum.2017.10.010
  7. Betten J. Damage tensors in continuum mechanics // Journal de mechanique theorique appliquee. – 1983. – №1. – Р. 13–32.
  8. Shedbale, Amit Subhash, Gang Sun, and Leong Hien Poh. "A localizing gradient enhanced isotropic damage model with Ottosen equivalent strain for the mixed-mode fracture of concrete." International Journal of Mechanical Sciences 199 (2021): 106410.
  9. Brünig, Michael, Sanjeev Koirala, and Steffen Gerke. "Micro-mechanical numerical analysis on ductile damage in multiaxially loaded anisotropic metals." Computational Mechanics 73.2 (2024): 223–232.
  10. Keshavarz, Arash, and Rahmatollah Ghajar. "Effect of isotropic and anisotropic damage and plasticity on ductile crack initiation." International Journal of Damage Mechanics 28.6 (2019): 918–942.
  11. Xing, L., et al. "A micromechanics-based damage constitutive model considering microstructure for aluminum alloys." International Journal of Plasticity 157 (2022): 103390.
  12. Yue, Z., et al. "Failure prediction on steel sheet under different loading paths based on fully coupled ductile damage model." International Journal of Mechanical Sciences 153 (2019): 1–9.
  13. Tang, C.Y., Shen, W., Peng, L.H., & Lee, T.C. Characterization of Isotropic Damage Using Double Scalar Variables // Intern. Journal of Damage Mechanics, Vol. 11, – January 2002, pp. 3–25.
  14. Бобир М.І., Коваль В.В., Фам Д.К. Пошкоджуваність та граничний стан елементів конструкцій при складному навантаженні / К., КПІ ім. Ігоря Сікорського, 2023, 292 с.
  15. Pérez Caro, Lluís, et al. "Damage and fracture during sheet-metal forming of alloy 718." International Journal of Material Forming 13.1 (2020): 15–28.
  16. Kachanov, L. Time of the Rupture Process under Creep Conditions. Izv. Akad. Nauk SSSR, Otd. Teck. Nauk, 8, 1958, pp. 26–31.
  17. Araújo, L. M., et al. "Fatigue analysis for the aluminum alloy 7050-T7451 performed by a two scale continuum damage mechanics model." Theoretical and Applied Fracture Mechanics 105 (2020): 102439.
  18. Wang, Xiao, et al. "Plastic damage evolution in structural steel and its non-destructive evaluation." Journal of Materials Research and Technology 9.2 (2020): 1189–1199.
  19. Tuo, Zhiyu, et al. "Comparison of two uncoupled ductile damage initiation models applied to DP900 steel sheet under various loading paths." International Journal of Damage Mechanics 30.1 (2021): 25–45.
  20. P. Ladeveze, Damage and Fracture of Tridirectional Composites, Proc. ICCM-IV, 1982, pp. 649–658.
  21. Masseron, B., Rastiello G., and Desmorat R. "Analytical strain localization analysis of isotropic and anisotropic damage models for quasi-brittle materials." International Journal of Solids and Structures 254 (2022): 111869.
  22. Lennemann, Philipp, Yannis P. Korkolis, and A. Erman Tekkaya. "Influence of changing loading directions on damage in sheet metal forming." Advances in Industrial and Manufacturing Engineering 8 (2024): 100139.
  23. Rong, Hai, et al. "Modeling the anisotropic plasticity and damage of AA7075 alloy in hot forming." International Journal of Mechanical Sciences 215 (2022): 106951.
  24. Kumar, Sanjeev. "Modelling ductile damage in metals and alloys through Weyl condition exploiting local gauge symmetries." International Journal of Solids and Structures (2024): 112820.
  25. Sadeghi, Faraz, et al. "Damage identification of steel-concrete composite beams based on modal strain energy changes through general regression neural network." Engineering Structures 244 (2021): 112824.

Published

2024-06-10

How to Cite

[1]
V. Malynskyi, M. Bobyr, and O. Tymoshenko, “On the parameters of scattered destruction of structural materials”, Mech. Adv. Technol., vol. 8, no. 2(101), Jun. 2024.