A Review of Abrasive Water Jet Cutting Technology for Composite Materials

Authors

DOI:

https://doi.org/10.20535/2521-1943.2025.9.3(106).315941

Keywords:

метод скінченних елементів

Abstract

With the growing demand for high-precision and high-reliability machining of composite materials in aerospace, automotive, and electronics industries, abrasive waterjet (AWJ) technology has emerged as a promising method for cutting non-metallic composites due to its cold cutting nature and multi-material adaptability. Compared with pre-2020 studies that mainly focused on parameter trials, recent research has shifted towards modeling of cutting-induced damage, microstructure-level precision control, intelligent optimization, and real-time monitoring, indicating a dual advancement in mechanism understanding and system-level integration. This review summarizes typical damage modes and modeling methods in AWJ cutting of composite materials, compares the applicability of various predictive models and quality indicators, and evaluates representative optimization strategies across different composite systems. Furthermore, it highlights trends in AWJ system intelligence, including acoustic emission monitoring, AI-based modeling, and the integration of digital twin technologies. Future challenges are identified, such as multi-scale modeling of damage–performance coupling, closed-loop process control, and standardized quality assessment frameworks. This review aims to provide structured insights and forward-looking references for advancing AWJ in composite precision manufacturing.

References

  1. L. M. Hlaváč, “Revised Model of Abrasive Water Jet Cutting for Industrial Use”, Materials, vol. 14, no. 14, p. 4032, 2021. DOI: https://doi.org/10.3390/ma14144032.
    | |
  2. X. Li, X. Ruan, J. Zou, X. Long and Z. Chen, “Experiment on carbon fiber-reinforced plastic cutting by abrasive waterjet with specific emphasis on surface morphology”, The International Journal of Advanced Manufacturing Technology, vol. 107, no. 1-2, pp. 145-156, 2020. DOI: https://doi.org/10.1007/s00170-020-05053-y.
    |
  3. Y. Zhang, D. Liu, W. Zhang, H. Zhu and C. Huang, “Damage study of fiber-reinforced composites drilled by abrasive waterjet – challenges and opportunities”, The International Journal of Advanced Manufacturing Technology, vol. 119, no. 1-2, pp. 41-55, 2022. DOI: https://doi.org/10.1007/s00170-021-08246-1.
    |
  4. K. R. Sumesh, K. Kanthavel and V. Kavimani, “Machinability of hybrid natural fiber reinforced composites with cellulose micro filler incorporation”, Journal of Composite Materials, vol. 54, no. 24, pp. 3655-3671, 2020. DOI: https://doi.org/10.1177/0021998320918020.
    |
  5. J.-F. Chen, Y.-M. Yuan, H. Gao and T.-Y. Zhou, “Smoothing strategy for corner of small curvature radius by abrasive waterjet machining”, Advances in Manufacturing, vol. 11, no. 3, pp. 390-406, 2023. DOI: https://doi.org/10.1007/s40436-023-00443-3.
    |
  6. A. Anu Kuttan, R. Rajesh and M. Dev Anand, “Abrasive water jet machining techniques and parameters: a state of the art, open issue challenges and research directions”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 43, no. 4, p. 220, 2021. DOI: https://doi.org/10.1007/s40430-021-02898-6.
    |
  7. M. Hashish, “Abrasive Waterjet Machining”, Materials, vol. 17, no. 13, p. 3273, 2024. DOI: https://doi.org/10.3390/ma17133273.
    | |
  8. M. Li, X. Lin, X. Yang, H. Wu and X. Meng, “Study on kerf characteristics and surface integrity based on physical energy model during abrasive waterjet cutting of thick CFRP laminates”, The International Journal of Advanced Manufacturing Technology, vol. 113, no. 1-2, pp. 73-85, 2021. DOI: https://doi.org/10.1007/s00170-021-06590-w.
    |
  9. S. Akıncıoğlu, “Investigation of effect of abrasive water jet (AWJ) machining parameters on aramid fiber-reinforced polymer (AFRP) composite materials”, Aircraft Engineering and Aerospace Technology, vol. 93, no. 4, pp. 615-628, 2021. DOI: https://doi.org/10.1108/AEAT-11-2020-0249.
    |
  10. F. Ceritbinmez, V. Özkan, G. Saracoglu and A. Yapici, “MWCNTs doped GFRPs drilling: crosscheck among holes obtained by alternative manufacturing methods”, The International Journal of Advanced Manufacturing Technology, vol. 118, no. 1-2, pp. 33-41, 2022. DOI: https://doi.org/10.1007/s00170-021-07181-5.
    |
  11. M. Du, H. Wang, H. Dong, Y. Guo and Y. Ke, “Numerical research on kerf characteristics of abrasive waterjet machining based on the SPH-DEM-FEM approach”, The International Journal of Advanced Manufacturing Technology, vol. 111, no. 11-12, pp. 3519-3533, 2020. DOI: https://doi.org/10.1007/s00170-020-06340-4.
    |
  12. K. Gupta (ed.), Surface Engineering of Modern Materials. Cham: Springer International Publishing, 2020. DOI: https://doi.org/10.1007/978-3-030-43232-4.
  13. J. Chen, Y. Yuan, H. Gao and T. Zhou, “Analytical modeling of effective depth of cut for ductile materials via abrasive waterjet machining”, The International Journal of Advanced Manufacturing Technology, vol. 124, no. 5-6, pp. 1813-1826, 2023. DOI: https://doi.org/10.1007/s00170-022-10538-z.
    |
  14. A. Perec, A. Radomska-Zalas, A. Fajdek-Bieda and F. Pude, “Process optimization by applying the response surface methodology (RSM) to the abrasive suspension water jet cutting of phenolic composites”, Facta Universitatis, Series: Mechanical Engineering, vol. 21, no. 4, pp. 575-589, 2023. DOI: https://doi.org/10.22190/FUME211123010P.
    |
  15. N. P. Singh, D. S. Srinivasu and N. Ramesh Babu, “A study on the interaction of jet with constituent layers of multilayered structure in through kerfing with abrasive waterjets”, Journal of Manufacturing Processes, vol. 60, pp. 117-133, 2020. DOI: https://doi.org/10.1016/j.jmapro.2020.10.046.
    |
  16. R. Selvam, M. Subramanian, M. Diviya, T. M. Yunus Khan, R. U. Baig, T. Ahamad et al., “Effect of silicon carbide on kerf convergence and irregularity of the surface during abrasive water jet machining of fiber-metal hybrid composites”, Scientific Reports, vol. 13, p. 17391, 2023. DOI: https://doi.org/10.1038/s41598-023-44334-w.
    | |
  17. X. Sourd, R. Zitoune, A. Hejjaji, M. Salem, L. Crouzeix and D. Lamouche, “Multi-scale analysis of the generated damage when machining pockets of 3D woven composite for repair applications using abrasive water jet process: Contamination analysis”, Composites Part A: Applied Science and Manufacturing, vol. 139, p. 106118, 2020. DOI: https://doi.org/10.1016/j.compositesa.2020.106118.
    |
  18. L. M. Hlaváč, M. P. G. Annoni, I. M. Hlaváčová, F. Arleo, F. Viganò and A. Štefek, “Abrasive Waterjet (AWJ) Forces – Potential Indicators of Machining Quality”, Materials, vol. 14, no. 12, p. 3309, 2021. DOI: https://doi.org/10.3390/ma14123309.
    | |
  19. F. Botko, D. Botkova, M. Gelatko, R. Vandzura and D. Klichova, “Evaluation of the Depth and Width of Cuts after Controlled-Depth Abrasive Water Jet Machining Using Low Pressure”, Materials, vol. 16, no. 24, p. 7532, 2023. DOI: https://doi.org/10.3390/ma16247532.
    | |
  20. B. Cheng, Y. Ding, Y. Li and L. Yang, “Theoretical and Experimental Investigation on SiC/SiC Ceramic Matrix Composites Machining with Laser Water Jet”, Applied Sciences, vol. 12, no. 3, p. 1214, 2022. DOI: https://doi.org/10.3390/app12031214.
    |
  21. M. Li, X. Jiang and T. Su, “The influence of hole quality on mechanical behavior and strain distribution of open‐hole CFRP laminates subject to different machining processes”, Polymer Composites, vol. 43, no. 12, pp. 9218-9230, 2022. DOI: https://doi.org/10.1002/pc.27099.
    |
  22. H. A. Youssef, H. A. El-Hofy, A. M. Abdelaziz and M. H. El-Hofy, “Accuracy and surface quality of abrasive waterjet machined CFRP composites”, Journal of Composite Materials, vol. 55, no. 12, pp. 1693-1703, 2021. DOI: https://doi.org/10.1177/0021998320974428.
    |
  23. A. Dhanawade, P. Kumar and S. Kumar, “Experimental study on abrasive water jet machining of carbon epoxy composite”, Advances in Materials and Processing Technologies, vol. 6, no. 1, pp. 40-53, 2020. DOI: https://doi.org/10.1080/2374068X.2019.1703338.
    |
  24. A. Perec, “Research into the Disintegration of Abrasive Materials in the Abrasive Water Jet Machining Process”, Materials, vol. 14, no. 14, p. 3940, 2021. DOI: https://doi.org/10.3390/ma14143940.
    | |
  25. R. K. Thakur, K. K. Singh, Mahesh and P. Rawat, “Evaluation of graphene nanoplatelets addition and machining methods on the hole quality and bearing strength of glass and carbon fibre reinforced epoxy laminates”, Journal of Manufacturing Processes, vol. 115, pp. 137-155, 2024. DOI: https://doi.org/10.1016/j.jmapro.2024.02.016.
    |
  26. A. Dhanawade, S. Wazarkar and S. Kumar, “Erosion model for abrasive water jet machining of composite materials”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 44, no. 7, p. 268, 2022. DOI: https://doi.org/10.1007/s40430-022-03565-0.
    |
  27. I. A. Popan, C. Cosma, A. I. Popan, N. Panc, D. Filip and N. Balc, “Correction of Shape Error at Cut-In and Cut-Out Points in Abrasive Waterjet Cutting of Carbon Fiber Reinforced Polymer (CFRP)”, Machines, vol. 11, no. 8, p. 800, 2023. DOI: https://doi.org/10.3390/machines11080800.
    |
  28. A. Štefek, J. Raška, L. M. Hlaváč and S. Spadło, "Investigation of Significant Parameters during Abrasive Waterjet Turning", Materials, vol. 14, no. 16, p. 4389, 2021. DOI: https://doi.org/10.3390/ma14164389.
    | |
  29. F. Ceritbinmez and A. Yapici, “An Investigation on Cutting of the MWCNTs-Doped Composite Plates by AWJ”, Arabian Journal for Science and Engineering, vol. 45, no. 7, pp. 5129-5141, 2020. DOI: https://doi.org/10.1007/s13369-020-04363-3.
    |
  30. D. K. Shanmugam, T. Nguyen and J. Wang, “A study of delamination on graphite/epoxy composites in abrasive waterjet machining”, Composites Part A: Applied Science and Manufacturing, vol. 39, no. 6, pp. 923-929, 2008. DOI: https://doi.org/10.1016/j.compositesa.2008.04.001.
    |
  31. K. Vijayananth, G. Pudhupalayam Muthukutti, S. Keerthiveettil Ramakrishnan, S. Venkatesan and W. Zhou, “An integrated CRITIC-COPRAS approach for multi-response optimization on AWJM of hybrid filler-reinforced polymer composite and its surface integrity”, The International Journal of Advanced Manufacturing Technology, vol. 131, no. 9-10, pp. 4965-4980, 2024. DOI: https://doi.org/10.1007/s00170-024-13267-7.
    |
  32. J. N. Nyaboro, M. A. Ahmed, H. El-Hofy and M. El-Hofy, “Fluid-structure interaction modeling of the abrasive waterjet drilling of carbon fiber reinforced polymers”, Journal of Manufacturing Processes, vol. 58, pp. 551-562, 2020. DOI: https://doi.org/10.1016/j.jmapro.2020.08.035.
    |
  33. D.-V. Gubencu, “Experimental Investigation for the Prediction of Surface Roughness Height Parameters in Abrasive Water Jet Cutting of Kevlar/epoxy Composites”, Materiale Plastice, vol. 60, no. 3, pp. 94-105, 2023. DOI: https://doi.org/10.37358/MP.23.3.5679.
    |
  34. W. Liang, H. Dong, L. Miao, X. Xu, L. Cheng, Y. Guo and Y. Ke, “Predicting the geometric morphology of water jet machining in ultra-thick CFRP laminates based on analytical modeling”, Composites Part A: Applied Science and Manufacturing, vol. 180, p. 108055, 2024. DOI: https://doi.org/10.1016/j.compositesa.2024.108055.
    |
  35. A. Tamilarasan and A. Renugambal, “AWJ Parameters Optimisation via BBD-ISOA approach while Machining NFRP Composite”, Materials and Manufacturing Processes, vol. 38, no. 9, pp. 1130-1143, 2023. DOI: https://doi.org/10.1080/10426914.2023.2165673.
    |
  36. M. A. Karatas, H. Gokkaya and M. Nalbant, “Optimization of machining parameters for abrasive water jet drilling of carbon fiber-reinforced polymer composite material using Taguchi method”, Aircraft Engineering and Aerospace Technology, vol. 92, no. 2, pp. 128-138, 2020. DOI: https://doi.org/10.1108/AEAT-11-2018-0282.
    |
  37. R. Kodandappa, S. Nagaraja, M. M. Chowdappa, M. Krishnappa, G. S. Poornima and M. I. Ammarullah, “Application of the Taguchi method and RSM for process parameter optimization in AWSJ machining of CFRP composite-based orthopedic implants”, Open Engineering, vol. 14, no. 1, p. 20240057, 2024. DOI: https://doi.org/10.1515/eng-2024-0057.
    |
  38. C. K. A. Pandian and H. S. Jailani, “Linen Fabric-Jute Fabric-Fumed Silica-Epoxy Sandwich Laminate: AWJ Machining and Multi-Response Optimisation”, Silicon, vol. 13, no. 4, pp. 1239-1248, 2021. DOI: https://doi.org/10.1007/s12633-020-00515-0.
    |
  39. V. Kumar, P. P. Das and S. Chakraborty, “Grey-fuzzy method-based parametric analysis of abrasive water jet machining on GFRP composites”, Sādhanā, vol. 45, no. 1, p. 106, 2020. DOI: https://doi.org/10.1007/s12046-020-01355-9.
    |
  40. B. R. N. Murthy, S. Rao U, N. Naik, S. R. Potti and S. Nambiar S, “A Study to Investigate the Influence of Machining Parameters on Delamination in the Abrasive Waterjet Machining of Jute-Fiber-Reinforced Polymer Composites: An Integrated Taguchi and Response Surface Methodology (RSM) Optimization to Minimize Delamination”, Journal of Composites Science, vol. 7, no. 11, p. 475, 2023. DOI: https://doi.org/10.3390/jcs7110475.
    |
  41. M. Siva Kumar, D. Rajamani, A. M. El-Sherbeeny, E. Balasubramanian, K. Karthik, H. M. A. Hussein and A. Astarita, “Intelligent Modeling and Multi-Response Optimization of AWJC on Fiber Intermetallic Laminates through a Hybrid ANFIS-Salp Swarm Algorithm”, Materials, vol. 15, no. 20, p. 7216, 2022. DOI: https://doi.org/10.3390/ma15207216.
    | |
  42. X. Yang, X. Lin, M. Li and X. Jiang, “Experimental Study on Surface Integrity and Kerf Characteristics During Abrasive Waterjet and Hybrid Machining of CFRP Laminates”, International Journal of Precision Engineering and Manufacturing, vol. 21, no. 12, pp. 2209-2221, 2020. DOI: https://doi.org/10.1007/s12541-020-00415-8.
    |
  43. K. Ishfaq, N. Ahmed, A. U. Rehman, A. Hussain, U. Umer and A. Al-Zabidi, "Minimizing the Micro-Edge Damage at Each Constituent Layer of the Clad Composite during AWJM", Materials, vol. 13, no. 12, p. 2685, 2020. DOI: https://doi.org/10.3390/ma13122685.
    | |
  44. I. A. Popan, N. Balc and A. I. Popan, “Avoiding carbon fibre reinforced polymer delamination during abrasive water jet piercing: a new piercing method”, The International Journal of Advanced Manufacturing Technology, vol. 119, no. 1-2, pp. 1139-1152, 2022. DOI: https://doi.org/10.1007/s00170-021-08294-7.
    |
  45. I. A. Popan, V. I. Bocăneț, S. Softic, A. I. Popan, N. Panc and N. Balc, “Artificial Intelligence Model Used for Optimizing Abrasive Water Jet Machining Parameters to Minimize Delamination in Carbon Fiber-Reinforced Polymer”, Applied Sciences, vol. 14, no. 18, p. 8512, 2024. DOI: https://doi.org/10.3390/app14188512.
    |
  46. I. A. Popan, C. Cosma, A. I. Popan, V. I. Bocăneț and N. Bâlc, “Monitoring Equipment Malfunctions in Composite Material Machining: Acoustic Emission-Based Approach for Abrasive Waterjet Cutting”, Applied Sciences, vol. 14, no. 11, p. 4901, 2024. DOI: https://doi.org/10.3390/app14114901.
    |
  47. E. Azarsa, A. Ibrahim and M. Papini, “Abrasive water and slurry jet micro-machining techniques for fabrication of molds containing raised free-standing micro-features”, Precision Engineering, vol. 65, pp. 197-215, 2020. DOI: https://doi.org/10.1016/j.precisioneng.2020.05.009.
    |
  48. Y. Zhang, D. Liu, W. Zhang, H. Zhu, C. Huang and Y. Dai, “A novel quantitative analysis approach for hole surface damage of ceramic matrix composites machined by abrasive waterjet”, Journal of Manufacturing Processes, vol. 108, pp. 217-226, 2023. DOI: https://doi.org/10.1016/j.jmapro.2023.11.012.
    |
  49. X. Sourd, R. Zitoune, L. Crouzeix, M. Coulaud and D. Lamouche, “Influence of the damage generated by abrasive water jet texturing on the tensile static and fatigue behaviour of 3D woven composite in the context of repair”, Composites Part A: Applied Science and Manufacturing, vol. 149, p. 106567, 2021. DOI: https://doi.org/10.1016/j.compositesa.2021.106567.
    |
  50. M. A. Doğan, L. Gemi, Ş. Yazman, F. Ceritbinmez and A. Yapici, “Effect of hybridization and stacking sequence on damage development in AWJ machining of Al/FRP/Al FML composites”, Journal of Manufacturing Processes, vol. 131, pp. 141-159, 2024. DOI: https://doi.org/10.1016/j.jmapro.2024.09.017.
    |
  51. R. K. Thakur, K. K. Singh and J. Ramkumar, “Impact of nanoclay filler reinforcement on CFRP composite performance during abrasive water jet machining”, Materials and Manufacturing Processes, vol. 36, no. 11, pp. 1264-1273, 2021. DOI: https://doi.org/10.1080/10426914.2021.1906896.
    |
  52. M. Altin Karataş, H. Gökkaya, S. Akincioğlu and M. A. Biberci, “Investigation of the effect of AWJ drilling parameters for delamination factor and surface roughness on GFRP composite material”, Multidiscipline Modeling in Materials and Structures, vol. 18, no. 4, pp. 734-753, 2022. DOI: https://doi.org/10.1108/MMMS-04-2022-0071.
    |
  53. A. Salenko, V. Shchetynin, G. Gabuzian, E. Lashko, M. R. F. Budar, S. Klimenko and A. Potapov, "Cutting Superhard Materials by Jet Methods (on Functional Approach)", in Recent Advancements in the Metallurgical Engineering and Electrodeposition. IntechOpen, 2020. DOI: https://doi.org/10.5772/intechopen.87094.

Downloads

Published

2025-09-29

How to Cite

[1]
X. Xue, O. Salenko, H. Habuzian, and A. Havrushkevych, “A Review of Abrasive Water Jet Cutting Technology for Composite Materials”, Mech. Adv. Technol., vol. 9, no. 3(106), pp. 372–385, Sep. 2025.

Issue

Section

Advanced Mechanical Engineering and Manufacturing Technologies