The Pushing Mechanism Design of Jumping Robot

Authors

DOI:

https://doi.org/10.20535/2521-1943.2024.8.4(103).314110

Keywords:

jumping robot, cam mechanism, design, solid model, cam profile

Abstract

The paper presents the features of the design and possible application areas of the cam mechanism of a jumping robot. The design and technological parameters of the robot are substantiated according to its mass, the stiffness of the spring, the impact system, as well as the profile surface of the cam using the environment of Autodesk Inventor.
Directions for the development of jumping robot designs are highlighted, and the feasibility of developing cam mechanisms for robots is substantiated, considering the direction of its jump according to the distribution of forces and applied loads.
The calculation of the forces, power, and structural parameters of the impact system is presented, and all stages of the jumping process are thoroughly analyzed. These stages include the compression of the spring by a lever-type device, the removal of the compressing device, the release of the spring, and the final ballistic phase (flight phase).

References

  1. U. Scarfogliero, C. Stefanini and P. Dario, "A bioinspired concept for high efficiency locomotion in micro robots: The jumping robot grillo," in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference On, 2006, pp. 4037-4042, doi: https://doi.org/10.1109/ROBOT.2006.1642322.
  2. M. Kovac, M. Fuchs, A. Guignard, J. Zufferey and D. Floreano, "Miniature 7g jumping robot," in Robotics and Automation, 2008. ICRA 2008. IEEE International Conference On, 2008, pp. 373-378, doi: https://doi.org/10.1109/ROBOT.2008.4543236.
  3. N. Muliak, A. Zdobytskyi, M. Lobur and R. Kaczynski, "Optimization of Electromechanical Systems by Intelligent Design Methods,"2022 IEEE XVIII International Conference on the Perspective Technologies and Methods in MEMS Design (MEM-STECH), Polyana (Zakarpattya), Ukraine, 2022, pp. 65-69, doi: 10.1109/MEMSTECH55132.2022.10002914.
  4. J. Zhao, J. Xu, B. Gao, N. Xi, F. J. Cintrón, M. W. Mutka and L. Xiao, "MSU Jumper: a single-motor-actuated miniature steer-able jumping robot," Robotics, IEEE Transactions On, vol. 29, pp. 602-614, 2013, doi: https://doi.org/10.1109/TRO.2013.2249371
  5. Sayyad A., Seth B., Seshu P. Single-legged hopping robotics research // Robotica. 2007. Vol. 25. No. 5. pp. 587-613, doi: https://doi.org/10.1017/S0263574707003487.
  6. Yuto Sango and Hiroyuki Ishii, Prototype of Ball-like Jumping Robot for Playful Learning, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) June 28-30, 2023. Seattle, Washington, USA, 1220-1225, doi: https://doi.org/10.1109/AIM46323.2023.10196144.
  7. Zaitsev V., Gvirsman O., Ben Hanan U., Weiss A., Ayali A. and Kosa G. 2015 A locust-inspired miniature jumping robot Bioinspir. Biomim. 10 066012, doi: https://doi.org/10.1088/1748-3190/10/6/066012.
  8. Chen, Z.; Jin, B.; Zhu, S.; Huang, H.; Chen, G. Design and experiment of single leg of hydraulically actuated bionic multi-legged robot. Trans. Chin. Soc. Agric. Eng. 2016, 32, 36–42.
  9. Zhao J., Zhao T., Xi N., Mutka M. W. and Xiao L. 2015 MSU Tailbot: controlling aerial maneuver of a miniature-tailed jumping robot IEEE/ASME Trans. Mechatronics 20 2903-14, doi: https://doi.org/10.1109/TMECH.2015.2411513.
  10. Koh J. S. et al 2015 Jumping on water: surface tension-dominated jumping of water striders and robotic insects Science 349 517-21, doi: https://doi.org/10.1126/science.aab1637.
  11. Macario-Rojas, A.; Parslew, B.; Weightman, A.; Smith, K.L. Clover Robot: A Minimally Actuated Jumping Robotic Platform. Machines 2022, 10, 640. https://doi.org/10.3390/machines10080640.
  12. Feng Ni, Daniel Rojas, Kai Tang, Lilong Cai, Tamim Asfour, A Jumping Robot Using Soft Pneumatic Actuator, 2015 IEEE International Conference on Robotics and Automation (ICRA) Washington State Convention Center Seattle, Washington, May 26-30, 2015, 3154-3159.
  13. D. H. Kim, J. H. Lee, I. Kim, S. H. Noh and S. K. Oho, "Mechanism, control, and visual management of a jumping robot," Mechatronics, vol. 18, pp. 591-600, 2008.
  14. Graichen, K.; Hentzelt, S.; Hildebrandt, A.; Kärcher, N.; Gaißert, N.; Knubben, E. Control design for a bionic kangaroo. Control Eng. Practice 2015, 42, 106-117, doi: https://doi.org/10.1016/j.conengprac.2015.05.005.
  15. Yan, H.; Li, H.; Zhou, S. Study on hopping height control and detection for the pneumatic actuator. In Proceedings of the 5th International Conference on Electrical Engineering and Automatic Control, Harbin Inst Technol, Weihai, China, 16–18 October 2015; pp. 1121–1128.
  16. Niiyama, R.; Nagakubo, A.; Kuniyoshi, Y. Mowgli: A bipedal jumping and landing robot with an artificial musculoskeletal system. In Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 2546–2551.
  17. Zhang, Z.; Zhao, J.; Chen, H.; Chen, D. A Survey of Bioinspired Jumping Robot: Takeoff, Air Posture Adjustment, and Land-ing Buffer. Appl. Bionics Biomech. 2017, 2017, 4780160. [CrossRef] [PubMed], doi: https://doi.org/10.1155/2017/4780160.
  18. Long, B.; Wenjie, G.; Xiaohong, C.; Qian, T.; Rong, X. Landing impact analysis of a bioinspired intermittent hopping robot with consideration of friction. Math. Probl. Eng. 2015, 2015.
  19. Long, B.; Wenjie, G.; Xiaohong, C.; Meng, X.-y. Hopping capabilities of a bio-inspired and mininally actuated hopping robot. In Proceedings of the 2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 1485–1489.
  20. Li, T. Mechanism Design and Kinematic Analysis of a Frog-Inspired Jumping Robot. Master’s Thesis, North China University of Technology, Beijing, China, 2009.
  21. Zhang, Q. The Structure Optimization and Kinematic Synthesis of a Biomimetic Frog Jumping Robot. Master’s Thesis, North China University of Technology, Beijing, China, 2016.
  22. Lu, C. Design of a Biomimetic frog Robot and Research on Trajectory Planning of Intermittent Jumping. Master’s Thesis, Har-bin Engineering University, Harbin, China, 2016.
  23. Hyon S., Emura T., Mita T. Dynamics-based control of a one-legged hopping robot // Proc. InstnMech. Engrs. 2003. Vol. 217. P. 83–98.
  24. Wiedebach, G.; Bertrand, S.; Wu, T.; Fiorio, L.; McCrory, S.; Griffin, R.; Nori, F.; Pratt, J. Walking on partial footholds includ-ing line contacts with the humanoid robot atlas. In Proceedings of the 2016 IEEE-RAS 16th International Conference on Hu-manoid Robots (Humanoids), Cancun, Mexico, 15–17 November 2016; pp. 1312–1319, doi: https://doi.org/10.1109/HUMANOIDS.2016.7803439.
  25. Li, Y. Trajectory Planning and Stability Analysis of Bio-Frog Jumping Robot. Master’s Thesis, Zhejiang University of Technol-ogy, Hangzhou, China, 2018.
  26. R. Colin Johnson Hopping robots mark a leap for engineering 11.06.2000. https://www.eetimes.com/hopping-robots-mark-a-leap-for-engineering/.
  27. Kim DH et al., Mechanism, control, and visual management of a jumping robot, Mechatronics (2008), doi:10.1016/j.mechatronics. 2008.05.004.
  28. Zhihuai Miao, Jixue Mo, Gang Li, Yinghao Ning and Bing Li, Wheeled hopping robot with combustion-powered actuator, International Journal of Advanced Robotic Systems, 2018: 1–14 DOI: 10.1177/1729881417745608.
  29. M. Kovac, A. Guignard, J.-D. Nicoud, J.-C. Zufferey, and D. Floreano, “A 1.5g SMA-actuated microglider looking for the light,” in IEEE International Conference on Robotics and Automation, 2007, pp. 367–372, doi: https://doi.org/10.1109/ROBOT.2007.363814.
  30. Sathvik Divi, Ryan St. Pierre, Hui Min Foong and Sarah Bergbreiter, Controlling jumps through latches in small jumping ro-bots, Bioinspiration. Biomimetrics. 18, 2023, pp. 1-11. https://doi.org/10.1088/1748-3190/acf824.
  31. Kosiuk M.M., Kostyuk S.A. Increasing the efficiency use impact energy at static-pulsed surface-plastic strengthening, Herald of Khmelnytskyi National University, 2018, Issue 4, pp. 48-56.
  32. Mastering Autodesk Inventor 2009 and Autodesk Inventor LT 2009. by C.Waguespack, L.Jahraus, P.E., S.Dotson, P.E., D.Jeffrey, B.Bogan, S.Subrahmanyam, A.Faix, B.Van der Donck, and S.Hindman. // Wiley Publishing, Inc., 2008. – 600 p.

Downloads

Published

2024-12-26

How to Cite

[1]
R. Zinko, M. Lobur, A. Zdobytskyi, and T. Stefanovych, “The Pushing Mechanism Design of Jumping Robot”, Mech. Adv. Technol., vol. 8, no. 4(103), pp. 364–372, Dec. 2024.

Issue

Section

Up-to-date machines and the technologies of mechanical engineering