Improving the dynamic positioning accuracy of the electro-hydraulic drive

Authors

DOI:

https://doi.org/10.20535/2521-1943.2024.8.3(102).310508

Keywords:

dynamic positioning accuracy, transitional process, hydraulic actuator activation time, electromagnetic recirculation valve, electronic control unit, self-inductance, time constant, control surface deflection, control surface overshoot, test bench, structural diagram

Abstract

Research is focused on improving the dynamic accuracy of control surface positioning during the switching of hydraulic actuator modes and studying the processes and phenomena that cause control surface overshoot. Existing studies on the dynamic accuracy of hydraulic actuators have been analyzed. Transitional processes occurring in the " electromagnetic recirculation valve – electronic control unit" loop during changes in hydraulic actuator operating modes have been examined. The features of processes and physical phenomena leading to increased activation time of the hydraulic actuator have been identified. Solutions and electrical connection schemes for connecting the hydraulic actuator recirculation valve to the electronic control unit have been proposed to meet the accuracy positioning and activation time requirements.

Experimental studies have been conducted to simulate the operational mode of hydraulic actuators, and failure situations modes under various load forces have been identified. Based on the results, principles for designing connection schemes for the electromagnetic recirculation valve of the hydraulic-mechanical actuator to the electronic control unit, which enhance system positioning accuracy at the structural level, have been formulated. Technical solutions aimed at achieving the specified accuracy and activation time for the hydraulic actuator have been developed and practically tested. The effectiveness and suitability of the proposed solutions for operational use, considering external factors, have been experimentally confirmed.

References

  1. A. М. Murashchenko, A. P. Gubarev, O. M. Yakhno and O. V. Tyzhnov, “Calculation of hydraulic channels of drives with taking in to account temperature and viscosity changes”, Mech. Adv. Technol., no. 2 (83), pp. 5–10, Oct. 2018. DOI: https://doi.org/10.20535/2521-1943.2018.83.118414.
  2. O. D. Donets and V. O. Kudriavtsev, “Specifics of Providing the Regional Passenger Aircraft Aerodynamic Characteristics”, Open Information and Computer Integrated Technologies, no. 83, pp. 106-133, 2019. DOI: https://doi.org/10.32620/oikit.2019.83.08.
  3. P. M. Andrenko, A. Yu. Lebediev and M. S. Svynarenko, Tekhnichne diahnostuvannia hidravlichnykh pryvodiv. Kharkiv: Vydavnychyi tsentr NTU “KhPI”, 2016, 172 p.
  4. H. V. Soldatkin and O. P. Hubarev, “Vplyv temperatury robochoi ridyny na vytratnu kharakterystyku klapana vytraty z proportsiinym keruvanniam”, in Zbirnyk tez dopovidey II Mizhnarodnoi naukovo-tekhnichnoi konferentsii “Perspektyvy rozvytku mashynobuduvannia ta transportu - 2021”, Vinnytsia, Ukraine, 2021, pp. 447-450.
  5. I. A. Chekmasova, “Dynamika hidroahrehata z droselnym keruvanniam na bazi rehuliatora vytraty”, master's thesis, “Kharkivskyi politekhnichnyi instytut”, 2003, 19 p.
  6. I. A. Chekmasova and A. V. Chekmasov, “O prirode nestabilnosti parametrov gidroprivodov s porshnevymi mashinami ob’emnogo vytesneniya”, Vestnik Kharkovskogo gosudarstvennogo politekhnicheskogo universiteta, vol. 85, pp. 27–33, 1999.
  7. I. A. Chekmasova, “Analiz metodov stabilizatsii drosselnykh gidroprivodov”, Vestnik Nacionalnogo tehnicheskogo universiteta Ukrainy “Kievskij politehnicheskij institut”, no. 38, pp. 196–200, 2000.
  8. I. A. Chekmasova, “Ob obshchikh problemakh sistem avtomaticheskoi stabilizatsii razlichnykh protsessov s tekuchei sredoi”, Vestnik Kharkovskogo gosudarstvennogo politekhnicheskogo universiteta, vol. 111, pp. 41–52, 2000.
  9. E. I. Abramov, Yu. A. Kravetskii, V. G. Moiseev and A. P. Gubarev, “Stend dlya issledovaniya ekspluatatsionnykh kharakteristik servoprivodov s tsifrovym upravleniem”, Promyslova hidravlika i pnevmatyka, vol. 4, no. 10, pp. 91–94, 2005.
  10. V. A. Trofimov, Yu. A. Kravetskii, V. G. Moiseev and A. P. Gubarev, “Vliyanie elementov preobrazovaniya upravlyayushchego signala na rabotu gidroprivoda s tsifrovym upravleniem”, Promyslova hidravlika i pnevmatyka, vol. 1, no. 15, pp. 47–51, 2007.
  11. Z. Ya. Lur'e and I. A. Chekmasova, “Dinamika drosselnogo gidroagregata s regulyatorom raskhoda, nagruzochnym drosselem i gidrodvigatelem pryamolineinogo dvizheniya”, Vestnik Kharkovskogo gosudarstvennogo politekhnicheskogo universiteta, vol. 12, no. 9, pp. 129–135, 2002.
  12. Z. Ya. Lur'e and I. A. Chekmasova, “Matematicheskaya model drosselnogo gidroagregata s regulyatorom raskhoda”, Vestnik Nacionalnogo tehnicheskogo universiteta Ukrainy “Kievskij politehnicheskij institut”, no. 42, pp. 178–183, 2002.
  13. Yu. A. Buriennikov, L. H. Kozlov and S. V. Repinskyi, “Eksperymentalnyi stend dlia doslidzhennia kharakterystyk hidropryvodu z nasosom zminnoi produktyvnosti”, Promyslova ghidravlika i pnevmatyka, vol. 4, no. 18, pp. 79-82, 2007. Available: http://ir.lib.vntu.edu.ua/handle/123456789/6888.
  14. Yu. A. Buryennikov, V. A. Kovalchuk, L. H. Kozlov, Yu. V. Shevchuk and V. H. Pylyavets, “Stabilizacija vytraty robochoji ridyny v hidropryvodi lyvarnogho mekhanizmu termoplastavtomata”, Visnyk Zhytomyrskoho derzhavnoho tekhnolohichnoho universytetu, no. 2 (73), pp. 6–11, 2015. Available: http://ir.lib.vntu.edu.ua/handle/123456789/8842.
  15. A. I. Panchenko, A. A. Voloshyna, V. B. Mitkov, I. A. Panchenko and K. V. Nesterenko, “Influence of design features of planetary hydromotors on changing dynamic characteristics of hydraulic drives of mechatronic systems of self-propelled vehicles”, Proceedings of Tavria state agrotechnological university, vol. 1, no. 23, pp. 6–26, 2023. DOI: 10.31388/2078-0877-2023-23-1-6-26.
  16. O. V. Petrov, L. H. Kozlov, N. S. Semichastnova and O. O. Zavalniuk, “Research of stability of Load-sensing hydraulic drive operation, on the base of multimode directional control valve”, Journal of Mechanical Engineering and Transport, vol. 2, no. 12, pp. 93–99, 2020. DOI: https://doi.org/10.31649/2413-4503-2020-12-2-93-99.
  17. O. V. Petrov, L. H. Kozlov, M. P. Korinenko, Ye. S. Garbuz, “Vplyv parametriv systemy keruvannya na kharakterystyky LS-hidropryvodu pid chas roboty v rezhymi mashynobuduvannya hidronasosa”, Visnyk mashynobuduvannya ta transportu, vol. 1, no. 2, pp. 76–82, 2015. Available: http://ir.lib.vntu.edu.ua//handle/123456789/16670.
  18. V. Rutkevych and S. Shapovaluk, “Analiz perekhidnykh procesiv v adaptyvnomu hidravlichnomu pryvodi vyvantazhuvacha steblovykh kormiv”, Visnyk Khmelnytskoho natsionalnoho universytetu, vol. 321, no. 3, pp. 199–209, 2023. Available: http://journals.khnu.km.ua/vestnik/wp-content/uploads/2023/07/vknu-ts-2023-n3321-199-209.pdf.
  19. A. O. Tovkach, V. V. Bogachuk and L. H. Kozlov, “Kharakterystyky hidropryvoda z elektrohidravlichnym rehulyatorom podachi nasosa”, Visnyk Khmelnytskoho natsionalnoho universytetu, vol. 231, no. 6, pp. 67–72, 2015.
  20. V. M. Spivak, A. M. Gurzhiy, A. T. Nelga and O. S. Ítyakín, "Skhemy keruvannya navantazhennyam v elektrychnykh kolakh", in Zahalna elektrotekhnika i osnovy elektroniky. Kyiv: KPI, 2020, pp. 133–137.
  21. Yu. O. Karpov, T. Ye. Mahas and V. H. Madyarov, "Metody analizu statsionarnykh protsesiv v elektrychnykh kolakh", in Teoretychni osnovy elektrotekhniky. Chastyna 1: konspekt lektsiy. Vinnytsia: VNTU, 2018, pp. 57-68.
  22. Yu. O. Karpov, S. Sh. Katsiv, V. V. Kukharchuk and Yu. H. Vedmitskyy, Teoretychni osnovy elektrotekhniky. Ustaleni rezhymy liniynykh elektrychnykh kil iz zoseredzhenymy ta rozpodilenymy parametramy. Vinnytsia: VNTU, 2011.
  23. S. F. Kurashkin and I. O. Popova, Teoretychni osnovy elektrotekhniky: chastyna 3. Melitopol: TDATU, 2018.

Published

2024-09-30

How to Cite

[1]
Y. Kravetskyi and O. Chernov, “Improving the dynamic positioning accuracy of the electro-hydraulic drive”, Mech. Adv. Technol., vol. 8, no. 3(102), pp. 271–279, Sep. 2024.

Issue

Section

Mechanics